The Legendre Symbol® and Quadratic Residuacity Test
e So a®=1Y/2 mod p = +1 for a # 0 mod p.
e For odd prime p, define the Legendre symbol (a|p) as
0 ifpla

(alp)=< 1 if a is a quadratic residue modulo p

—1 if a is a quadratic nonresidue modulo p

e Euler’s test implies a(P~1/2 = (a|p) mod p for any odd
prime p and any integer a.

e Note that (ab|p) = (a|p)(b[p).

2 Andrien-Marie Legendre (1752-1833).

The Proof (concluded)

e All residues in R’ are now at most (p — 1)/2.
e In fact, R = {1,2,...,(p—1)/2}.
— Otherwise, two elements of R would add up to p.

e Alternatively, R' = {#igmodp:1<i<(p—1)/2},
where exactly m of the elements have the minus sign.

e Taking the product of all elements in the two
representations of R’, we have

[(p—1)/2)! = (=1)"g"V/%[(p — 1)/2]! mod p.

e Because ged([(p — 1)/2]!, p) = 1, the lemma follows.
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Gauss's Lemma

Lemma 64 (Gauss) Let p and q be two odd primes. Then
(qlp) = (=1)™, where m is the number of residues in
R={igmodp:1<i<(p—1)/2} that are greater than
(p—1)/2.
e All residues in R are distinct.
— If ig = jg mod p, then p|(j — i) q or p|g.
e No two elements of R add up to p.
— If ig+ jg = 0 mod p, then p|(i + j) or p|q.
e Consider the set R’ of residues that result from R if we
replace each of the m elements a € R, where

a>(p—-1)/2, by p—a.
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Legendre's Law of Quadratic Reciprocity
e Let p and ¢ be two odd primes.

e Then their Legendre symbols are identical unless both
numbers are 3 mod 4.
Lemma 65 (Gauss) (plg)(qlp) = (-1)"7 7"
e Sum the elements of R’ in the previous proof in mod?2.

e On one hand, this is just

(p—1)/2
_ (=Dt
1= f mod 2.
=1
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The Proof (continued)
e On the other hand, the sum equals
(p—1)/2 (r—1)/2 .
q Z i—p Z [ J—i—mpmodZ
— Signs are irrelevant under mod2.

e After ignoring odd multiplicrs and noting that the first
term above equals 3P 71/?

(p-1)/2 .

Z Lﬂj mod 2.
=1 p
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The Proof (concluded)

Z(p n/2 L%J is the number of positive integral
points in the ”;21 X % rectangle that are under the line
between (0,0) and the point (p, q).

e From Gauss’s lemma on p. 379, (¢|p) is (—1)™.
e Repeat the proof with p and ¢ reversed.

e We obtain (p|q) is —1 raised to the number of positive
integral points in the ’%1 X qg—l rectangle that are above
the line between (0, 0) and the point (p, q).

e So (p|q)(q|p) is —1 raised to the total number of integral

: : p—1 g—1 : iq p—1  g—1
points in the 5= x 4= rectangle, which is 55~ - 4=,

Eisenstein’'s Rectangle
-9
[} [ ] [ ] [ ]
[} [ ] [ ] [
[ J [} [ ] [ ] [ ]
p=1land g=7"1.
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The Jacobi Symbol?

e The Legendre symbol only works for an odd prime
modulus.

e The Jacobi symbol (a|m) extends it to cases where m

is not prime.
e Let m = pyps - - - pr be the prime factorization of m.

e When m is odd and is greater than one, then
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k
(alm) = [J(al o).
=1
e Define (a|1) = 1.
aCarl Jacobi (1804-1851).
©2002 Yuh-Dauh Lyuu, National Taiwan University Page 385




Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for
arguments for which it is defined. o o .
A Result Generalizing Proposition 10.3 in the Book
1. (ab|m) = (a|m)(b| m). o
Theorem 66 The group of set ®(n) under multiplication

2. (a|mams) = (afma)(alma). mod n has a primitive root if and only if n is either 1, 2, 4,
3. If a = b mod m, then (a|m) = (b|m). p*, or 2pF for some nonnegative integer k and and odd
4. (=1|m) = (_1)(m—1)/2_ prime p.

