BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages for which there is
a precise polynomial-time NTM N such that:

— If z € L, then at least 3/4 of the computation paths
of N on x accept, and

— If x € L, then at least 3/4 of the computation paths
of N on z reject.

e NV accepts or rejects by a clear majority.

aGill, 1977.
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Magic 3/47

e The number 3/4 bounds the probability of a right

answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used
without affecting the class BPP.

e In fact, any 0.5 plus inverse polynomial

0.5+ 1/p(n)

between 1/2 and 1 can be used.
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The Majority Vote Algorithm

Suppose L is decided by N by majority (1/2) + .
1: fori=1,2,...,2k+1do
Run N on input z;
. end for
. if “yes” is the majority answer then

44 7

yes
. else

(ﬁnO” ;

. end if
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Analysis

The running time remains polynomial, being 2k + 1

times N’s running time.

By Corollary 72 (p. 416), the probability of a false

. _ 2
answer is at most e € k.

By taking k = [2/€? ], the error probability is at most
1/4.

As with the RP case, € can be any inverse polynomial,

because k£ remains polynomial in n.
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Probability Amplification for BPP

e Let m be the number of random bits used by a BPP
algorithm.

— By definition, m is polynomial in n.

e With k£ = ©(logm) in the majority vote algorithm, we

can lower the error probability to < (3m)~1.
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Aspects of BPP

BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the

problem can be solved efficiently.
(RP UcoRP) C (NP U coNP).
(RP U coRP) C BPP.
Whether BPP C (NP U coNP) is unknown.
But it is unlikely that NP C BPP (p. 687).
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coBPP

The definition of BPP is symmetric: acceptance by clear
majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L € coBPP

by reversing the answer.
Hence BPP = coBPP.

This approach does not work for RP (it did not work for
NP either).
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BPP and coBPP
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“The Good, the Bad, and the Ugly”
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Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean

function of n variables.

By identify true with 1 and false with 0, a boolean
circuit with n inputs accepts certain strings in { 0,1 }".

To relate circuits with arbitrary languages, we need one
circuit for each possible input length n.
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Formal Definitions
e The size of a circuit is the number of gates in it.

e A family of circuits is an infinite sequence
C = (Cy,C4,...) of boolean circuits, where C),, has n

boolean inputs.
e [ C {0,1}* has polynomial circuits if there is a family
of circuits C such that:

— The size of C), is at most p(n) for some fixed

polynomial p.

— For input = € {0,1}*, C|, outputs 1 if and only if
x € L.
x C, accepts L N {0,1}".
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Exponential Circuits Contain All Languages

e Theorem 16 (p. 151) implies that there are languages
that cannot be solved by circuits of size 2" /(2n).

e But exponential circuits can solve all problems.

Proposition 73 All decision problems (decidable or

otherwise) can be solved by a circuit of size 2"12.

e We will show that for any language L C {0,1}*,
LN {0,1}" can be decided by a circuit of size 2"12.
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The Proof (concluded)
Define boolean function f :{0,1}"™ — {0,1}, where

1 ziz0-- 2, € L,

f($1$2 . ajn) —
0 x129:- -2, & L.

flxiza- - xpn) = (x1 A f(lza---xp)) V (mx1 A f(Ox2- - 2)).

The circuit size s(n) for f(zizs---x,) hence satisfies
s(n) =34 2s(n—1)

with s(1) = 1.

Solve it to obtain s(n) = 2"*1 4271 — 4,
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The Circuit Complexity of P

Proposition 74 All languages in P have polynomzial

circuits.

e Let L € P be decided by a TM in time p(n).

e By Corollary 32 (p. 230), there is a circuit with
O(p(n)?) gates that accepts L N {0,1}".

e The size of the circuit depends only on L and the length
of the input.

e The size of the circuit is polynomial in n.
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Languages That Polynomial Circuits Accept

e Do polynomial circuits accept only languages in P?
e There are undecidable languages that have polynomial
circuits.
Let L C {0,1}* be an undecidable language.
Let U = {1" : the binary expansion of n is in L}.
U must be undecidable.

U N{1}" can be accepted by C,, that is trivially false
if 1™ ¢ U and trivially true if 1" € U.
The family of circuits (Cy, C1,...) is polynomial in

size.
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A Patch

e Despite their simplicity, the previous discussions imply

the following:

— Circuits are not a realistic model of computation.

