The Density Attack for PRIMES

All numbers<n

Witnesses to
compositeness
of n

e It works, but does it work well?
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The Chinese Remainder Theorem

e Let n = nyng---ng, where n; are pairwise relatively

prime.
e For any integers a1, aq, ... ,ak, the set of simultaneous
equations
r = a;modn
T = a mod ny
r = ar mod ng

has a unique solution modulo n for the unknown .
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Fermat's “Little” Theorem?
Lemma 56 For all 0 < a < p, a?~! = 1 mod p.
e Consider a®(p) = {am mod p : m € ®(p)}.
* a®(p) = ¢(p).

— Suppose am = am’ mod p for m > m/, where
m, m’ € ®(p).

— That means a(m —m') = 0 mod p, and p divides a or
m — m/', which is impossible.

e Hence (p—1)! = a?~1(p — 1)! mod p.

e Finally, (a?~! — 1) = 0 mod p because p f(p — 1)!.

aPierre de Fermat (1601-1665).
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The Fermat-Euler Theorem
Corollary 57 For all a € ®(n), a®(™ =1 mod n.

o As12=22% x 3,

$(12) = 12 x (1-%) (1—%):4

e In fact, ®(12) = {1,5,7,11}.
e For example,

54 = 625 = 1 mod 12.
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Exponents and Primitive Roots
From Fermat’s “little” theorem, all exponents divide
p—1.
A primitive root of p is thus a number with exponent
p—1.

Let R(k) denote the total number of residues in ®(p)
that have exponent k.

We already knew that R(k) =0 for k& f(p — 1).
Any a € ®(p) of exponent k satisfies z¥ = 1 mod p.

Hence there are at most k residues of exponent k, i.e.,

R(k) < k.

Exponents

e The exponent of m € ®(p) is the least k € ZT such that
mF =1 mod p.

e Every residue s € ®(p) has an exponent.

—1,s,82,s%,... eventually repeats itself, say

s* = s/ mod p, which means s7~* = 1 mod p.
e If the exponent of m is k and m® = 1 mod p, then k|.

— Otherwise, £ = gk + a for 0 < a < k, and

L

mt = m?+% = m? =1 mod p, a contradiction.

Lemma 58 Any nonzero polynomial of degree k has at most
k distinct roots modulo p.
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Size of R(k)

Let s be a residue of exponent k.

1,s,82,...,s* 1 are all distinct modulo p.
— Otherwise, s* = s’ mod p with ¢ < j and s is of
exponent j — ¢ < k, a contradiction.

As all these k distinct numbers satisfy z* = 1 mod p,
they are all the solutions of ¥ = 1 mod p.

But do all of them have exponent k (i.e., R(k) = k)?
And if not (i.e., R(k) < k), how many of them do?
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Size of R(k) (continued)

Suppose £ < k and £ ¢ ®(k) with ged(£,k) = d > 1. A Few Calculations
Let p = 13.

e Then

(sz)k/d — 1 mod p. From p. 338, we know ¢(p — 1) = 4.

Hence R(12) = 4.
Therefore, s* has exponent at most k/d, which is less

than k.

And there are 4 primitives roots of p.

. 1y — o
e We conclude that As ®(p — 1) = {1,5,7,11}, the primitive roots are
g',9%,g",g'" for any primitive root g.
R(k) < ¢(k)
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Size of R(k) (concluded)

e Because all p — 1 residues have an exponent, The Other Direction of Theorem 50 (p 324)
p—1= Z R(k) < Z ¢(k) =p—1 e Suppose p is not a prime.
kl(p—1) kl(p—1)

by Lemma 54 on p. 331 e We proceed to show that no primitive roots exist.

e Hence e Suppose P~ = 1 mod p, the 1st condition of the
primitive root on p. 324.

¢(k) when k|(p —1) . " :

R(k) = e We will show that the 2nd condition must be violated.

0  otherwise

e %) =1 mod p by the Fermat-Euler theorem (p. 338).