2 This result is essential in the proof of the next lemma.
5. (2|m) = (—1)m*~1/8, P

6. If a and m are both odd, then
(alm)(m|a) = (~1)l- D=0/,
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Calculation of (2200[999) The Jacobi Symbol and Primality Test®
Similar to the Euclidean algorithm and does not require Lemma 67 If (M|N) = M®™=Y/2mod N for all
factorization. M € ®(N), then N is prime. (Assume N is odd.)
2_
(202/999) = (—1)®%"=D/8(101|999) e Assume N = mp, where p is an odd prime, ged(m, p) = 1,
= (=1)"*"7%°(101]999) = (101|999) and m > 1 (not necessarily prime).
= (—1)10009%)/%(999|101) = (—1)**9°°(999]101) e Let 7 € ®(p) such that (r|p) = —1.
2_
= (999/101) = (90|101) = (—1)(101 1)/8(45‘101) e The Chinese remainder theorem says that there is an
= (—1)"""(45/101) = —(45|101) M € ®(N) such that
44)(100) /4
= —(~1)DAO/1(101]45) = —(101[45) = —(11[45) M = rmodp
—(~1)1OUD/(45]11) = —(45]11) M = 1modm
- _(1|11) - _(11‘1) =L 2(Clement Hsiao pointed out that the textbook’s proof in Lemma 11.8
is incorrect while he was a senior in January 1999.
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The Proof (continued) The Proof (continued)
e Proof (continue

e Asr € ®(N) (prove it), we have

e By the hypothesis,

MWN=D/2 — (M |N) = (M|p)(M|m)=—1mod N.
rV =1 =1 mod N.
e Hence
e As r’s exponent modulo N = p® is ¢(N) = p*~(p — 1),
MW=-1/2 = _1 mod m.
pa—l(p - ]') | N — 1)
e But because M = 1 mod m,
which implies that p| N — 1.
MWN=Y/2 = 1 modm
’ e But this is impossible given that p| N.

a contradiction.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 390 ©2002 Yuh-Dauh Lyuu, National Taiwan University Page 392

The Proof (continued)

The Proof (continued) e Third, assume that N = mp®, where p is an odd prime,

e Second, assume that N = p®, where p is an odd prime ged(m,p) =1, m > 1 (not necessarily prime), and a is

and a > 2. even.

e By Theorem 66 (p. 388), there exists a primitive root r * The proof mimics that of the second case.

modulo p®. e By Theorem 66 (p. 388), there exists a primitive root r

e From the assumption, modulo p®.

2 e From the assumption,
MYt = (M@ D/2)" = (MIN)? = 1 mod N P

2
N-1 _ (v—1)/2\° _ 2 _
for all M € B(N). M (M ) (M|N)? = 1 mod N

for all M € ®(N).
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The Proof (continued)
e In particular,
MY~ =1 mod p* (6)
for all M € ®(N).

e The Chinese remainder theorem says that there is an
M € ®(N) such that
M = rmodp®
M = 1modm

e Because M = r mod p® and Eq. (6),

V=1 =1 mod p°.
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The Proof (concluded)
e As r’s exponent modulo N = p? is ¢(N) = p*~L(p — 1),
P lp-1)[N -1,
which implies that p| N — 1.

e But this is impossible given that p| N.
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The Number of Witnesses to Compositeness

Theorem 68 (Solovay and Strassen, 1977) If N is an
odd composite, then (M|N) # MWN=1/2 mod N for at least
half of M € ®(N).

e By Lemma 67 there is at least one a € ®(N) such that
(a|N) # a®™=1/2 mod N.

