What This Course Is All About

Computability: What can be computed?

e There exist well-defined problems that cannot be
computed.

e In fact, “most” problems cannot be computed.
Complexity: What is a computable problem’s inherent
complexity?
e Some computable problems require at least
exponential time and/or space; they are intractable.

e Some practical problems require superpolynomial
resources unless certain conjectures are disproved.

e Other resource limits besides time and space?

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 14

Tractability and intractability

Polynomial in terms of the input size n defines
tractability.
— n, nlogn, n?, n%.

— Time, space, circuit size, random bits, etc.

It results in a fruitful and practical theory of complexity.

Few practical, tractable problems require a large degree.

Exponential-time or superpolynomial-time algorithms
are usually impractical unless correctness is sacrificed.

— nlo8n 2V 9n nl ~ \/271n (n/e)".

Growth of Factorials

n n!l| n n!
1 1 9 362880
2 2110 3628800
3 6| 11 39916800
4 24 | 12 479001600
5 120 | 13 6227020800
6 720 | 14 87178291200
7 5040 | 15 1307674368000
8 40320 | 16 20,922,789,888,000

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 16

undecidable.

problems.

e Approximability.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 15

Most Important Results: a Sampler
e An operational definition of computability.
e Decision problems in logic are undecidable.

e Decisions problems on program behavior are usually

e Complexity classes and the existence of intractable

e Complete problems for a complexity class.

e Randomization and cryptographic applications.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 17

What Is Computation? A TM Schema

e That can be coded in an algorithm.
e An algorithm is a detailed step-by-step method for
solving a problem. 0

— The Euclidean algorithm for the greatest common
divisor is an algorithm.

— “Let s be the least upper bound of compact set A” is

not an algorithm.

— “Let s be a smallest element of a finite-sized array” »10001100001110011100011100LLILI

can be solved by an algorithm.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 18 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 20

Turing Machines?

e A Turing machine (TM) is a quadruple M = (K, %, 4, s).

K is a finite set of states. “Physical” Interpretations

s € K is the initial state.

The tape: computer memory and registers.

e Y is a finite set of symbols (disjoint from K). e {: program.

— ¥ includes | | (blank) and > (first symbol). K: instruction numbers.

0:KxX— (KU{h,“yes”, “no”}) x L x {«-,—,—}isa
transition function.

e s: “main()” in C.

¥.: alphabet much like the ASCII code.
— < (left), — (right), and — (stay) signify cursor

movements.

aTuring (1936).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 19 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 21

More about
e The program ¢ has the halting state (h), the

accepting state (“yes”), and the rejecting state
(“nO”).

e Given the current state ¢ € K and the current symbol
gey,

6(g,0) = (p, p, D)

specifies the next state p, the symbol p to be written
over o, and the direction D the cursor will move
afterwards.

e We require §(q,>) = (p, >, —) so that the cursor never
falls off the left end of the string.

Program Size

e A program has a finite size.

Given K and ¥, there are
(1K +3) x [Z] x 3)I¥

possible §’s.

— This is a constant—albeit large.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 22

The program ¢ is a function from K x X to
(K U{h, “yes”, “no”}) x X x {«+,—, —}.

|K| x |X| lines suffice to specify such a function.

[x[Z]

Different ¢’s may define the same behavior.

The Operations of TMs

e Initially the state is s.

e The string on the tape is initialized to a >, followed by a
finitely long string z € (X — {|})*.
z is the input of the TM.

— The input must not contain | |s (why?)!

e The cursor is pointing to the first symbol, always a >.

The TM takes each step according to 4.

The cursor may overwrite | | to make the string longer
during the computation.

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 24

AN

N\

\¥

(IK|+3) X |Z|X3

possibilities

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 23

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 25

The Halting of a TM
e A TM M may halt in three cases.

“yes”: The machine accepts its input z, and
M(z) = “yes”.

“no”: The machine rejects its input z, and
M(z) = “no”.

h: M(z) =y, where the string consists of a >, followed
by a finite string y, whose last symbol is not | |,
followed by a string of | |s.

— gy is the output of the computation.
— y may be empty denoted by e.

e If M never halts on z, then write M (z) ="

Configurations

e A configuration is a complete description of the
current state of the computation.

e The specification of a configuration is sufficient for the
computation to continue as if it had not been stopped.
— What does your PC save before it sleeps?

— Enough for it to resume work later.

e A configuration is a triple (g, w,u):
- g€ K.
— w € ¥* is the string to the left of the cursor
(inclusive).