In particular, R(p — 1) = ¢(p— 1) > 0, and p has at least

o e Because p is not a prime, ¢(p) < p — 1.
one primitive root.

e This proves one direction of Theorem 50 (p. 324).
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The Other Direction of Theorem 50 (concluded)
e Let k be the smallest integer such that ¥ = 1 mod p.
o As klp(p), k<p— 1.

e Let ¢ be a prime divisor of (p —1)/k > 1.
e Then k|(p—1)/q.
e Therefore, by virtue of the definition of &,

r®P=1/9 = 1 mod p.

e But this violates the 2nd condition of the primitive root
on p. 324.
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Randomized Algorithms®
e Randomized algorithms flip unbiased coins.

e There are important problems for which there are no
known efficient deterministic algorithms but for which
very efficient randomized algorithms exist.

— Primality tests, extraction of square roots, etc.

e There are problems where randomization is necessary.

— Secure protocols.

e Are randomized algorithms algorithms®?

aRabin, 1976, Solovay and Strassen, 1977.
b«Truth is so delicate that one has only to depart the least bit from
it to fall into error.” — The Provincial Letters, Pascal (1623-1662).

Bipartite Perfect Matching
e We are given a bipartite graph G = (U,V, E).
— U ={ui,us,... ,un}.
-V ={vi,ve,...,0,}.
- ECUXV.

e We are asked if there is a perfect matching.

— A permutation 7 of {1,2,... ,n} such that
(uia v'zr(’i)) ek

for all u; € U.
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A Perfect Matching
U Vi
u2 L g od V2
Uy V3
u, Vy
Us Vs
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Symbolic Determinants

e Given a bipartite graph G, construct the n x n matrix
A% whose (i, j)th entry AiGj is a variable z;; if
(us,v;) € E and zero otherwise.

e The determinant of AC is
det(A9) =" a(m) [ AC ¢ (5)
™ 1=1

where 7 ranges over all permutations of n elements and
o(m) is 1 if 7 is the product of an even number of
transpositions and —1 otherwise.
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A Perfect Matching in a Bipartite Graph
U Vi
u2 L o V2
Uy V3
L Vs
Us Vs
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Determinant and Bipartite Perfect Matching
In > _o(m) [[i, AS ., note the following:

2,7(%)
e Each summand corresponds to a possible prefect

matching 7.

e As all variables appear only once, all of these summands

are different monomials and will not cancel.

Proposition 59 (Edmonds, 1967) G has a perfect
matching if and only if det(A®) is not identically zero.

The Perfect Matching in the Determinant

e The matrix is

0 0 I13 T14 0
0 X292 0 0 0
A = | 2y 0 0 Z35

e det(A%) contains term x14220735743251, which denotes a
perfect matching.
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How To Test If a Polynomial Is Identically Zero?
e det(A%) is a polynomial in n? variables.
e There are exponentially many terms in det(A%). Density Attack

e Expanding the determinant polynomial is not feasible. e The density of roots in the domain is at most

— T t .
00 many terms mdM™ ™1 md

e Observation: If det(A®) is identically zero, then it Mm M
remains zero if we substitute arbitrary integers for the e This suggests a sampling algorithm.
variables Z11, ..., Znn-

e What is the likelihood of obtaining a zero when det(A%)

is not identically zero?
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Number of Roots of a Polynomials A Randomized Bipartite Perfect Matching Algorithm?
Lemma 60 (Schwartz, 1980) Let p(z1,Z2,... ,Tm) Z 0 1: Choose n? integers i11,... ,in, from {0,1,... ,b—1}
be a polynomial in m variables each of degree at most d. Let randomly;
M € Z*. Then the number of m-tuples 1: Calculate det(A® (i11,... ,inn)) by Gaussian elimination;

2: if det(A%(i11,. .. ,inn)) # 0 then

(21,22, ,&m) €{0,1,... ., M — 1} 3: return “G has a perfect matching”;

such that p(z1,Z2,... ,Tm) =0 is 4: else
) 5:  return “G has no perfect matchings”;
m—
< mdM : 6: end if
e By induction on m. *Lovisz, 1979.
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Analysis
e Pick b such that b»” = 2n2.

e If G has no perfect matchings, the algorithm will always
be correct.
e Suppose G has a perfect matching.

