Comments

e Zero knowledge is a property of the prover.

— It is the robustness of the prover against attempts of

the verifier to extract knowledge via interaction.

The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.

A verifier cannot use the transcript of the interaction
to convince a third-party of the validity of the claim.

The proof is hence not transferable.
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Comments (continued)

Whatever a verifier can “learn” from the specified prover
P via the communication channel could as well be

computed from the verifier alone.
The verifier does not learn anything except “x € L.”

For all practical purposes “whatever” can be done after
interacting with a zero-knowledge prover can be done by
just believing that the claim is indeed valid.

Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 508



Comments (concluded)

The “paradox” is resolved by noting that it is not the
transcript of the conversation that convinces the verifier,
but the fact that this conversation was held “on line.”

There is no zero-knowledge requirement when = ¢ L.

Computational zero-knowledge proofs are based on

complexity assumptions.

It is known that if one-way functions exist, then
zero-knowledge proofs exist for all problems in NP.
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Zero-Knowledge Proof of Quadratic Residuosity

1: form=1,2,... ,logyn do
Peggy chooses a random v € Z; and sends
y = v mod n to Victor;
Victor chooses a random bit ¢ and sends it to Peggy;
Peggy sends z = u'v mod n, where u is a square root
of z; {u? = z mod n.}
Victor checks if 22 = z'y mod n;

6: end for

7: Victor accepts x if Line 5 is confirmed every time;
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Analysis

e Assume extracting the square root of a quadratic residue
modulo a product of two primes is hard without

knowing the factors.

e Suppose x is a quadratic nonresidue.

— Peggy can answer only one of the two possible
challenges.
*x Reason: y is a quadratic residue if and only if zy is

a quadratic nonresidue.

— So Peggy will be caught in any given round with
probability one half.
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Analysis (continued)

e Suppose z is a quadratic residue.
— Peggy can answer all challenges.

— So Victor will accept x.
e How about the claim of zero knowledge?

e The transcript between Peggy and Victor when z is a
quadratic residue can be generated without Peggy!

— So interaction with Peggy is useless.
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Analysis (continued)

Here is how.
Suppose x is a quadratic residue.

In each round of interaction with Peggy, the transcript is

a triplet (y,1,z).

We present an efficient algorithm Bob that generates
(y, 1, z) with the same probability without accessing

Peggy.
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Analysis (concluded)

: Bob chooses a random z € Z;

. Bob chooses a random bit ¢;

2

. Bob calculates y = 2%2~* mod n;

. Bob writes (y, %, z) into the transcript;
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Comments
e Bob cheats because (y, i, z) is not generated in the same
order as in the original transcript.
Bob picks Victor’s challenge first.
Bob then picks Peggy’s answer.
Bob finally patches the transcript.
So it is not the transcript that convinces Victor, but

that conversation with Peggy is held “on line.”

e The same holds even if the transcript was generated by

a cheating Victor’s interaction with (honest) Peggy, but

we skip the details.
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Zero-Knowledge Proof of 3 Colorability?
1: fori=1,2,...,|E|* do
Peggy chooses a random permutation 7 of the 3-coloring ¢;

Peggy samples an encryption scheme randomly and sends

T(p(1)), m(#(2)),... ,m(¢(|V])) encrypted to Victor;
Victor chooses at random an edge e € FE and sends it to

Peggy for the coloring of the endpoints of e;

if e = (u,v) € E then

Peggy reveals the coloring of © and v and “proves” that

they correspond to their encryption;
else
Peggy stops;
end if
2Goldreich, Micali, and Wigderson (1986).
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if the “proof” provided in Line 6 is not valid then

Victor rejects and stops;
end if

if m(p(u)) = m(p(v)) or m(¢(u)), 7(4(v)) & {1,2,3} then

Victor rejects and stops;
end if
: end for

: Victor accepts;

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 517



Analysis

If the graph is 3-colorable and both Peggy and Victor

follow the protocol, then Victor always accepts.