— u € ¥* is the string to the right of the cursor.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 26

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 28

Why TMs?

e Because of the simplicity of the TM, the model has the
advantage when it comes to complexity issues.

e One can develop a complexity theory based on C++ or

Java, say.

e But the added complexity does not yield additional
fundamental insights.

e We will describe TMs in pseudocode.

H

»>1000110000111001110001110uULIL

e w =[>1000110000.

e 1 =111001110001110.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 27

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 29

Yielding

e Fixa TM M. Palindromes
e Configuration (g, w,u) yields configuration (¢',w’,u’) in one e A string is a palindrome if it reads the same forwards
step, denoted and backwards (e.g., 001100).
(@,w,u) 5 (¢, w',u), e A TM program can be written to recognize palindromes:

113 ” M A [13 7 M
if a step of M from configuration (g, w,u) results in yes” for palindromes and “no” for nonpalindromes.

configuration (¢’,w’, u'). — It matches the first character with the last character.

e That configuration (g, w,u) yields configuration (¢’,w’,u’) in — It matches the second character with the next to last

k
k € N steps is denoted by (g, w, u) M (¢, w',u'). character, etc.
; 2
e That configuration (g, w,u) yields configuration (¢’,w’,u’) is e This program takes O(n”) steps.

denoted by (g, w, u) M (¢, w',u").

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 30 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 32

Example: How to Insert a Symbol
100011000000100111

e We want to compute f(z) = az.

— The TM moves the last symbol of z to the right by

one position.

— It then moves the next to last symbol to the right,

and so on.

— The TM finally writes a in the first position.

e The total number of steps is O(n), where n is the length
of z.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 31 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 33

A Matching Lower Bound for PALINDROME

Theorem 1 PALINDROME on single-string TMs takes Q(n?)
steps in the worst case.

X M y

100011/000000/00111| P(x, y)

Communication: at
most log, | K| bits

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 34

The Proof: Communications

e Our input is more restricted; hence any lower bound
holds for the original problem.

e Each communication between the two halves across the
cut is a state from K, hence of size O(1).

e C(z,z): the sequence of communications for palindrome
problem P(z,z) across the cut.

e C(z,7) # C(y,y) when z # y.
— Otherwise, C(z,z) = C(y,y) = C(z,y), and P(zx,y)
has the same answer as P(z, z)!

e So C(z,z) is distinct for each z.

Cut and Paste
EINEIRIEEApEIInEa
b b b

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 36

e Assume |z |=|y|=m =n/3.

communications:

ze{0,1}™

e Define

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 35

Y IC@,a)l.

The Proof: Amount of Communications

e |C(z,)| is the number of times the cut is crossed.

o We first seek a lower bound on the total number of

k= (m+1)log| g2 —log| m — 1+ log x| (| K| - 1).

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 37

The Proof: Amount of Communications (continued)
e There are < | K |* distinct C(z, z)s with |C(z,)| = i.
e Hence there are at most

i|K|i_|K|n+1_1 |K‘n+1_2m+1
- |K|-1 —|K|-1 m

i=0
distinct C(z,x)s with |C(z,z) | < k.
e The rest must have |C(z,z) | > k.

e Because C(z, z) is distinct for each z (p. 35), there are
at least 2™ — 2 of them with | C(z,z) | > k.

The Proof (continued)

We now lower-bound the worst-case number of
communication points.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 38

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 40

The Proof: Amount of Communications (concluded)

e Thus
> |C(z,2)| > > |C(z,)|
ze{0,1}™ z€{0,1}™,| C(z,z) |>k

2m+1

> (2m —) K

m

—9

— gom 2
m

e As k = ©(m), the total number of communications is

Y. [C(@2)| =Q(m2m). (1)

ze{0,1}™

The Proof (continued)

Ci(z,z) denotes the sequence of communications for

P(z,z) given the cut.

e T'(n): the worst-case running time, when dealing with
P(y,y).
e T(n)>> " |Ci(y,y)| as T(n) is the worst-case time
bound.
e Now,
2"T(n)= Y T(n) > Y > [Cizz)]
z€{0,1}™ z€{0,1}m i=1

i=12€{0,1}™

= Z Z |Ci(z,)|

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 39

©2003 Yuh-Dauh Lyuu, National Taiwan University

Page 41

The Proof luded
e Proof (concluded) Decidability and Recursive Languages

e By the pigeonhole principle,? there exists an 0 < 7* < m,

Let L C (X — {|J})* be a language, i.c., a set of strings

Z | Cix(z,z) | < 2m£(n) _ of symbols with a finite length.
z€{0,1}m — For example, {0,01,10,210,1010,...}.

e Eq. (1) on p. 39 says that Let M be a TM such that for any string z:

z€{0,1}m — If z ¢ L, then M(z) = “no.”

e Hence We say M decides L.

