What This Course Is All About

Computability: What can be computed?

- There exist well-defined problems that cannot be computed.
- In fact, "most" problems cannot be computed.

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space; they are **intractable**.
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 14

Tractability and intractability

- Polynomial in terms of the input size *n* defines tractability.
 - $-n, n \log n, n^2, n^{90}.$

©2003 Yuh-Dauh Lyuu, National Taiwan University

- Time, space, circuit size, random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical unless correctness is sacrificed.
 - $n^{\log n}, 2^{\sqrt{n}}, 2^n, n! \sim \sqrt{2\pi n} (n/e)^n.$

Growth of Factorials

n	n!	n	n!
1	1	9	362880
2	2	10	3628800
3	6	11	39916800
4	24	12	479001600
5	120	13	6227020800
6	720	14	87178291200
7	5040	15	1307674368000
8	40320	16	20,922,789,888,000

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 16

Most Important Results: a Sampler

- An operational definition of computability.
- Decision problems in logic are undecidable.
- Decisions problems on program behavior are usually undecidable.
- Complexity classes and the existence of intractable problems.
- Complete problems for a complexity class.
- Randomization and cryptographic applications.
- Approximability.

What Is Computation?

- That can be coded in an algorithm.
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 18

Turing Machines^a

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- *K* is a finite set of **states**.
- $s \in K$ is the initial state.
- Σ is a finite set of symbols (disjoint from K).
 - Σ includes \bigsqcup (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \to, -\}$ is a transition function.
 - $-\leftarrow$ (left), \rightarrow (right), and (stay) signify cursor movements.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 20

"Physical" Interpretations

- The tape: computer memory and registers.
- δ : program.
- K: instruction numbers.
- s: "main()" in C.
- Σ : alphabet much like the ASCII code.

^aTuring (1936).

More about δ

- The program δ has the **halting state** (h), the **accepting state** ("yes"), and the **rejecting state** ("no").
- Given the current state $q \in K$ and the current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D)$$

specifies the next state p, the symbol ρ to be written over σ , and the direction D the cursor will move afterwards.

• We require $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$ so that the cursor never falls off the left end of the string.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 22

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright , followed by a finitely long string $x \in (\Sigma \{ \bigsqcup \})^*$.
- x is the **input** of the TM.
 - The input must not contain | |s (why?)!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor may overwrite \bigsqcup to make the string longer during the computation.

Program Size

- A program has a *finite* size.
- The program δ is a function from $K \times \Sigma$ to $(K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}.$
- $|K| \times |\Sigma|$ lines suffice to specify such a function.
- Given K and Σ , there are

$$((|K|+3)\times |\Sigma|\times 3)^{|K|\times |\Sigma|}$$

possible δ 's.

- This is a constant—albeit large.
- Different δ 's may define the same behavior.

©2003 Yuh-Dauh Lyuu, National Taiwan University

The Halting of a TM

- A TM M may halt in three cases.
 - "yes": The machine accepts its input x, and
 - M(x) ="yes".
 - "no": The machine $\mathbf{rejects}$ its input x, and
 - M(x) = "no".
 - h: M(x) = y, where the string consists of a ▷, followed by a finite string y, whose last symbol is not \bigsqcup , followed by a string of $| \cdot |$ s.
 - -y is the **output** of the computation.
 - -y may be empty denoted by ϵ .
- If M never halts on x, then write $M(x) = \nearrow$.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 26

Why TMs?

- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
- One can develop a complexity theory based on C++ or Java, say.
- But the added complexity does not yield additional fundamental insights.
- We will describe TMs in pseudocode.

Configurations

- A **configuration** is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.
- A configuration is a triple (q, w, u):
 - $-q \in K$.
 - $-w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
 - $-u \in \Sigma^*$ is the string to the right of the cursor.

©2003 Yuh-Dauh Lyuu, National Taiwan University

- w = > 1000110000.
- u = 111001110001110.

Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step, denoted

$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

- That configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps is denoted by $(q, w, u) \xrightarrow{M^k} (q', w', u')$.
- That configuration (q, w, u) yields configuration (q', w', u') is denoted by $(q, w, u) \xrightarrow{M^*} (q', w', u')$.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 30

Example: How to Insert a Symbol

- We want to compute f(x) = ax.
 - The TM moves the last symbol of x to the right by one position.
 - It then moves the next to last symbol to the right, and so on.
 - The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes: "yes" for palindromes and "no" for nonpalindromes.
 - It matches the first character with the last character.
 - It matches the second character with the next to last character, etc.
- This program takes $O(n^2)$ steps.