If the graph is not 3-colorable and Victor follows the

protocol, then however Peggy plays, Victor will accept
with probability < (1—m=1)™ < e~ ™, where m = | E|.

Thus the protocol is valid.

This protocol yields no knowledge to Victor as all he
gets is a bunch of random pairs.

The proof that the protocol is zero-knowledge to any

verifier is more intricate.
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IP and PSPACE

e We next prove that coNP C IP.

e Shamir in 1990 proved that IP equals PSPACE using

similar ideas.
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Interactive Proof for Boolean Unsatisfiability

A 3sAT formula is a conjunction of disjunctions of at
most three literals.

We shall present an interactive proof for boolean
unsatisfiability.

For any unsatisfiable 3SAT formula ¢(z1, z2, ... ,x,),
there is an interactive proof for the fact that it is
unsatisfiable.

Therefore, coNP C IP.
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Arithmetization of Boolean Formulas
The idea is to arithmetize the boolean formula.
e T' — positive integer
F—0
xT; — T;
T; > 1—x;
V — +

N\ — X

¢(5B1,$27---
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The Arithmetic Version

A boolean formula is transformed into a multivariate

polynomial ®.

It is easy to verify that ¢ is unsatisfiable if and only if

S: S: Z ®(z1,22,... ,25) = 0.

xz1=0,1 £z2=0,1 z,=0,1

But the above seems to require exponential time.

We turn to more intricate methods.
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Choosing the Field

e Suppose ¢ has m clauses of length three each.

e Then ®(xq,z2,...,x,) < 3™ for any truth assignment
(331,332, “.. ,ilfn).
e Because there are at most 2" truth assignments,

Z Z Z b(z1,20,...,2,) <2"3™.

xz1=0,122=0,1 xn,=0,1
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Choosing the Field (concluded)

e By choosing a prime ¢ > 2"3™ and working modulo this

prime, proving unsatisfiability reduces to proving that

S: S: Z ®($17$27°“7$n>50m0dq.

xz1=0,1 z2=0,1 x,=0,1

e Working under a finite field allows us to uniformly select
a random element in the field.
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Binding Peggy

Peggy has to find a sequence of polynomials that satisfy

a number of restrictions.

The restrictions are imposed by Victor: After receiving
a polynomial from Peggy, Victor sets a new restriction
for the next polynomial in the sequence.

These restrictions guarantee that if ¢ is unsatisfiable,

such a sequence can always be found.

However, if ¢ is not unsatisfiable, any Peggy has only a
small probability of finding such a sequence.

— The probability is taken over Victor’s coin tosses.
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The Algorithm

: Peggy and Victor both arithmetize ¢ to obtain ®;

: Peggy picks a prime ¢ > 2"3™ and sends it to Victor;
: Victor rejects and stops if ¢ is not a prime;

: Victor sets vg to 0O;

: fori=1,2,... ,ndo

Peggy calculates P;"(z) =

Zm.,.l:o,l ce ZngO,l CI)(’I“l, cee 3 Ti—15 2y Lid1y . - ,a:n);

Peggy sends P;"(z) to Victor;
Victor rejects and stops if P;"(0) + P;"(1) # v;—1 mod q or

P (z)’s degree exceeds m; {P;"(z) has at most m clauses.}

Victor uniformly picks r; € Z, and sets v; = P;"(r;) mod g¢;
Victor sends 7; to Peggy;
: end for

: Victor accepts iff ®(r1,72,... ,70) = vy, mod g;

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 526



Comments
e The following invariant is maintained by the algorithm:
P’ (0)+ P*(1) = P’ {(r;—1) mod ¢ (11)
for 1 <1 <mn.

e The computation of vy,vs, ..., v, must rely on Peggy’s
supplied polynomials as Victor does not have the power
to carry out the exponential-time calculations.

e But ®(ry,rs,...,7ry,) in Step 12 is computed without

relying on Peggy’s polynomials.
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Completeness

e Suppose ¢ is unsatisfiable.