T(n) = Q(m?) = Q(n?). e If L is decided by some TM, then L is recursive.

— Palindromes over {0,1}* are recursive.
aDirichlet (1805-1859).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 42 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 44

Comments on Lower-Bound Proofs Acceptability and Recursively Enumerable Languages

Let L C (X —{||})* be a language.

Let M be a TM such that for any string z:
e A lower bound that matches a known upper bound — Ifz € L, then M(z) = “yes.”

e They are usually difficult.
— Worthy of a Ph.D. degree.

(given by an efficient algorithm) shows that the It 2 ¢ I then M(z) =7
- Ifz en M(z) ="
algorithm is optimal. ’

— The simple O(n?) algorithm for PALINDROME is We say M accepts L.

optimal. e If L is accepted by some TM, then L is a recursively

e This happens rarely and is model dependent. enumerable language.

— Searching, sorting, PALINDROME, matrix-vector — Technically, a recursively enumerable language can

multiplication, etc. be generated by a TM, thus the name.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 43 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 45

Church’s Thesis or the Church-Turing Thesis

Recursive and Recursively Enumerable Languages e What is computable is Turing-computable; TMs are

. , . .,) lgorith Kl 1 .
Proposition 2 If L is recursive, then it is recursively algorithms (Kleene 1953)

enumerable. e Many other computation models have been proposed.

e Let TM M decide L. — Recursive function (Gédel), A calculus (Church),

formal language (Post), assembly language-like RAM
e We next modify M’s program to obtain M’ that accepts

I (Shepherdson & Sturgis), boolean circuits (Shannon),

extensions of the Turing machine (more strings,
e M’ is identical to M except that when M is about to two-dimensional strings, and so on), etc.

: «“ 2 / . . .
halt with a “no” state, M’ goes into an infinite loop. e All have been proved to be equivalent.

/
* M’ accepts L. e No “intuitively computable” problems have been shown

not to be Turing-computable (yet).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 46 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 48
Turing-Computable Functions Extended Church’s Thesis
o Let f: (Z—{)" = =~ e All “reasonably succinct encodings” of problems are

— Optimization problems, root finding problems, etc. polynomially related.

Let M M with aloh > — Representations of a graph as an adjacency matrix
* Let M bea TM with alphabet 2. and as a linked list are both succinct.

e M computes f if for any string z € (X — {|_|})*,

M(z) = f(z). — The binary representation of numbers is succinct.
e We call f a recursive function? if such an M exists. * 1001 vs. 111111111,

— The unary representation of numbers is not succinct.

2Gaodel (1931). e All numbers for TMs will be binary from now on.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 47 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 49

Turing Machines with Multiple Strings PALINDROME Reuvisited

e A k-string Turing machine (TM) is a quadruple e A 2-string TM can decide PALINDROME in O(n) steps.
M = (K, %,6,5). — It copies the input to the second string.

e K,X, s are as before. — The cursor of the first string is positioned at the first

e §: K x¥F o (KU{h,“yes”, “no"}) x (X x {¢<,—, = }F. symbol of the input.

o All strings start with a . — The cursor of the second string is positioned at the

last symbol of the input.

The fi i ins the i) . .
¢ first string contains the input — The two cursors are then moved in opposite

e Decidability and acceptability are the same as before. directions until the ends are reached.
e When TMs compute functions, the output is on the last — The machine accepts if and only if the symbols under
(kth) string. the two cursors are identical at all steps.
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 50 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 52

A 2-String TM

>1000110000111001110001110uUuUL

v

>111110000ULULULLULLLULUU UL

>ababbaabbaabbaabbabauuy
v
>ababbaabbaabbaabbabauuu

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 51 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 53

Configurations and Yielding Time Complexity Classes®

e The concept of configuration and yielding is the same as

Suppose language L C (X — {| |})* is decided by a

f h fi ion i 2 1)-tripl
before except that a configuration is a (2k + 1)-triple multistring TM operating in fime f(n).

(Qawlaulaw2;u2) s awkauk)‘

We say L € TIME(f(n)).