— Polynomial circuits are not a plausible notion of

efficient computation.
e What gives?

e The effective and efficient constructibility of Cy,Cq,. ...
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Uniformity

e A family (Cy,C1,...) of circuits is uniform if there is a
log n-space bounded TM which on input 1™ outputs C,.

— Circuits now cannot accept undecidable languages
(why?).
— The circuit family on p. 431 is not constructible by a

single Turing machine (algorithm).

e A language has uniformly polynomial circuits if
there is a uniform family of polynomial circuits that
decides it.
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Uniformly Polynomial Circuits and P

Theorem 75 L € P if and only if L has uniformly

polynomaal circuits.
e One direction was proved in Proposition 74 (p. 430).
e Now suppose L has uniformly polynomial circuits.

e Decide z € L in polynomial time as follows:

— Build €, in log | z | space, hence polynomial time.

— Evaluate the circuit with input = in polynomial time.

e Therefore L € P.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 434



Relation to P vs. NP

e Theorem 75 implies that P # NP if and only if
NP-complete problems have no uniformly polynomial

circuits.

e A stronger conjecture: NP-complete problems have no

polynomial circuits, uniform or otherwise.

e The above is currently the preferred approach to proving
the P £ NP conjecture—without success so far.

— Theorem 16 (p. 151) states that there are boolean

functions requiring 2" /(2n) gates to compute.

— In fact, almost all boolean functions do.
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BPP’s Circuit Complexity

Theorem 76 (Adleman, 1978) All languages in BPP

have polynomaial circuits.
e Our proof will be nonconstructive in that only the
existence of the desired circuits is shown.
— Something exists if its probability of existence is

110ONZEro.

e How to efficiently generate circuit ), given 1™ is not

known.

e In fact, if the construction of C), is efficient, then
P = BPP, a most unlikely result.
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The Proof

Let L € BPP be decided by a precise NTM N by clear
mayjority.

We shall prove that L has a polynomial family of
circuits Cp,C1, . ...

Suppose N runs in time p(n), where p(n) is a
polynomial.

Let A, = {a1,a2,...,a,}, where a; € {0,1}?(") and
m = 12(n + 1).

Each a; € A,, represents a sequence of nondeterministic
choices—i.e., a computation path—for V.
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The Proof (continued)

Let  be an input with |z | = n.

Circuit C,, simulates N on x with each sequence of
choices in A,, and then takes the majority of the m

outcomes.

Because N with a; is a polynomial-time TM, it can be
simulated by polynomial circuits of size O(p(n)?).

— See the proof of Proposition 74 (p. 430).

The size of C, is therefore O([mp(n)]?) = O(n?p(n)?), a
polynomial.

We next prove the existence of A,, making C,, correct.
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The Circuit

Majority logic
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The Proof (continued)

Call a; bad if it leads N to a false positive or a false

negative answer.
Select A,, uniformly randomly.

For each x € {0,1}", at most 1/4 of the computations of

N are erroneous.

Because the sequences in A,, are chosen randomly and
independently, the expected number of bad a;’s is m /4.

By the Chernoff bound (p. 412), the probability that the

number of bad a;’s is m/2 or more is at most

e—m/12 < 2—(n—|—1) .
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The Proof (concluded)

The error probability is < 2~ (™*+1) for each = € {0,1}".

The probability that there is an z such that A,, results

in an incorrect answer is < 22— (n+1) — 9—1

— problAUBU---] < prob[A]|+ prob[B]| + ---

So with probability one half, a random A,, produces a
correct C), for all inputs of length n.

Because this probability exceeds 0, an A,, that makes
majority vote work for all inputs of length n exists.

Hence a correct (), exist.
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Cryptography?

Alice (A) wants to send a message to Bob (B) over a

channel monitored by Eve (eavesdropper).

The protocol should be such that the message is known
only to Alice and Bob.

The art and science of keeping messages secure is

cryptography.
Eve
Alice > Bob

a “Whoever wishes to keep a secret must hide the fact that he possesses
one.” — Johann Wolfgang von Goethe (1749-1832).
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Encryption and Decryption

Alice and Bob agree on two algorithms £ and D—the
encryption and the decryption algorithms.

Both E and D are known to the public in the analysis.
Alice runs F and wants to send a message x to Bob.
Bob operates D.

Privacy is assured in terms of two numbers e, d, the

encryption and decryption keys.

Alice sends y = F(e, x) to Bob, who then performs

D(d,y) = x to recover .

x is called plaintext, and y is called ciphertext.
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Some Requirements

e D should be an inverse of F/ given e and d.

e D and E must both run in (probabilistic) polynomial

time.

e Eve should not be able to recover y from x without
knowing d.
— As D is public, d must be kept secret.