©2003 Yuh-Dauh Lyuu, National Taiwan University

A Matching Lower Bound for PALINDROME

Theorem 1 Palindrome on single-string TMs takes $\Omega(n^2)$ steps in the worst case.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 34

The Proof: Communications

- Our input is more restricted; hence any lower bound holds for the original problem.
- Each communication between the two halves across the cut is a state from K, hence of size O(1).
- C(x, x): the sequence of communications for palindrome problem P(x, x) across the cut.
- $C(x, x) \neq C(y, y)$ when $x \neq y$.
 - Otherwise, C(x,x) = C(y,y) = C(x,y), and P(x,y) has the same answer as P(x,x)!
- So C(x,x) is distinct for each x.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 36

The Proof: Amount of Communications

- Assume |x| = |y| = m = n/3.
- |C(x,x)| is the number of times the cut is crossed.
- We first seek a lower bound on the total number of communications:

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)|.$$

• Define

$$\kappa \equiv (m+1) \log_{|K|} 2 - \log_{|K|} m - 1 + \log_{|K|} (|K| - 1).$$

The Proof: Amount of Communications (continued)

- There are $\leq |K|^i$ distinct C(x, x)s with |C(x, x)| = i.
- Hence there are at most

$$\sum_{i=0}^{\kappa} |K|^{i} = \frac{|K|^{\kappa+1} - 1}{|K| - 1} \le \frac{|K|^{\kappa+1}}{|K| - 1} = \frac{2^{m+1}}{m}$$

distinct C(x, x)s with $|C(x, x)| \le \kappa$.

- The rest must have $|C(x,x)| > \kappa$.
- Because C(x,x) is distinct for each x (p. 35), there are at least $2^m \frac{2^{m+1}}{m}$ of them with $|C(x,x)| > \kappa$.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 38

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 40

The Proof: Amount of Communications (concluded)

• Thus

$$\begin{split} \sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)| & \geq & \sum_{x \in \{0,1\}^m, |\operatorname{C}(x,x)| > \kappa} |\operatorname{C}(x,x)| \\ & > & \left(2^m - \frac{2^{m+1}}{m}\right) \kappa \\ & = & \kappa 2^m \frac{m-2}{m}. \end{split}$$

• As $\kappa = \Theta(m)$, the total number of communications is

$$\sum_{x \in \{0,1\}^m} |C(x,x)| = \Omega(m2^m). \tag{1}$$

The Proof (continued)

- $C_i(x,x)$ denotes the sequence of communications for P(x,x) given the cut.
- T(n): the worst-case running time, when dealing with P(y,y).
- $T(n) \ge \sum_{i=1}^{m} |C_i(y, y)|$ as T(n) is the worst-case time bound.
- Now,

$$2^{m}T(n) = \sum_{x \in \{0,1\}^{m}} T(n) \ge \sum_{x \in \{0,1\}^{m}} \sum_{i=1}^{m} |C_{i}(x,x)|$$
$$= \sum_{i=1}^{m} \sum_{x \in \{0,1\}^{m}} |C_{i}(x,x)|.$$

The Proof (continued)

We now lower-bound the worst-case number of communication points.

The Proof (concluded)

• By the pigeonhole principle, a there exists an $0 \le i^* \le m$,

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| \le \frac{2^m T(n)}{m}.$$

• Eq. (1) on p. 39 says that

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}_{i^*}(x,x)| = \Omega(m2^m).$$

• Hence

$$T(n) = \Omega(m^2) = \Omega(n^2).$$

^aDirichlet (1805–1859).

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 42

Comments on Lower-Bound Proofs

- They are usually difficult.
 - Worthy of a Ph.D. degree.
- A lower bound that matches a known upper bound (given by an efficient algorithm) shows that the algorithm is optimal.
 - The simple $O(n^2)$ algorithm for Palindrome is optimal.
- This happens rarely and is model dependent.
 - Searching, sorting, PALINDROME, matrix-vector multiplication, etc.

Decidability and Recursive Languages

- Let $L \subseteq (\Sigma \{ \coprod \})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.
 - For example, $\{0,01,10,210,1010,\ldots\}$.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "ves."
 - If $x \notin L$, then M(x) = "no."
- We say M decides L.
- If L is decided by some TM, then L is **recursive**.
 - Palindromes over $\{0,1\}^*$ are recursive.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 44

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \{ \sqcup \})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then $M(x) = \nearrow$.
- We say M accepts L.
- If L is accepted by some TM, then L is a **recursively** enumerable language.
 - Technically, a recursively enumerable language can be generated by a TM, thus the name.