— wj;u; is the ith string.

e TIME(f(n)) is the set of languages decided by TMs
— The 4th cursor is reading the last symbol of w;. with multiple strings operating within time bound f(n).
— Recall that > is each w;’s first symbol. e TIME(f(n)) is a complexity class.
e The k-string TM’s initial configuration is — PALINDROME is in TIME(f(n)), where f(n) = O(n).
%{C 2Hartmanis and Stearns (1965), Hartmanis, Lewis, and Stearns
($,D>,2,D>,€,>,€,... ,D>,€). (1965).
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 54 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 56

Time Complexity The Simulation Technique

e The multistring TM is the basis of our notion of the Theorem 3 Given any k-string M operating within time

time expended by TM computations f(n), there exists a (single-string) M' operating within time
O(f(n)?) such that M(x) = M'(z) for any input z.

e If for a k-string TM M and input z, the TM halts after

t steps, then the time required by M on input z is . e The single string of M’ implements the k strings of M.

e If M(z) =/, then the time required by M on z is . e Represent configuration (wy, ur, wa, ug, ..., wy, ux) of M

by configuration
e Machine M operates within time f(n) for f : N —» N

if for any input string z, the time required by M on z is (g, Dwiuy <wyuy < -+ - < wpug < <)
at most f(|z|). of M’

~ |z s the length of string z. — < is a special delimiter.

— Function f(n) is a time bound for M. — w)} is w; with the first and last symbols “primed.”

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 55 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 57

The Proof (continued)

e The initial configuration of M’ is
k — 1 pairs

—TN—
(s,pp'zap’ < 1<).

e To simulate each move of M:
— M’ scans the string to pick up the k& symbols under
the cursors.
% The states of M’ must include K x ¥* to
remember them.

* The transition functions of M’ must also reflect it.

— M’ then changes the string to reflect the overwriting
of symbols and cursor movements of M.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 58

The Proof (continued)

e It is possible that some strings of M need to be
lengthened.

— The linear-time algorithm on p. 31 can be used for
each such string.

e The simulation continues until M halts.
e M’ erases all strings of M except the last one.

e Since M halts within time f(|z|), none of its strings
ever becomes longer than f(|z|).

e The length of the string of M’ at any time is O(kf(| z |)).

string1l | string 2 string 3 | string 4

stringl | string 2 string 3 I string 4

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 60

The Proof (concluded)
e Simulating each step of M takes, per string of M,
O(kf(|z])) steps.
— O(f(|z|)) steps to collect information.
— O(kf(]z|)) steps to write and, if needed, to lengthen
the string.
o M’ takes O(k?f(|z|)) steps to simulate each step of M.

e As there are f(|z|) steps of M to simulate, M’ operates
within time O(k%f(| z[)?).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 59

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 61

Linear Speedup

Theorem 4 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) =ef(n) +n+ 2.
e Let L be decided by a k-string TM M = (K, X%, 6, s)
operating within time f(n).

e Our goal is to construct a k'-string M’ = (K', X', ¢, s')
operating within the time bound f’(n) and which
simulates M.

o Set k' = max(k,2).

e We encode m = [6/e] symbols of M in one symbol of
M’ so that M’ can simulate m steps of M within 6 steps.

—— |

>1000110000111001110001110uuu
v

>94049130138uuLuLLuLuLLLLLLLL ‘

e m=23.

e 3-ary representation, with | | — 2.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 62

The Proof (continued)
e Y =Uuxm.
e Phase one of M’:

— M’ has states corresponding to K x X™,

— Map each block of m symbols of the input
0102 - Oy to the single symbol (o102 0y) € X/ of
M’ to the second string.

— Doable because M’ has the states for remembering.

e This phase takes m[|z|/m] + 2 steps.

— The extra 2 comes from the enclosing symbols > and

L.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 63

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 64

The Proof (continued)

e Treat the second string as the one containing the input.
— If kK > 1, use the first string as an ordinary work

string.

e M’ simulates m steps of M by six or fewer steps, called
a stage.

e A stage begins with M’ in state (q,j1,J2,--- , Jk)-
— q € K and j; < m is the position of the ith cursor
within the m-tuple scanned.

— If the ith cursor of M is at the £th symbol after >,
then the (i + 1)st cursor of M’ will point to the
[£/m]th symbol after > and j; = ((£—1) mod m) + 1.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 65

The Proof (concluded)

e M’ has all the information needed for the next m moves

of M!

e Hard-code that into its program &'.

The Proof (continued)

A

>10001100001110011100011100uUL

e ¢’ now implements the changes in string contents and

state brought about by the next m moves of M.