— e may or may not be a secret.
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Degrees of Security

Perfect secrecy: After a ciphertext is intercepted by
the enemy, the a posteriori probabilities of the plaintext
that this ciphertext represents are identical to the a
priori probabilities of the same plaintext before the

interception.
Such systems are said to be informationally secure.

A system is computationally secure if breaking it is
theoretically possible, just computationally infeasible.
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The One-Time Pad®

. Alice generates a random string r as long as x;

. Alice sends r to Bob over a secret channel;

. Alice sends r @ x to Bob over a public channel;
: Bob receives y;

: Bob recovers = :=y @ r;

aMauborgne and Vernam, 1917, Shannon, 1949.
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Analysis

The one-time pad uses e =d =r.
This is said to be a private-key cryptosystem.
Knowing = and knowing r are equivalent.

Because r is random and private, the one-time pad
achieves perfect secrecy.

The random bit string must be new for each round of
communication.
— Cryptographically strong pseudorandom

generators require exchanging only the seed once.

The assumption of a private channel is problematic.
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Public-Key Cryptography?®

Suppose only d is private to Bob, whereas e is public
knowledge.

Bob generates the (e, d) pair and publishes e.
Anybody like Alice can send FE(e,x) to Bob.
Knowing d, Bob can recover z by D(d, E(e,x)) = x.

The assumptions are complexity-theoretic.
— It is computationally difficult to compute d from e.

— It is computationally difficult to compute = from y

without knowing d.

aDiffie and Hellman, 1976.
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Complexity Issues

Given y and x, it is easy to verify whether E(e,z) = v.
A public-key cryptosystem in some sense is within NP.

A necessary condition for the existence of secure

public-key cryptosystems is P # NP.
But more is needed than P # NP.

For example, it is not sufficient that D is hard to

compute in the worst case.

We want it to be hard to compute in “most” cases.
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One-Way Functions

e We say that f is a one-way function if:

— f is one-to-one.

— Forallz € &%, |z |V/* < |f(x)| < |z |* for some k > 0.

— f can be computed in polynomial time.

— {71 cannot be computed in polynomial time.

*x HExhaustive search works, but it is too slow.

e Even if P # NP, there is no guarantee that one-way

functions exist.
e No functions have been proved to be one-way.

e Breaking a glass is a one-way function?
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Candidates of One-Way Functions

e Modular exponentiation f(z) = ¢g* mod p.
— Discrete logarithm is hard.

e The RSA? function f(z) = 2° mod pq for an odd e
relatively prime to ¢(pq).
— Breaking the RSA function is hard.

e Modular squaring f(z) = z2 mod pq.

— Determining whether a number with a Jacobi symbol
1 is a quadratic residue is hard—the quadratic
residuacity assumption (QRA).

aRivest, Shamir, and Adleman, 1978.
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The RSA Function

Let p,q be two distinct primes.

The RSA function is 2° mod pq for an odd e relatively
prime to ¢(pq).

By Lemma 53 (p. 331),
1

¢@m=ﬂm<1—5

As ged(e, ¢(pq)) = 1, there is a d such that
ed = 1 mod ¢(pq),

which can be found by the Euclidean algorithm.
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A Public-Key Cryptosystem Based on RSA

e Bob generates p and q.
e Bob publishes pg and the encryption key e, a number
relatively prime to ¢(pq).
— The encryption function is y = x2® mod pq.
e Knowing ¢(pq), Bob calculates d such that
ed =1+ k¢(pq) for some k € Z.
— The decryption function is y¢ mod pq.

— It works because y¢ = z¢% = £115¢(P9) = z mod pq by
the Fermat-Euler theorem when ged(z,pq) =1
(p. 338).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 468



Implications of the “Security” of the RSA Function

e Factoring pq or calculating d from (e, pq) seems hard.

— See also p. 335.

e It is known that breaking the last bit of RSA is as hard
as breaking the RSA.

e Recall that problem A is harder than problem B if
solving A results in solving B.
— Factorization is “harder than” breaking the RSA.

— Calculating Euler’s phi function is “harder than”
breaking the RSA.
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Probabilistic Encryption?®

The ability to forge signatures on even a vanishingly
small fraction of strings of some length is a security
weakness if those strings were the probable ones!

What is required is a scheme that does not “leak”

partial information.