e Let B = {b1,ba,...,br} C ®(NN) be the set of all distinct
residues such that (b;|N) = ng_l)/z mod N.

o Let aB={ab,mod N :i=1,2,... ,k}
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The Proof (concluded)

e [aB| =k.
— ab; = ab; mod N implies N|a(b; — b;), which is
impossible because ged(a, N) =1 and N > |b; — b;|.

e aB N B = () because
(abe) ¥ /% = GN=D/2N D2 4 (o] N) (5N = (abi] V).

e Combining the above two results, we know
|B|/¢(N) < 0.5.
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1: if N is even but N # 2 then
2 return “Nis a compositc”; The Improved Density Attack for PRIMES
3: else if N is even and N = 2 then
4: return “N is a prime”;
5: end if
6: Pick M € {2,3,...,N — 1} randomly;
7: if ged(M,N) > 1 then
8  return “N is a composite”;
9: else
10:  if (M|N) # M ~Y/2 mod N then Witnesses to
11: return “N is a composite”; composi teness of Witnesses to
12:  else N via common composi teness of
13: return “N is probably a prime”; factor N via Jacobi
14: end if
15: end if
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Analysis Randomized Complexity Classes; RP
e The algorithm certainly runs in polynomial time. e Let N be a polynomial-time precise NTM that runs in
e There are no false positives (for COMPOSITENESS). time p(n) and has 2 nondeterministic choices at each
step.

— When the algorithm says the number is a composite,
it is always correct. e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

The probability of a false negative is at most one half.
— If z € L, then at least half of the 2°(1#]) computation

paths of N on x halt with “yes.”

— When the algorithm says the number is a prime, it

may err.

— If the input is a composite, then the probability that — Itz ¢ L, then all computation paths halt with “no.”

the algorithm errs is one half. e The class of all languages with polynomial Monte Carlo

TMs is denoted RP for randomized polynomial

The probability of error can be reduced but not

eliminated. time.
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Comments on RP ZPP?* (Zero Probabilistic Polynomial)

Nondeterministic steps can be seen as fair coin flips. e The class ZPP is defined as RP N coRP.

There are no false positive answers. e A language in ZPP has two Monte Carlo algorithms, one

with no false positives and the other with no false

The probability of false negatives is at most 0.5.
negatives.

Any constant 0 < € < 1 can replace 0.5. )
e If we repeatedly run both Monte Carlo algorithms,

~ By repeating the algorithm & times, the probability eventually one definite answer will come (unlike RP).

of false negatives can be reduced to (1 — €)*.

. 1 — A positive answer from the one without false
— Now pick k = [——5—1.

Tog, 1—e positives.
e In fact, € can be arbitrarily close to 0 as long as it is of — A negative answer from the one without false
the order 1/p(n) for some polynomial p(n). negatives.
- 1 _ 1y
g, =< = O(2) = O(p(n)). aGill, 1977,
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Where RP Fits The ZPP Algorithm (Las Vegas)

: {Suppose L € ZPP.}
: {N7 has no false positives, and Ny has no false

e P CRP C NP.
— A deterministic TM is like a Monte Carlo TM except
that all the coin flips are ignored. negatives. }

— A Monte Carlo TM is an NTM with extra demands
on the number of accepting paths.

N =

: while true do
if Ni(z) = “yes” then
return *

3

4

5 ‘yes”;
6: end if

7

8

9

e COMPOSITENESS € RP; PRIMES € coRP; PRIMES € RP.2

— In fact, PRIMES € P. if Ny(z) = “no” then

return “no”;
end if
10: end while

e RP UcoRP is a “plausible” notion of efficient
computation.

a8Adleman and Huang, 1987.
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PP
ZPP (concluded)

A language L is in the class PP if there is a

e The expected running time for it to happen is polynomial-time precise NTM N such that:

polynomial.
— For all inputs z, x € L if and only if more than half

— The probability that a run of the 2 algorithms does of the computations of N (i.c., 9p(M) =1 | 1 or up) on

not generate a definite answer is 0.5. input z end up with a “yes.”