— This takes 2 steps: One for the current m-tuple and
one for one of its two neighbors.

em=23
o /=38 e The total number of M’ steps is at most 6 per stage.
e The total number of M’ steps is at most
o [¢/m] = [8/3] =3. ' Dp
f(lz
e ji=((8—1)mod3)+1=2 |z +2+6x [m <lz|+2+ef(lz)).
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 66 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 68

The Proof (continued)

e Then M’ moves all cursors to the left by one position,
then to the right twice, and then to the left once.

— This takes 4 steps. I
— No cursor of M can in m moves get out of the a B v
m-tuples scanned by M’ above. Vg ¢
e M' now “remembers” all symbols (of ¥') at or next to o pBoq a B 9
all cursors.
— M’ contains states in K x {1,2,... ,m}* x x3mk,

— That is an m* - |2|>™*_fold increase.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 67 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 69

Implications of the Speedup Theorem .
P P P Charging for Space
State si be traded f d.

¢ Dtate swe call be traded for spee e We do not want to charge the space used only for input

— mF . |Z[3™*_fold increase to gain a speedup of O(m). and output.

e If f(n) = cn with ¢ > 1, then ¢ can be made arbitrarily e Let k > 2 be an integer.

close to 1.

e A k-string Turing machine with input and output

e If f(n) is superlinear, say f(n) = 14n? + 31n, then the

is a k-string TM that satisfies the following conditions.
constant in the leading term (14 in this example) can be

— The input string is read-only.
made arbitrarily small. mnp mg 1 Y

— The last string, the output string, is write-only.
— Arbitrary linear speedup can be achieved. & P & v

— So its cursor never moves to the left.
— This justifies the asymptotic big-O notation.

— The cursor of the input string does not wander off
e 1-bit, 4-bit, 8-bit, 16-bit, 32-bit, 64-bit, 128-bit CPUs,

into the | |s.
and so on.
©2003 Yuh-Dauh Lyuu, National Taiwan University Page 70 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 72
P Space Complexity
e By the linear speedup theorem, any polynomial time e Consider a k-string TM M with input x.

bound can be represented by its leading term n* for

e We may assume | | is never written over a non-| | symbol.
some k > 1.

e If M halts in configuration
e If L is a polynomially decidable language, it is in

(H, w1, u1, W, Uz, ... , W, Ug), then the space required
TIME(n*) for some k € N.

by M on input z is Zle |w;ug|.
e The union of all polynomially decidable languages is

e If M is a TM with input and output, then the space
denoted by P:

required by M on input z is Zf;; |w;ug|.
P = | J TIME(n*). .
k>0

Machine M operates within space bound f(n) for
f :N — N if for any input z, the space required by M
e Problems in P can be efficiently solved. on z is at most f(|z|).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 71 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 73

Space Complexity Classes Computation Tree and Computation Path

e Let L be a language. S
e Then

L € SPACE(f(n))

if there is a TM with input and output that decides L
and operates within space bound f(n).

e SPACE(f(n)) is a set of languages.
— PALINDROME € SPACE(logn): Keep 3 pointers.

e As in the linear speedup theorem (Theorem 4), constant

coefficients do not matter.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 74 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 76

Nondeterminism?
Decidability under Nondeterminism

A nondeterministic Turing machine (NTM) is a
quadruple N = (K, X, A)s).

Let L be a language and N be an NTM.

e K 3 s are as before.

e N decides L if for any x € ¥*, z € L if and only if there
e ACKxY — (KUIh, “yes”, “no”}) x & x {¢, —, —} is is a sequence of valid configurations that ends in “yes.”
a relation, not a function. — It is not required that the NTM halts in all

— For each state-symbol combination, there may be computation paths.

more than one next steps—or none at all.

So if ¢ L, then no nondeterministic choices should lead
to a “yes” state.

A configuration yields another configuration in one step
if there ezists a rule in A that makes this happen. e Determinism is a special case of nondeterminism.

2Rabin and Scott (1959).

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 75 ©2003 Yuh-Dauh Lyuu, National Taiwan University Page 77

An Example
e Let L be the set of logical conclusions of a set of axioms.

e Consider the nondeterministic algorithm:
1: b:= false;
2: while the input predicate ¢ # b do
3: Generate a logical conclusion of b by applying
some of the axioms; {Nondeterministic choice.}
4: end while
5: “yes”;

e This algorithm decides L.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 78

Complementing a TM's Halting States
e Let M decide L, and M’ be M after “yes” <> “no”.
e If M is a (deterministic) TM, then M’ decides L.

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept x.

©2003 Yuh-Dauh Lyuu, National Taiwan University Page 79