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- Let TM M decide L.
- We next modify M's program to obtain M' that accepts L.
- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
- M' accepts L.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 46

Turing-Computable Functions

- Let $f: (\Sigma \{|\ |\})^* \to \Sigma^*$.
 - Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ .
- M computes f if for any string $x \in (\Sigma \{ \bot \})^*$, M(x) = f(x).
- We call f a **recursive function**^a if such an M exists.

Church's Thesis or the Church-Turing Thesis

- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown not to be Turing-computable (yet).

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 48

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are polynomially related.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The *unary* representation of numbers is not succinct.
 - The $\it binary$ representation of numbers is succinct.
 - * 1001 vs. 1111111111.
- All numbers for TMs will be binary from now on.

^aGödel (1931).

Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M=(K,\Sigma,\delta,s).$
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a >.
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 50

PALINDROME Revisited

- A 2-string TM can decide PALINDROME in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-triple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k).$$

- $-w_iu_i$ is the *i*th string.
- The *i*th cursor is reading the last symbol of w_i .
- Recall that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

$$(s, \overbrace{\triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \dots, \triangleright, \epsilon}^{2k})$$

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 54

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .
- Machine M operates within time f(n) for $f: \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most f(|x|).
 - |x| is the length of string x.
 - Function f(n) is a **time bound** for M.

Time Complexity Classes^a

- Suppose language $L \subseteq (\Sigma \{ \coprod \})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in TIME(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a complexity class.
 - PALINDROME is in TIME(f(n)), where f(n) = O(n).

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 56

The Simulation Technique

Theorem 3 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of M by configuration

$$(q, \triangleright w_1'u_1 \triangleleft w_2'u_2 \triangleleft \cdots \triangleleft w_k'u_k \triangleleft \triangleleft)$$

of M'.

- \triangleleft is a special delimiter.
- $-w'_i$ is w_i with the first and last symbols "primed."

 $^{^{\}rm a}{\rm Hartmanis}$ and Stearns (1965), Hartmanis, Lewis, and Stearns (1965).

The Proof (continued)

• The initial configuration of M' is

$$(s, \triangleright \triangleright' x \lhd \overbrace{\triangleright' \lhd \cdots \triangleright' \lhd}^{k-1 \text{ pairs}} \lhd).$$

- To simulate each move of M:
 - -M' scans the string to pick up the k symbols under the cursors.
 - * The states of M' must include $K \times \Sigma^k$ to remember them.
 - * The transition functions of M' must also reflect it.
 - -M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 58

string 1 string 2 string 3 string 4 string 1 string 2 string 3 string 4

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 60

The Proof (continued)

- It is possible that some strings of M need to be lengthened.
 - The linear-time algorithm on p. 31 can be used for each such string.
- \bullet The simulation continues until M halts.
- M' erases all strings of M except the last one.
- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).
- The length of the string of M' at any time is O(kf(|x|)).

The Proof (concluded)

- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
 - -O(f(|x|)) steps to collect information.
 - O(kf(|x|)) steps to write and, if needed, to lengthen the string.
- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.

Linear Speedup

Theorem 4 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

- Let L be decided by a k-string TM $M = (K, \Sigma, \delta, s)$ operating within time f(n).
- Our goal is to construct a k'-string $M' = (K', \Sigma', \delta', s')$ operating within the time bound f'(n) and which simulates M.
- Set $k' = \max(k, 2)$.
- We encode $m = \lceil 6/\epsilon \rceil$ symbols of M in one symbol of M' so that M' can simulate m steps of M within 6 steps.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 62

The Proof (continued)

- $\Sigma' = \Sigma \cup \Sigma^m$.
- Phase one of M':
 - M' has states corresponding to $K \times \Sigma^m$.
 - Map each block of m symbols of the input $\sigma_1 \sigma_2 \cdots \sigma_m$ to the single symbol $(\sigma_1 \sigma_2 \cdots \sigma_m) \in \Sigma'$ of M' to the second string.
 - Doable because M' has the states for remembering.
- This phase takes m[|x|/m] + 2 steps.
 - The extra 2 comes from the enclosing symbols \triangleright and \mid \mid .