— The algorithm will answer incorrectly with
probability at most n2d/b = 0.5 because d = 1.

— Repeat the algorithm independently k times and
output “G has no perfect matchings” if all of the k

runs say So.

— The error probability is now reduced to at most 27%.

The Markov Inequality®

Lemma 61 Let x be a random variable taking nonnegative
integer values. Then for any k > 0,

prob[z > kE[z]] < 1/k.

e Let p; denote the probability that x = 1.

E[z] = Zipi
Z ip; + Z ip;

i<kE[z] i>kE[z]
kEE[x] X prob[z > kE[z]].

v

2Andrei Andreyevich Markov (1856-1922).
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Monte Carlo Algorithms
e The randomized bipartite perfect matching algorithm is
called a Monte Carlo algorithm in the sense that

— If the algorithm finds that a matching exists, it is
always correct (no false positives).
— If the algorithm answers in the negative, then it may

make an error (false negative).

e The probability that the algorithm makes a false
negative is at most 0.5.

e This probability is not over the space of all graphs or
determinants, but over the algorithm’s own coin flips.

— It holds for any bipartite graph.

An Application of Markov's Inequality

e Algorithm C runs in expected time T'(n) and always
gives the right answer.

e Consider an algorithm that runs C for time kT'(n) and
rejects the input if C' does not stop within the time
bound.

e By Markov’s inequality, this new algorithm runs in time
kT (n) and gives the correct answer with probability at
least 1 — (1/k).

e By running this algorithm m times, we reduce the error
probability to < k™.
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A Random Walk Algorithm for ¢ in CNF Form
1: Start with an arbitrary truth assignment T
2: fori=1,2,...,rdo
3:  if T = ¢ then
4: return “¢ is satisfiable”;
5 else
6

Let ¢ be an unsatisfiable clause in ¢ under T; {All

of its literals are false under T.}

7: Pick any z of these literals at random;
8: Modify T to make z true;

9: end if

10: end for

11: return “¢ is unsatisfiable”;
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The Proof
Let T be a truth assignment such that T’ = ¢.

Let ¢() denote the expected number of repetitions of the
flipping step until a satisfying truth assignment is found
if our starting 7' differs from 7" in 4 values.

— Their Hamming distance is 4.
It can be shown that ¢(4) is finite.
£(0) = 0 because it means that T = T" and hence T = ¢.

IfT # T or T is not equal to any other satisfying truth
assignment, then we need to flip at least once.
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3SAT and 2SAT Again

e Note that if ¢ is unsatisfiable, the algorithm will not
refute it.

e The random walk algorithm runs in exponential time for

3SAT.
e But we will show that it works well for 2SAT.

Theorem 62 Suppose the random walk algorithm with
r = 2n? is applied to any satisfiable 2SAT problem with n
variables. Then a satisfying truth assignment will be
discovered with probability at least 0.5.

©2002 Yuh-Dauh Lyuu, National Taiwan University

Page 363

The Proof (continued)

We flip to pick among the 2 literals of a clause not
satisfied by the present T'.

At least one of the 2 literals is true under T, because T’
satisfies all clauses.

So we have at least 0.5 chance of moving closer to 7.

Thus

for 0 <i<n.