— Let p(n) be the running time of each run. ~ We say that N decides L by majority.

— The expected running time for a definite answer is o o
® MAJSAT: is it true that the majority of the 2" truth

thus ) ) o
- assignments to ¢’s n variables satisfy it?
20-5iip(n) = 2p(n). e MAJSAT is PP-complete.
i=1
e PP is closed under complement.
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You Too, RP? NP vs. PP
1: {Suppose L € RP.} Theorem 69 NP C PP.
2: {N decides L without fal itives.
{ .dec1des without false positives.} e Suppose L € NP is decided by an NTM N.

3: while true do

4. if N(z) = “yes” then e Construct a new NTM N':

5: return “yes”; — N’ has one more extra state s than V.

6: end if — N’ starts at s and either branches to N’s program or

7. {But what to do here?} simply accepts (after p(| z|) steps).

8: end while
e Consider an input z.

e You eventually get a “yes” if x € L.
e Suppose N on z computes for p(| z |) steps and produces

e But how to get a “no” when z ¢ L? 2212 1) computation paths.
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The Chernoff Bound

The Proof (concluded) Theorem 70 (Chernoff, 1952) Suppose z1,%s2,...,T, are

. . . P .
e Then N’ has 2P(I2D+! computation paths. independent random variables taking the values 1 and 0 with

probabilities p and 1 — p, respectively. Let X = Z?:l ;.
Half of these will always halt with “yes.” Then for all0 < 6 < 1,

e Thus a majority of the paths of N’ accept z if and only prob[ X > (1+ 0)pn] < o 0%pn/3.
if at least one path of N accepts x. B B
e The probability that the deviate of a binomial

That is, if and only if 7 € L. random variable from its expected value decreases

e So N’ accepts L by majority and L € PP. exponentially with the deviation.

e The Chernoff bound is asymptotically optimal.
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Large Deviations The Proof

e You have a biased coin e Let t be any positive real number.
e One side has probability 0.5 + € to appear and the other e Then
0.5 — ¢, for some 0 < € < 1. prob[ X > (1 + 0)pn] = prob[etx > et(1+0)pn]‘
B k hich is which.
* But you do not know which is whic e Markov’s inequality (p. 360) generalized to real-valued

e How to decide which side is the more likely—with high random variables says that

confidence?
prob [e'* > kE[e'*]] < 1/k.
e Answer: Flip the coin many times and pick the side that
With k = e!(140)P7 /B[ !X ] we have

appeared the most times.

Question: Can you quantify the confidence? prob[ X > (14 0)pn] < e tHOPptX ],
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The Proof (continued)

e Because X = Z?Zl z; and x;’s are independent,
E[eX] = (Ble™ )" = [1+p(e' - 1)]".

e Substituting, we obtain

IN

e—t(1+9)pn[ 1 —i—p(et _ 1) ]n

t
e—t(1+9)pn€pn(e —1)

prob[ X > (1+60)pn|

IN

as (14 a)™ < e for all a > 0.
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The Proof (concluded)

e With the choice of ¢t = In(1 + ), the above becomes

prob[ X > (1 + 6)pn] < ePnl0=(1+0)In(1+6)],

e The exponent expands to —% + % — % + .- for
0 <60 <1, which is less than

2 3 1 1 1 2
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Effectiveness of the Majority Rule
From prob[ X < (1 —6)pn] < e~ G Pm (prove it):
Corollary 71 If p=(1/2) + € for some 0 < € < 1/2, then
prob lZ:vl < n/Q] < e=<n/2,
i=1
e The textbook’s corollary to Lemma 11.9 seems incorrect.

e Our original problem (p. 411) hence demands =~ 1.4k /e?
independent coin flips to guarantee making an error
with probability at most 27% with the majority rule.
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