The first solution to the problems of skewed distribution
and partial information was based on the QRA.

aGoldwasser and Micali, 1982.
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The Setup

Bob publishes n = pq, a product of two distinct primes,
and a quadratic nonresidue y with Jacobi symbol 1.

Bob keeps secret the factorization of n.

To send bit string b1bs ... by to Bob, Alice encrypts the
bits by choosing a random quadratic residue modulo n if
b; is 1 and a random quadratic nonresidue with Jacobi
symbol 1 otherwise.

A sequence of residues and nonresidues are sent.

Knowing the factorization of n, Bob can efficiently test

quadratic residuacity and thus read the message.
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A Useful Lemma

Lemma 77 Let n = pqg be a product of two distinct primes.

Then a number y € Z} is a quadratic residue modulo n if

and only if (y|p) = (y|q) = 1.

e The “only if” part:

— Let z be a solution to 2 = y mod pg.

— Then z? = y mod p and z? = y mod ¢ also hold.

— Hence y is a quadratic modulo p and a quadratic
residue modulo gq.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 472



The Proof (concluded)
e The “if” part:
— Let a® = y mod p and a3 = y mod gq.

— Solve

x a1 mod p,

x as mod ¢q

for x with the Chinese remainder theorem.

— As 22 = y mod p, 2 = y mod ¢, and ged(p,q) =1,
2

we must have z° = y mod pgq.
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The Protocol for Alice
1: fori=1,2,... ,k do
Pick r € Z; randomly;
if b; = 1 then
Send r? mod n; {Jacobi symbol is 1.}

Send r?y mod n; {Jacobi symbol is still 1.}
end if
end for

2
3
4
5: else
6
7
8:

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 474



The Protocol for Bob
. fori=1,2,...  k do
Receive r;
if (r|p)=1and (r|q) =1 then

b, :=1;
else
b; == 0;
end if
. end for
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Semantic Security

This encryption scheme is probabilistic.

There are a large number of different encryptions of a

given message.

One is chosen at random by the sender to represent the

message.

This scheme is both polynomially secure and
semantically secure.
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A Probabilistic Encryption Based on RSA

The Protocol for Alice.
. fort=1,2,... ,k do
Pick r € {1,2,... ,pq/2} randomly;
Send (2r + b;)¢ mod pgq;
. end for

The Protocol for Bob.
. for:=1,2,... , kdo

Receive y;

b; := (y? mod pq) mod 2;
. end for
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Digital Signatures®

Alice wants to send Bob a signed document x.
The signature must unmistakably identifies the sender.

Both Alice and Bob have public and private keys
€Alice, €Bobs AAlice, dBob-
Assume the cryptosystem satisfies the commutative property
E(e,D(d,z)) = D(d, E(e,x)). (7)

— As (z%)¢ = (2°)%, the RSA system satisfies it.
— Every cryptosystem guarantees D(d, E(e,z)) = .

aDiffie and Hellman, 1976.
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Digital Signatures Based on Public-Key Systems

Alice signs x as
(xy D(dAli667 37))
Bob receives (z,y) and verifies the signature by checking

E(eAlicea y) — E(eAliC67 D(dAlice7 33)) — X
based on Eq. (7).

The claim of authenticity is founded on the difficulty of
inverting Fajice without knowing the key daiice.

Warning: If Alice signs anything presented to her, she
might inadvertently decrypt a ciphertext of hers.
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Mental Poker?

e Suppose Alice and Bob have agreed on 3 n-bit numbers
a < b < ¢, the cards.
e They want to randomly choose one card each, so that:
Their cards are different.

All 6 pairs of distinct cards are equiprobable.

Alice’s (Bob’s) card is known to Alice (Bob) but not to
Bob (Alice), until Alice (Bob) announces it.

The person with the highest card wins the game.

— The outcome is indisputable.

e Assume Alice and Bob will not deviate from the protocol.

aShamir, Rivest, Adleman, 1981.
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The Setup

Alice and Bob agree on a large prime p;

Each has two secret keys €atice, €Bob, Alice; dBob Such
that eAlicedAlice — eBodeob = 1 mod (p — 1)7

— This ensures that (z®Atice )datice = 2 mod p and

(xeBob)dBob — 2 mod p.

The protocol lets Bob pick Alice’s card and Alice pick
Bob’s card.

