Comments

- Zero knowledge is a property of the prover.
 - It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
 - The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.
 - A verifier cannot use the transcript of the interaction to convince a third-party of the validity of the claim.
 - The proof is hence not transferable.

Comments (continued)

- Whatever a verifier can "learn" from the specified prover P via the communication channel could as well be computed from the verifier alone.
- The verifier does not learn anything except " $x \in L$."
- For all practical purposes "whatever" can be done after interacting with a zero-knowledge prover can be done by just believing that the claim is indeed valid.
- Zero-knowledge proofs yield no knowledge in the sense that they can be constructed by the verifier who believes the statement, and yet these proofs do convince him.

Comments (concluded)

- The "paradox" is resolved by noting that it is not the transcript of the conversation that convinces the verifier, but the fact that this conversation was held "on line."
- There is no zero-knowledge requirement when $x \notin L$.
- Computational zero-knowledge proofs are based on complexity assumptions.
- It is known that if one-way functions exist, then zero-knowledge proofs exist for all problems in NP.

Zero-Knowledge Proof of Quadratic Residuosity

- 1: **for** $m = 1, 2, \dots, \log_2 n$ **do**
- 2: Peggy chooses a random $v \in \mathbb{Z}_n^*$ and sends $y = v^2 \mod n$ to Victor;
- 3: Victor chooses a random bit i and sends it to Peggy;
- 4: Peggy sends $z = u^i v \mod n$, where u is a square root of x; $\{u^2 \equiv x \mod n.\}$
- 5: Victor checks if $z^2 \equiv x^i y \mod n$;
- 6: end for
- 7: Victor accepts x if Line 5 is confirmed every time;

Analysis

- Assume extracting the square root of a quadratic residue modulo a product of two primes is hard without knowing the factors.
- Suppose x is a quadratic nonresidue.
 - Peggy can answer only one of the two possible challenges.
 - * Reason: y is a quadratic residue if and only if xy is a quadratic nonresidue.
 - So Peggy will be caught in any given round with probability one half.

Analysis (continued)

- Suppose x is a quadratic residue.
 - Peggy can answer all challenges.
 - So Victor will accept x.
- How about the claim of zero knowledge?
- The transcript between Peggy and Victor when x is a quadratic residue can be generated without Peggy!
 - So interaction with Peggy is useless.

Analysis (continued)

- Here is how.
- Suppose x is a quadratic residue.
- In each round of interaction with Peggy, the transcript is a triplet (y, i, z).
- We present an efficient algorithm Bob that generates (y, i, z) with the same probability without accessing Peggy.

Analysis (concluded)

1: Bob chooses a random $z \in \mathbb{Z}_n^*$;

2: Bob chooses a random bit i;

3: Bob calculates $y = z^2 x^{-i} \mod n$;

4: Bob writes (y, i, z) into the transcript;

Comments

- Bob cheats because (y, i, z) is not generated in the same order as in the original transcript.
 - Bob picks Victor's challenge first.
 - Bob then picks Peggy's answer.
 - Bob finally patches the transcript.
 - So it is not the transcript that convinces Victor, but that conversation with Peggy is held "on line."
- The same holds even if the transcript was generated by a cheating Victor's interaction with (honest) Peggy, but we skip the details.

Zero-Knowledge Proof of 3 Colorability^a

1: **for** $i = 1, 2, ..., |E|^2$ **do**

2: Peggy chooses a random permutation π of the 3-coloring ϕ ;

3: Peggy samples an encryption scheme randomly and sends $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ encrypted to Victor;

4: Victor chooses at random an edge $e \in E$ and sends it to Peggy for the coloring of the endpoints of e;

5: if $e = (u, v) \in E$ then

6: Peggy reveals the coloring of u and v and "proves" that they correspond to their encryption;

7: else

8: Peggy stops;

9: end if

^aGoldreich, Micali, and Wigderson (1986).

```
10: if the "proof" provided in Line 6 is not valid then
```

11: Victor rejects and stops;

12: end if

13: **if**
$$\pi(\phi(u)) = \pi(\phi(v))$$
 or $\pi(\phi(u)), \pi(\phi(v)) \not\in \{1, 2, 3\}$ **then**

14: Victor rejects and stops;

15: **end if**

16: end for

17: Victor accepts;

Analysis

- If the graph is 3-colorable and both Peggy and Victor follow the protocol, then Victor always accepts.
- If the graph is not 3-colorable and Victor follows the protocol, then however Peggy plays, Victor will accept with probability $\leq (1 m^{-1})^{m^2} \leq e^{-m}$, where m = |E|.
- Thus the protocol is valid.
- This protocol yields no knowledge to Victor as all he gets is a bunch of random pairs.
- The proof that the protocol is zero-knowledge to *any* verifier is more intricate.