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 64

The Proof (continued)

- Treat the second string as the one containing the input.
 - If k > 1, use the first string as an ordinary work string.
- M' simulates m steps of M by six or fewer steps, called a **stage**.
- A stage begins with M' in state $(q, j_1, j_2, \dots, j_k)$.
 - $-q \in K$ and $j_i \leq m$ is the position of the *i*th cursor within the *m*-tuple scanned.
 - If the *i*th cursor of M is at the ℓ th symbol after \triangleright , then the (i+1)st cursor of M' will point to the $\lceil \ell/m \rceil$ th symbol after \triangleright and $j_i = ((\ell-1) \mod m) + 1$.

The Proof (continued)

- m = 3.
- $\ell = 8$.
- $\lceil \ell/m \rceil = \lceil 8/3 \rceil = 3$.
- $j_i = ((8-1) \mod 3) + 1 = 2$.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 66

The Proof (continued)

- Then M' moves all cursors to the left by one position, then to the right twice, and then to the left once.
 - This takes 4 steps.
 - No cursor of M can in m moves get out of the m-tuples scanned by M' above.
- M' now "remembers" all symbols (of Σ') at or next to all cursors.
 - M' contains states in $K \times \{1, 2, \dots, m\}^k \times \Sigma^{3mk}$.
 - That is an $m^k \cdot |\Sigma|^{3mk}$ -fold increase.

The Proof (concluded)

- M' has all the information needed for the next m moves of M!
- Hard-code that into its program δ' .
- δ' now implements the changes in string contents and state brought about by the next m moves of M.
 - This takes 2 steps: One for the current $\emph{m}\text{-tuple}$ and one for one of its two neighbors.
- The total number of M' steps is at most 6 per stage.
- The total number of M' steps is at most

$$|x| + 2 + 6 \times \left\lceil \frac{f(|x|)}{m} \right\rceil \le |x| + 2 + \epsilon f(|x|).$$

©2003 Yuh-Dauh Lyuu, National Taiwan University

Implications of the Speedup Theorem

- State size can be traded for speed.
 - $-m^k \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m).
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.
- 1-bit, 4-bit, 8-bit, 16-bit, 32-bit, 64-bit, 128-bit CPUs, and so on.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 70

Р

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some k > 1.
- If L is a polynomially decidable language, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.
- The union of all polynomially decidable languages is denoted by P:

$$P = \bigcup_{k>0} TIME(n^k).$$

• Problems in P can be efficiently solved.

Charging for Space

- We do not want to charge the space used only for input and output.
- Let k > 2 be an integer.
- A *k*-string Turing machine with input and output is a *k*-string TM that satisfies the following conditions.
 - The input string is read-only.
 - The last string, the output string, is write-only.
 - So its cursor never moves to the left.
 - The cursor of the input string does not wander off into the | |s.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 72

Space Complexity

- Consider a k-string TM M with input x.
- We may assume | | is never written over a non-| | symbol.
- If M halts in configuration $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required by M on input x is $\sum_{i=1}^{k} |w_i u_i|$.
- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
- Machine M operates within space bound f(n) for $f: \mathbb{N} \to \mathbb{N}$ if for any input x, the space required by M on x is at most f(|x|).

Space Complexity Classes

- \bullet Let L be a language.
- Then

$$L \in SPACE(f(n))$$

if there is a TM with input and output that decides L and operates within space bound f(n).

- SPACE(f(n)) is a set of languages.
 - Palindrome \in SPACE(log n): Keep 3 pointers.
- As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 74

Nondeterminism^a

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a relation, not a function.
 - For each state-symbol combination, there may be more than one next steps—or none at all.
- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.

Computation Tree and Computation Path

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 76

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
 - It is not required that the NTM halts in all computation paths.
- So if $x \notin L$, then no nondeterministic choices should lead to a "yes" state.
- Determinism is a special case of nondeterminism.

^aRabin and Scott (1959).

An Example

- \bullet Let L be the set of logical conclusions of a set of axioms.
- Consider the nondeterministic algorithm:
 - 1: b := false;
 - 2: while the input predicate $\phi \neq b$ do
 - 3: Generate a logical conclusion of b by applying some of the axioms; {Nondeterministic choice.}
 - 4: end while
 - 5: "yes";
- This algorithm decides L.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 78

Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is a (deterministic) TM, then M' decides \bar{L} .
- But if M is an NTM, then M' may not decide \bar{L} .
 - It is possible that both M and M' accept x.