e For 1> 1,

P7(0) + P (1)

S Y e
z;=0,1 x,=0,1
Py (ri1)

/L_

V;—1 mod qg.
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Completeness (concluded)

e In particular at ¢+ = 1, because ¢ is unsatisfiable, we have

Py (0) + Y (1) S S B, 2
x1=0,1 x,=0,1
Vo

0 mod q.
e Finally, v, = Pl (r,) = ®(r1,72,... ,7Tn).

e Because all the tests by Victor will pass, Victor will
accept o.
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Soundness
Suppose ¢ is not unsatisfiable.

An honest Peggy following the protocol will fail after
sending P;(z).

We will show that if Peggy is dishonest in one round (by

sending a polynomial other than P(z)), then with high

probability she must be dishonest in the next round, too.

In the last round (Step 12), her dishonesty is exposed.
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Soundness (continued)

Let P;(z) represent the polynomial sent by Peggy in
place of P (z).

Victor calculates v; = P;(r;) mod p.

In order to deceive Victor in the next round, round
i + 1, Peggy must use r1,79,...,7; to find a P;;1(z) of
degree at most m such that

Pi+1(0) + Pi41(1) = v; mod ¢
(see Step 8 of the algorithm on p. 526).

And so on to the end, except that Peggy has no control
over Step 12.
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A Key Claim

Theorem 82 If P*(0) + P(1) # v;—1 mod g, then either
Victor rejects in the ith round, or P} (r;) # v; mod q with
probability at least 1 — (m/q), where the probability is taken

over Victor’s choices of r;.

e Remember that Victor has no way of knowing P/ (r;).

e Victor calculates v;’s with P;(z)s, claimed by the not

necessarily trust-worthy Peggy as P*(z)s.

e What Victor can do is to check for consistencies.
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The Proof of Theorem 82 (continued)

o If Peggy sends a P;(z) which equals P*(z), then
and Victor rejects immediately.

e Suppose Peggy sends a P;(z) different from P}(z).

e If P;(z) does not pass Victor’s test
PZ(O) + Pz(1> = U;—-1 mod q,

then Victor rejects and we are done, too.
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The Proof of Theorem 82 (concluded)

e Finally, assume P;(z) passes the test (12).

e Because P;(z) — P*(z) # 0 is a polynomial of degree at

most m, it has at most m roots r; € Z,, 1.e.,

P*(r;) = v; mod g.

P’ (r;) = v; mod ¢

with probability at most m/q.
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Soundness (continued)

Suppose Victor does not reject in any of the first n

rounds.

As ¢ is not unsatisfiable,
P (0) + Py (1) # vg mod g.

By Theorem 82 (p. 532) and the fact that Victor does
not reject, we have P;(r1) # v; mod q with probability
at least 1 — (m/q).

Now by Eq. (11) on p. 527,

Py (r1) = Py(0) + Py (1) # v, mod gq.
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Soundness (concluded)

e Iterating on this procedure, we eventually arrive at
P> (ryp) # vy, mod g
with probability at least (1 —m/q)™.

e As P(r,) = ®(r1,7r2,...,75), Victor’s last test at Step
12 fails and he rejects.

e Altogether, Victor rejects with probability at least

[1=(m/q)|" >1—(nm/q) >2/3

because ¢ > 2"3™.
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An Example
(acl V I V LL‘3) A (331 V T V —I£133).
The above is satisfied by assigning true to x1.

The arithmetized formula is

@(5[)1,562,563) = (5131 + I9 -I—ZL’3> X [561 + (1 — $2> + (1 — 333)]

Indeed, >, _012 zo—0.1 2 zs—01 P(T1,22,23) = 16 # 0.
We have n = 3 and m = 2.