IP and PSPACE

- We next prove that $coNP \subseteq IP$.
- Shamir in 1990 proved that IP equals PSPACE using similar ideas.

Interactive Proof for Boolean Unsatisfiability

- A 3SAT formula is a conjunction of disjunctions of at most three literals.
- We shall present an interactive proof for boolean unsatisfiability.
- For any unsatisfiable 3sat formula $\phi(x_1, x_2, \ldots, x_n)$, there is an interactive proof for the fact that it is unsatisfiable.
- Therefore, $coNP \subseteq IP$.

Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

- $T \rightarrow positive integer$
- $F \rightarrow 0$
- $\bullet \ x_i \to x_i$
- $\bullet \ \bar{x_i} \to 1 x_i$
- \bullet \lor \rightarrow +
- $\bullet \land \to \times$
- $\bullet \ \phi(x_1, x_2, \dots, x_n) \to \Phi(x_1, x_2, \dots, x_n)$

The Arithmetic Version

- A boolean formula is transformed into a multivariate polynomial Φ .
- It is easy to verify that ϕ is unsatisfiable if and only if

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) = 0.$$

- But the above seems to require exponential time.
- We turn to more intricate methods.

Choosing the Field

- Suppose ϕ has m clauses of length three each.
- Then $\Phi(x_1, x_2, \dots, x_n) \leq 3^m$ for any truth assignment (x_1, x_2, \dots, x_n) .
- Because there are at most 2^n truth assignments,

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \le 2^n 3^m.$$

Choosing the Field (concluded)

• By choosing a prime $q > 2^n 3^m$ and working modulo this prime, proving unsatisfiability reduces to proving that

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \equiv 0 \bmod q.$$

• Working under a *finite* field allows us to uniformly select a random element in the field.

Binding Peggy

- Peggy has to find a sequence of polynomials that satisfy a number of restrictions.
- The restrictions are imposed by Victor: After receiving a polynomial from Peggy, Victor sets a new restriction for the next polynomial in the sequence.
- These restrictions guarantee that if ϕ is unsatisfiable, such a sequence can always be found.
- However, if ϕ is not unsatisfiable, any Peggy has only a small probability of finding such a sequence.
 - The probability is taken over Victor's coin tosses.

The Algorithm

- 1: Peggy and Victor both arithmetize ϕ to obtain Φ ;
- 2: Peggy picks a prime $q > 2^n 3^m$ and sends it to Victor;
- 3: Victor rejects and stops if q is not a prime;
- 4: Victor sets v_0 to 0;
- 5: **for** i = 1, 2, ..., n **do**
- 6: Peggy calculates $P_i^*(z) = \sum_{x_{i+1}=0,1} \cdots \sum_{x_n=0,1} \Phi(r_1, \dots, r_{i-1}, z, x_{i+1}, \dots, x_n);$
- 7: Peggy sends $P_i^*(z)$ to Victor;
- 8: Victor rejects and stops if $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \mod q$ or $P_i^*(z)$'s degree exceeds m; $\{P_i^*(z) \text{ has at most } m \text{ clauses.}\}$
- 9: Victor uniformly picks $r_i \in Z_q$ and sets $v_i = P_i^*(r_i) \mod q$;
- 10: Victor sends r_i to Peggy;
- 11: end for
- 12: Victor accepts iff $\Phi(r_1, r_2, \dots, r_n) \equiv v_n \mod q$;

Comments

• The following invariant is maintained by the algorithm:

$$P_i^*(0) + P_i^*(1) \equiv P_{i-1}^*(r_{i-1}) \bmod q \tag{11}$$

for $1 \leq i \leq n$.

- The computation of v_1, v_2, \ldots, v_n must rely on Peggy's supplied polynomials as Victor does not have the power to carry out the exponential-time calculations.
- But $\Phi(r_1, r_2, \dots, r_n)$ in Step 12 is computed without relying on Peggy's polynomials.