Cryptographic techniques make it plausible that Alice’s
and Bob’s choices are practically random, for lack of
time to break the system.
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The Protocol
. Alice encrypts the cards

aeAlice mOd 2)7 beAlice mod p’ CeAlice mOd p

and sends them in random order to Bob;
. Bob picks one of the messages x¢Alice to send to Alice;

. Alice decodes it (z®Atice)datice = 7 mod p for her card;

. Bob encrypts the two remaining cards
(€atice )€Bob mod p, (y€Alice )°Beb mod p and sends them in
random order to Alice;

. Alice picks one of the messages, (z€Alice)®Bob encrypts it
((zéAtce )eBob Ydatice mod p, and sends it to Bob;

: Bob decrypts the message
(((z&Atice )eBob )datice )dBob — » mod p for his card;
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What Is a Proof?

e A proof convinces a party of a certain claim.

— “Is g™ +y™ # 2" for all z,y,z € ZT and n > 277

— “Is graph G Hamiltonian?”
— “Is P = £ mod p for prime p and p fz?”

e In mathematics, a proof is a fixed sequence of theorems.
— Think of a written examination.

e We will extend a proof to cover a proof process by which
the validity of the assertion is established.

— Think of a job interview or an oral examination.
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Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).

The verifier usually has an easier job than the prover.
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Interactive Proof Systems

An interactive proof for a language L is a sequence of
questions and answers between the two parties.

At the end of the interaction, the verifier decides based
on the knowledge he acquired in the proof process
whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.
The prover runs an exponential-time algorithm.

— If the prover is not more powerful than the verifier,

no interaction is needed.
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Interactive Proof Systems (concluded)

e The system decides L if the following two conditions

hold for any common input z.

— If x € L, then the probability that = is accepted by
the verifier is at least 1 — 27121,

— If x € L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover is at most 2-l=l,

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial of |z |.
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An Interactive Proof
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I%

IP is the class of all languages decided by an interactive

proof system.

When x € L, the completeness condition can be
modified to require that the verifier accepts with
certainty without affecting IP.

Similar things cannot be said of the soundness condition
when x ¢ L.

aGoldwasser, Micali, Rackoff, 1985.
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The Relations of IP with Other Classes
e NP C IP.

— IP becomes NP when the verifier is deterministic.

e BPP C IP.
— IP becomes BPP when the verifier ignores the

prover’s messages.

e IP actually coincides with PSPACE (see pp. 728ff for a
proof).?

aShamir, 1990.
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Graph Nonisomorphism

V1:V2 :{1,2,... ,n}.

Graphs Gl — (Vl,El) and G2 — (Vg,Ez) are
isomorphic if there exists a permutation 7 on
{1,2,... ,n} so that (u,v) € B; & (n(u),n(v)) € Es.

The task is to answer if G; 2 G2 (nonisomorphic).

No known polynomial-time algorithms.

— It is in coNP, but how about NP or BPP?

— The complementary problem G; = G5 is in NP.
— But it is not likely to be NP-complete.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 502



A 2-Round Algorithm

Victor selects a random i € {1,2 };
Victor selects a random permutation 7 on {1,2,... ,n };
Victor applies m on graph G; to obtain graph H;
Victor sends (G1, H) to Peggy;
if G1 = H then
Peggy sends 5 = 1 to Victor;
else
Peggy sends j = 2 to Victor;
end if
if j =4 then

1:
2:
3:
4:
5:
6:
7
8:
9:

[ -
)

Victor accepts;

. else

—
g.:Jl\D

Victor rejects;
: end if

ok
S
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Analysis

e Victor runs in probabilistic polynomial time.

e Suppose the two graphs are not isomorphic.
— Peggy is able to tell which G; is isomorphic to H.

— So Victor always accepts.

e Suppose the two graphs are isomorphic.

— No matter which ¢ is picked by Victor, Peggy or any

prover sees 2 identical graphs.

— Peggy or any prover with exponential power has only
probability one half of guessing ¢ correctly.

— So Victor erroneously accepts with probability 1/2.

e Repeat the algorithm to obtain the desired probabilities.
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Knowledge in Proofs

Suppose I know a satisfying assignment to a satisfiable

boolean expression.

I can convince another person of this by giving him the
assignment.
But then I give him more knowledge than necessary.

— For example, he might claim that he was the first to

discover the assignment!

— Login authentication is essentially the same problem.

Can I convince him of the fact without revealing

anything else?
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Zero Knowledge Proofs®

An interactive proof protocol (P, V) for language L has the
perfect zero-knowledge property if:

e For every verifier V', there is a probabilistic algorithm

M with expected polynomial running time.

e M on any input x € L generates the same probability
distribution as the one that can be observed on the

communication channel of (P, V') on input z.

aGoldwasser, Micali, Rackoff, 1985.
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