A prime ¢ that satisfies ¢ > 23 x 3% = 72 is 73.
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An Example (continued)

e The table below is an execution of the algorithm in Zr3

when Pegqy follows the protocol.
? Py (z) Pr(0)+ Pr(1) =wvi—1?
0
1 42% 4+ 82+ 2 16 no

e Victor therefore rejects ¢ early on at ¢ = 1.
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An Example (continued)

e Now suppose Peggy does not follow the protocol.

e In order to deceive Victor, she comes up with fake
polynomials P;(z)’s from beginning to end.

e The table below is an execution of the algorithm.

i P;(2) P;(0)+ FP(1) =wvi—1? ry

0
1 822 +11z+ 27 10
2 10z2 +9z + 21 4
3 22 4+ 22+ 34
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An Example (concluded)

Victor has been satisfied up to round 3.

Finally at Step 12, Victor checks if

®(10,4,r3) = P3(r3) mod 73.

It can be verified that the only choices of
rs € {0,1,...,72} that can mislead Victor are 10 and
12.

The probability of that happening is only 2/73.
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An Example

(331 V 562) A (331 V _lilfg) A (ﬁiBl V 332) A (_l£E1 V _I.CEQ).

The above is unsatisfiable.

The arithmetized formula is
(13(581,562) = (:El —|—x2) X (xl +1— 582) X (1 — X1 —I—ZEQ) X (2 — X1

Because ®(x1,x2) = 0 for any boolean assignment
{0,13}2 to (x1,x2), certainly

Z Z <I>(x1,a:2) = (.

I :O,l 2172:0,1

With n = 2 and m = 4, a prime ¢ that satisfies
g>2%x3%=4x81=324is 331.
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An Example (concluded)

e The table below is an execution of the algorithm in Z33.

Pi*(z) Pi* (0) + Pi*(l) =wv;_17? T v;

0

z(z 4+ 1)(1 — 2)(2 — 2) 0 yes 10 283
+(z+1)z(2 — 2)(1 — 2)

(10 + z) X (11 — 2) 46
X(—9 4+ 2z) X (—8 — 2)

e Victor calculates ®(10,5) = 46 mod 331.

e As it equals vo = 46, Victor accepts ¢ as unsatisfiable.
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Objections to the Soundness Proof?72

Based on the steps required of a cheating Peggy on
p. 531, why must we go through so many rounds (in
fact, n rounds)?

Why not just go directly to round n:

— Victor sends r1,73,... ,r,_1 to Peggy.

— Peggy returns with a (claimed) P} (z).

— Victor accepts if and only if
®(ry,r9,... ,Tn_1,Tn) = P¥(r,) mod g for a random
Tn € Zg.

2Contributed by Ms. Emily Hou (D89011) and Mr. Pai-Hsuen Chen
(R90008) on January 2, 2002.
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Objections to the Soundness Proof? (continued)

Let us analyze the compressed proposal when ¢ is
satisfiable.

To succeed in foiling Victor, Peggy must find a
polynomial P, (z) of degree m such that

®(ri,r0,... ,7n_1,2) = Pp(2) mod g.

But this she is able to do: Just give the verifier the
polynomial ®(ry,re,... ,7,_1,2)!

What has happened?
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Objections to the Soundness Proof? (concluded)

e You need the intermediate rounds to “tie” Peggy up

with a chain of claims.

In the original algorithm on p. 526, for example, P, (z) is
bound by the equality P,(0) + P,(1) = v,—1 mod ¢ in
Step 8.

That v,,_1 is in turn derived by an earlier polynomial
P,,_1(z), which is in turn bound by
P, 1(0) + P,_1(1) = v,,_2 mod ¢, and so on.
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Density?
The density of language L C X* is defined as

densp(n) = |{x € L:|xz| <n}|.

e If L = {0,1}*, then densy(n) =271 —1.

e So the density function grows at most exponentially.

e For a unary language L C {0}*,

densy(n) <n + 1.

——
— Because L C {0,00,...,00---0,...}.