Completeness

- Suppose ϕ is unsatisfiable.
- For $i \geq 1$,

$$P_{i}^{*}(0) + P_{i}^{*}(1)$$

$$= \sum_{x_{i}=0,1} \cdots \sum_{x_{n}=0,1} \Phi(r_{1}, \dots, r_{i-1}, x_{i}, \dots, x_{n})$$

$$= P_{i-1}^{*}(r_{i-1})$$

$$\equiv v_{i-1} \mod q.$$

Completeness (concluded)

• In particular at i = 1, because ϕ is unsatisfiable, we have

$$P_1^*(0) + P_1^*(1) = \sum_{x_1=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, \dots, x_n)$$

 $\equiv v_0$
 $= 0 \mod q.$

- Finally, $v_n = P_n^*(r_n) = \Phi(r_1, r_2, \dots, r_n)$.
- Because all the tests by Victor will pass, Victor will accept ϕ .

Soundness

- Suppose ϕ is not unsatisfiable.
- An honest Peggy following the protocol will fail after sending $P_1^*(z)$.
- We will show that if Peggy is dishonest in one round (by sending a polynomial other than $P_i^*(z)$), then with high probability she must be dishonest in the next round, too.
- In the last round (Step 12), her dishonesty is exposed.

Soundness (continued)

- Let $P_i(z)$ represent the polynomial sent by Peggy in place of $P_i^*(z)$.
- Victor calculates $v_i = P_i(r_i) \mod p$.
- In order to deceive Victor in the next round, round i+1, Peggy must use r_1, r_2, \ldots, r_i to find a $P_{i+1}(z)$ of degree at most m such that

$$P_{i+1}(0) + P_{i+1}(1) = v_i \bmod q$$

(see Step 8 of the algorithm on p. 526).

• And so on to the end, except that Peggy has no control over Step 12.

A Key Claim

Theorem 82 If $P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \mod q$, then either Victor rejects in the ith round, or $P_i^*(r_i) \not\equiv v_i \mod q$ with probability at least 1 - (m/q), where the probability is taken over Victor's choices of r_i .

- Remember that Victor has no way of knowing $P_i^*(r_i)$.
- Victor calculates v_i 's with $P_i(z)$ s, claimed by the not necessarily trust-worthy Peggy as $P_i^*(z)$ s.
- What Victor can do is to check for consistencies.

The Proof of Theorem 82 (continued)

• If Peggy sends a $P_i(z)$ which equals $P_i^*(z)$, then

$$P_i(0) + P_i(1) = P_i^*(0) + P_i^*(1) \not\equiv v_{i-1} \bmod q,$$

and Victor rejects immediately.

- Suppose Peggy sends a $P_i(z)$ different from $P_i^*(z)$.
- If $P_i(z)$ does not pass Victor's test

$$P_i(0) + P_i(1) \equiv v_{i-1} \bmod q, \tag{12}$$

then Victor rejects and we are done, too.

The Proof of Theorem 82 (concluded)

- Finally, assume $P_i(z)$ passes the test (12).
- Because $P_i(z) P_i^*(z) \not\equiv 0$ is a polynomial of degree at most m, it has at most m roots $r_i \in Z_q$, i.e.,

$$P_i^*(r_i) \equiv v_i \bmod q.$$

• Hence

$$P_i^*(r_i) \equiv v_i \bmod q$$

with probability at most m/q.

Soundness (continued)

- Suppose Victor does not reject in any of the first n rounds.
- As ϕ is not unsatisfiable,

$$P_1^*(0) + P_1^*(1) \not\equiv v_0 \bmod q.$$

- By Theorem 82 (p. 532) and the fact that Victor does not reject, we have $P_1^*(r_1) \not\equiv v_1 \mod q$ with probability at least 1 (m/q).
- Now by Eq. (11) on p. 527,

$$P_1^*(r_1) = P_2^*(0) + P_2^*(1) \not\equiv v_1 \bmod q.$$

Soundness (concluded)

• Iterating on this procedure, we eventually arrive at

$$P_n^*(r_n) \not\equiv v_n \bmod q$$

with probability at least $(1 - m/q)^n$.

- As $P_n^*(r_n) = \Phi(r_1, r_2, \dots, r_n)$, Victor's last test at Step 12 fails and he rejects.
- Altogether, Victor rejects with probability at least

$$[1 - (m/q)]^n > 1 - (nm/q) > 2/3$$

because $q > 2^n 3^m$.