Inequality is used because, for example, T' may differ
from 7" in both literals.
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The Proof (continued)

e It must also hold that
t(n) <t(n—-1)+1
because at 1 = n, we can only decrease 1.

e As we are only interested in upper bounds, we solve

z(0) = 0
z(n) = z(n-1)+1
o)) = TZVF2EED gy

2

e This is one-dimensional random walk with a reflecting
and an absorbing barrier.
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The Proof (continued)
e Add the equations up to obtain

z(1) +z(2) + - - - + z(n)
z(0) + (1) + 22(2) + - - - + 2z(n — 2) + (n — 1) + z(n)
2

+n+z(n —1).

e Simplify to yield

z(1) + z(n) — z(n — 1)
2

=n.

o As z(n) —z(n —1) =1, we have

z(l) =2n—1.
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The Proof (continued)

e Iteratively, we obtain

z(2) = 4n-—4

(i) = 2in — i’

e The worst case happens when ¢ = n, in which case

z(n) = n*.
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The Proof (concluded)

We therefore reach the conclusion that

t(i) < z(i) < z(n) = n?.

So the expected number of steps is at most n2.

The algorithm picks a running time 2n2.

This amounts to invoking the Markov inequality (p. 360)

with k = 2, with the consequence of having a probability
of 0.5.
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Boosting the Performance

e We can pick 7 = 2mn? to have an error probability of

< (2m)~! by Markov’s inequality. The Density Attack for PRIMES

. . . 1: Pick ke {2,...,p—1 domly; {A > 2.
e Alternatively, with the same running time, we can run . ick i € { p — 1} randomly; {Assume p }
“ % . . 2: if k|p then
the “r = 2n*” algorithm m times. ) '
3 return “N is a composite”;

e But the error probability is reduced to < 27™! 4: else
e The gain comes from the fact that Markov’s inequality 5:  return “N is a prime”;

does not take advantage of any specific feature of the 6: end if

random variable. The probability of success when p is composite is 1 — ¢(p)/p.
e The gain also comes from the fact that the two

algorithms are different.
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Primality Tests
e PRIMES asks if a number p is a prime.
e The classic algorithm tests if &k |p for k=2,3,...,/p.

e But it runs in Q(2"/2) steps, where n = |p| = log, p.
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The Fermat Test for Primality
e Fermat’s “little” theorem on p. 337 suggests the
following primality test for any given number p:
— Pick a number a randomly from {1,2,... ,p — 1}.
— If a1 # 1 mod p, then declare “p is composite.”
— Otherwise, declare “p is probably prime.”
e Unfortunately, there are composite numbers called

Carmichael numbers that will pass the Fermat test
for all a € {1,2,... ,p—1}.

e It is only recently that Carmichael numbers are known

to be infinite in number.
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Square Roots Modulo a Prime

e Equation 22 = @ mod p has at most two (distinct) roots

by Lemma 58 on p. 339.
— The roots are called square roots.

— Numbers a with square roots and ged(a,p) = 1 are
called quadratic residues:
12 mod p, 22 mod p, ... , (p — 1)? mod p.

e We shall show that a number either has two roots or has
none, and testing which is true is trivial.

e We remark that there are no known efficient
deterministic algorithms to find the roots.
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Euler’'s Test

Lemma 63 (Euler) Let p be an odd prime and
a # 0 mod p.
1. If alP=1/2 = 1 mod p, then 22 = a mod p has two roots.

2. If a®Y/2 2£ 1 mod p, then a?~1/2 = —1 mod p and

2% = a mod p has no roots.

e Let r be a primitive root of p.

o If a = 7% then a®~V/2 = pi(P=1) = 1 mod p and its two
distinct roots are 17, —rf (= pit(P=1)/2),
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The Proof (concluded)

e Since there are (p — 1)/2 such a’s, and each such a has
two distinct roots, we have run out of square roots.

—{c:c?=amod p} ={1,2,... ,p—1}.
o If a = r27t1 then it has no roots because all the square

roots are taken.

e By Fermat’s “little” theorem, r(®~1)/2 is a square root of
1, s0 r®®=1/2 = +1 mod p.

e But as r is a primitive root, 7®~1/2 = —1 mod p.
Y a(pfl)/2 — (fr(pfl)/2)2j+1 — (—1)2J+1 e —1 mod p
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