2Berman and Hartmanis (1977).
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Sparsity

e Sparse languages are languages with polynomially

bounded density functions.

e Dense languages are languages with superpolynomial

density functions.
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Self-Reducibility for SAT

An algorithm exploits self-reducibility if it reduces the
problem to the same problem with a smaller size.

Let ¢ be a boolean expression in n variables

L1, L2y.-. yLp-

t € {0,1} is a partial truth assignment for

L1, L2y.-. Ly

¢|t] denotes the expression after substituting the truth

values of ¢ for x1,Z2,...,Z|¢) In ¢.
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An Algorithm for SAT with Self-Reduction

We call the algorithm below with empty ¢.
. if |t| = n then
return ¢|[t|;

return ¢[t0]V ¢[tl];

1
2
3: else
4
5. end if

The above algorithm runs in exponential time.
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NP-Completeness and Density?

Theorem 83 If a unary language U C {0}* is
NP-complete, then P = NP.

e Suppose there is a reduction R from SAT to U.

e We shall use R to guide us in finding the truth
assignment that satisfies a given boolean expression ¢

with n variables if it is satisfiable.

e Specifically, we use R to prune the exponential-time
exhaustive search on p. 549.

e The trick is to keep the already discovered results ¢|¢]
in a hash table H.

2Berman (1978).
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if |t| = n then
return ¢|t|;
else
if (R(¢[t]),v) is in table H then
return v;
else
if ¢[t0] = “satisfiable” or ¢[t1] = “satisfiable” then
Insert (R(¢[t]),1) into H;

return “satisfiable”;

1:
2:
3:
4:
5:
6:
T
8:
9:

else
Insert (R(¢[t]),0) into H;
return “unsatisfiable”;
end if
end if
: end if

S S
N 22
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The Proof (continued)

Since R is a reduction, R(¢[t]) = R(¢[t']) implies that
¢[t] and ¢[t'] must be both satisfiable or unsatisfiable.

R(¢[t]) has polynomial length < p(n) because R runs in

log space.

As R maps to unary numbers, there are only
polynomially many p(n) values of R(¢|[t]).

How many nodes of the complete binary tree (of
invocations/truth assignments) need to be visited?

If that number is a polynomial, the overall algorithm

runs in polynomial time and we are done.
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The Proof (continued)

A search of the table takes time O(p(n)) in the random

access memory model.

The running time is O(Mp(n)), where M is the total
number of invocations of the algorithm.

The invocations of the algorithm form a binary tree of
depth at most n.

There is a set T = {t1,12,...} of invocations (partial

truth assignments, i.e.) such that:
— |T| > M/(2n).

— All invocations in T are recursive (nonleaves).

— None of the elements of 7' is a prefix of another.
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3rd step: Delete all £'s

at most » ancestors

(prefixes) from

further consideration 2nd step: Select any

bottom undeleted
invocation ¢ and add
itto 7T

\ Ist step: Delete
leaves; at most M/2

nonleaves remaining
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The Proof (continued)

e All invocations t € T have different R(¢[t]) values.

— None of s,t € T is a prefix of another.

— The invocation of one started after the invocation of
the other had terminated.

— If they had the same value, the one that was invoked
second would have looked it up, and therefore would

not be recursive, a contradiction.

e The existence of T' implies that there are at least
M /(2n) different R(¢|[t]) values in the table.
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The Proof (concluded)

We already know that there are at most p(n) such

values.

Hence M/(2n) < p(n).

Thus M < 2np(n).

The running time is therefore O(Mp(n)) = O(np?(n)).

We comment that this theorem holds for any sparse

language, not just unary ones.?

@Mahaney (1980).
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NP-Completeness and Density

Theorem 84 (Fortung (1979)) If a unary language
U C {0}* is coNP-complete, then P = NP.

e Suppose there is a reduction R from SAT COMPLEMENT
to U.

e The rest of the proof is basically identical except that,

now, we want to make sure a formula is unsatisfiable.
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Finas
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