An Example

- $\bullet \ (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3).$
- The above is satisfied by assigning true to x_1 .
- The arithmetized formula is

$$\Phi(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \times [x_1 + (1 - x_2) + (1 - x_3)].$$

- Indeed, $\sum_{x_1=0,1} \sum_{x_2=0,1} \sum_{x_3=0,1} \Phi(x_1, x_2, x_3) = 16 \neq 0$.
- We have n=3 and m=2.
- A prime q that satisfies $q > 2^3 \times 3^2 = 72$ is 73.

An Example (continued)

• The table below is an execution of the algorithm in Z_{73} when Peggy follows the protocol.

• Victor therefore rejects ϕ early on at i=1.

An Example (continued)

- Now suppose Peggy does not follow the protocol.
- In order to deceive Victor, she comes up with fake polynomials $P_i(z)$'s from beginning to end.
- The table below is an execution of the algorithm.

i	$P_i(z)$	$P_i(0) + P_i(1)$	$= v_{i-1}?$	r_i	v_{i}
0					0
1	$8z^2 + 11z + 27$	0	yes	10	61
2	$10z^2 + 9z + 21$	61	yes	4	71
3	$z^2 + 2z + 34$	71	yes	r_3	$P_3(r_3)$

An Example (concluded)

- Victor has been satisfied up to round 3.
- Finally at Step 12, Victor checks if

$$\Phi(10, 4, r_3) \equiv P_3(r_3) \mod 73.$$

- It can be verified that the only choices of $r_3 \in \{0, 1, ..., 72\}$ that can mislead Victor are 10 and 12.
- The probability of that happening is only 2/73.

An Example

- $(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2).$
- The above is unsatisfiable.
- The arithmetized formula is

$$\Phi(x_1, x_2) = (x_1 + x_2) \times (x_1 + 1 - x_2) \times (1 - x_1 + x_2) \times (2 - x_1 - x_2).$$

• Because $\Phi(x_1, x_2) = 0$ for any boolean assignment $\{0, 1\}^2$ to (x_1, x_2) , certainly

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \Phi(x_1, x_2) = 0.$$

• With n=2 and m=4, a prime q that satisfies $q>2^2\times 3^4=4\times 81=324$ is 331.

An Example (concluded)

• The table below is an execution of the algorithm in Z_{331} .

i	$P_i^*(z)$	$P_i^*(0) + P_i^*(1)$	$=v_{i-1}$?	r_i	v_{i}
0					0
1	z(z+1)(1-z)(2-z)	0	yes	10	283
	+(z+1)z(2-z)(1-z)				
2	$(10+z)\times(11-z)$	283	yes	5	46
	$\times (-9+z) \times (-8-z)$				

- Victor calculates $\Phi(10, 5) \equiv 46 \mod 331$.
- As it equals $v_2 = 46$, Victor accepts ϕ as unsatisfiable.

Objections to the Soundness Proof?^a

- Based on the steps required of a cheating Peggy on p. 531, why must we go through so many rounds (in fact, n rounds)?
- Why not just go directly to round n:
 - Victor sends $r_1, r_2, \ldots, r_{n-1}$ to Peggy.
 - Peggy returns with a (claimed) $P_n^*(z)$.
 - Victor accepts if and only if $\Phi(r_1, r_2, \dots, r_{n-1}, r_n) \equiv P_n^*(r_n) \bmod q \text{ for a random } r_n \in Z_q.$

^aContributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen (R90008) on January 2, 2002.

Objections to the Soundness Proof? (continued)

- Let us analyze the compressed proposal when ϕ is satisfiable.
- To succeed in foiling Victor, Peggy must find a polynomial $P_n(z)$ of degree m such that

$$\Phi(r_1, r_2, \dots, r_{n-1}, z) \equiv P_n(z) \bmod q.$$

- But this she is able to do: Just give the verifier the polynomial $\Phi(r_1, r_2, \ldots, r_{n-1}, z)!$
- What has happened?

Objections to the Soundness Proof? (concluded)

- You need the intermediate rounds to "tie" Peggy up with a chain of claims.
- In the original algorithm on p. 526, for example, $P_n(z)$ is bound by the equality $P_n(0) + P_n(1) \equiv v_{n-1} \mod q$ in Step 8.
- That v_{n-1} is in turn derived by an earlier polynomial $P_{n-1}(z)$, which is in turn bound by $P_{n-1}(0) + P_{n-1}(1) \equiv v_{n-2} \mod q$, and so on.

Density^a

The **density** of language $L \subseteq \Sigma^*$ is defined as

$$dens_L(n) = |\{x \in L : |x| \le n\}|.$$

- If $L = \{0, 1\}^*$, then $dens_L(n) = 2^{n+1} 1$.
- So the density function grows at most exponentially.
- For a unary language $L \subseteq \{0\}^*$,

$$\operatorname{dens}_L(n) \leq n+1.$$

- Because
$$L \subseteq \{0, 00, \dots, \overbrace{00 \cdots 0}^{n}, \dots\}$$
.

^aBerman and Hartmanis (1977).

Sparsity

- Sparse languages are languages with polynomially bounded density functions.
- **Dense languages** are languages with superpolynomial density functions.

Self-Reducibility for SAT

- An algorithm exploits **self-reducibility** if it reduces the problem to the same problem with a smaller size.
- Let ϕ be a boolean expression in n variables x_1, x_2, \ldots, x_n .
- $t \in \{0,1\}^j$ is a **partial** truth assignment for x_1, x_2, \ldots, x_j .
- $\phi[t]$ denotes the expression after substituting the truth values of t for $x_1, x_2, \ldots, x_{|t|}$ in ϕ .

An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty t.

- 1: **if** |t| = n **then**
- 2: **return** $\phi[t]$;
- 3: else
- 4: **return** $\phi[t0] \lor \phi[t1]$;
- 5: end if

The above algorithm runs in exponential time.

NP-Completeness and Density^a

Theorem 83 If a unary language $U \subseteq \{0\}^*$ is NP-complete, then P = NP.

- Suppose there is a reduction R from SAT to U.
- We shall use R to guide us in finding the truth assignment that satisfies a given boolean expression ϕ with n variables if it is satisfiable.
- Specifically, we use R to prune the exponential-time exhaustive search on p. 549.
- The trick is to keep the already discovered results $\phi[t]$ in a hash table H.

^aBerman (1978).

```
1: if |t| = n then
      return \phi[t];
 3: else
      if (R(\phi[t]), v) is in table H then
 5:
        return v;
      else
 6:
        if \phi[t0] = "satisfiable" or \phi[t1] = "satisfiable" then
 7:
           Insert (R(\phi[t]), 1) into H;
 8:
           return "satisfiable";
 9:
        else
10:
           Insert (R(\phi[t]), 0) into H;
11:
           return "unsatisfiable";
12:
         end if
13:
      end if
14:
15: end if
```

The Proof (continued)

- Since R is a reduction, $R(\phi[t]) = R(\phi[t'])$ implies that $\phi[t]$ and $\phi[t']$ must be both satisfiable or unsatisfiable.
- $R(\phi[t])$ has polynomial length $\leq p(n)$ because R runs in log space.
- As R maps to unary numbers, there are only polynomially many p(n) values of $R(\phi[t])$.
- How many nodes of the complete binary tree (of invocations/truth assignments) need to be visited?
- If that number is a polynomial, the overall algorithm runs in polynomial time and we are done.

The Proof (continued)

- A search of the table takes time O(p(n)) in the random access memory model.
- The running time is O(Mp(n)), where M is the total number of invocations of the algorithm.
- The invocations of the algorithm form a binary tree of depth at most n.
- There is a set $T = \{t_1, t_2, ...\}$ of invocations (partial truth assignments, i.e.) such that:
 - $|T| \ge M/(2n).$
 - All invocations in T are **recursive** (nonleaves).
 - None of the elements of T is a prefix of another.

The Proof (continued)

- All invocations $t \in T$ have different $R(\phi[t])$ values.
 - None of $s, t \in T$ is a prefix of another.
 - The invocation of one started after the invocation of the other had terminated.
 - If they had the same value, the one that was invoked second would have looked it up, and therefore would not be recursive, a contradiction.
- The existence of T implies that there are at least M/(2n) different $R(\phi[t])$ values in the table.

The Proof (concluded)

- We already know that there are at most p(n) such values.
- Hence $M/(2n) \leq p(n)$.
- Thus $M \leq 2np(n)$.
- The running time is therefore $O(Mp(n)) = O(np^2(n))$.
- We comment that this theorem holds for any sparse language, not just unary ones.^a

^aMahaney (1980).

NP-Completeness and Density

Theorem 84 (Fortung (1979)) If a unary language $U \subseteq \{0\}^*$ is coNP-complete, then P = NP.

- Suppose there is a reduction R from SAT COMPLEMENT to U.
- The rest of the proof is basically identical except that, now, we want to make sure a formula is unsatisfiable.

