TRIPARTITE MATCHING

- We are given three sets B, G, and H, each containing n elements.
- Let $T \subseteq B \times G \times H$ be a ternary relation.
- TRIPARTITE MATCHING asks if there is a set of n triples in T, none of which has a component in common.
 - Each element in B is matched to a different element in G and different element in H.

Theorem 43 (Karp, 1972) TRIPARTITE MATCHING is NP-complete.

Related Problems

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of subsets of a finite set U and a budget B.
- SET COVERING asks if there exists a set of B sets in F whose union is U.
- SET PACKING asks if there are B disjoint sets in F.
- Assume |U| = 3m for some $m \in \mathbb{N}$ and $|S_i| = 3$ for all i.
- EXACT COVER BY 3-SETS asks if there are m sets in F that are disjoint and have U as their union.

Corollary 44 SET COVERING, SET PACKING, and EXACT COVER BY 3-SETS are all NP-complete.

INTEGER PROGRAMMING Is NP-Complete^a

- INTEGER PROGRAMMING asks whether a system of linear inequalities with integer coefficients has an integer solution.
- Many NP-complete problems can be expressed as an INTEGER PROGRAMMING problem.
 - SET COVERING can be expressed by the inequalities $Ax \ge \vec{1}$, $\sum_{i=1}^{n} x_i \le B$, $0 \le x_i \le 1$, where
 - * x_i is one if and only if S_i is in the cover.
 - * A is the matrix whose columns are the bit vectors of the sets S_1, S_2, \ldots
 - * $\vec{1}$ is the vector of 1s.

^aPapadimitriou, 1981.

The KNAPSACK Problem

- There is a set of n items.
- Item i has value $v_i \in \mathbb{Z}^+$ and weight $w_i \in \mathbb{Z}^+$.
- Given $K \in \mathbb{Z}^+$ and $W \in \mathbb{Z}^+$, knapsack asks if there exists a subset $S \subseteq \{1, 2, ..., n\}$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq K$.
 - We want to achieve the maximum satisfaction within the budget.

KNAPSACK Is NP-Complete

- KNAPSACK \in NP: Guess an S and verify the constraints.
- We assume $v_i = w_i$ for all i and K = W.
- KNAPSACK now asks if a subset of $\{w_1, w_2, \ldots, w_n\}$ adds up to exactly K.
 - Think of yourself as a radio DJ.
- We shall reduce exact cover by 3-sets to it.

- We are given a family $F = \{S_1, S_2, \dots, S_n\}$ of size-3 subsets of $U = \{1, 2, \dots, 3m\}$.
- EXACT COVER BY 3-SETS asks if there are m disjoint sets in F that cover the set U.
- Think of a set as a bit vector in $\{0,1\}^{3m}$.
 - 001100010 means the set $\{3,4,8\}$, and 110010000 means the set $\{1,2,5\}$.
- Our goal is $11 \cdots 1$.

- A bit vector can also be considered as a binary number.
- Set union resembles addition.
 - 001100010 + 110010000 = 111110010, which denotes the set $\{1, 2, 3, 4, 5, 8\}$, as desired.
- Trouble is there is *carry*.
 - 001100010 + 001110000 = 010010010, which denotes the set $\{2, 5, 8\}$, not the desired $\{3, 4, 5, 8\}$.
- Carry also leads to a situation where we obtain our solution $11 \cdots 1$ with more than m sets in F.

- ullet 001100010 + 001110000 + 101100000 + 000001101 = 111111111.
 - But this "solution" $\{1, 3, 4, 5, 6, 7, 8, 9\}$ does not correspond to an exact cover.
 - Furthermore, it uses 4 sets instead of the required 3.
- To fix this problem, we enlarge the base just enough so that there are no carries.
- Because there are n vectors in total, we change the base from 2 to n + 1.

- Now in base n+1, if there is a set S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m}$, then every bit position must be contributed by exactly one v_i and |S| = m.
- Set v_i to be the (n+1)-ary number corresponding to the bit vector encoding S_i .
- Finally, set

$$K = \sum_{j=0}^{3m-1} (n+1)^j = \overbrace{11\cdots 1}^{3m}$$
 (base $n+1$).

The Proof (concluded)

- Suppose F admits an exact cover, say $\{S_1, S_2, \ldots, S_m\}$.
- Then picking $S = \{v_1, v_2, \dots, v_m\}$ clearly results in

$$v_1 + v_2 + \dots + v_m = \overbrace{11 \cdots 1}^{3m}.$$

- On the other hand, suppose there exists an S such that $\sum_{v_i \in S} v_i = \overbrace{11 \cdots 1}^{3m} \text{ in base } n+1.$
- The no-carry property implies that |S| = m and $\{S_i : v_i \in S\}$ is an exact cover.

BIN PACKINGS

- We are given N positive integers a_1, a_2, \ldots, a_N , an integer C (the capacity), and an integer B (the number of bins).
- BIN PACKING asks if these numbers can be partitioned into B subsets, each of which has total sum at most C.
- Think of packing bags at the check-out counter.

Theorem 45 BIN PACKING is NP-complete.

coNP

- NP is the class of problems that have succinct certificates (recall Proposition 35 on p. 240).
- coNP is the class of problems that have succinct disqualifications:
 - A "no" instance of a problem in coNP possesses a short proof of its being a "no" instance.
 - Only "no" instances have such proofs.
- Clearly $P \subseteq coNP$.
- It is not known if $P = NP \cap coNP$.
 - Contrast this with $R = RE \cap coRE$.

coNP as Decision Problems

- Suppose L is a coNP problem.
- There exists a polynomial-time nondeterministic algorithm M such that:
 - If $x \in L$, then M(x) = "yes" for all computation paths.
 - If $x \notin L$, then M(x) = "no" for some computation path.
- We can swap "yes" and "no" in the above definition without materially changing the coNP class (why?).

An Alternative Characterization of coNP

Proposition 46 Let $L \subseteq \Sigma^*$ be a language. Then $L \in coNP$ if and only if there is a polynomially decidable and polynomially balanced relation R such that

$$L = \{x : \forall y (x, y) \in R\}.$$

- $\bar{L} = \{x : (x, y) \in \neg R \text{ for some } y\}.$
- Because $\neg R$ remains polynomially balanced, $\bar{L} \in \text{NP}$ by Proposition 35 (p. 240).
- Hence $L \in \text{coNP}$ by definition.

Some coNP Problems

- VALIDITY \in coNP.
 - If ϕ is not valid, it can be disqualified very succinctly: a truth assignment that does not satisfy it.
- SAT COMPLEMENT \in coNP.
 - The disqualification is a truth assignment that satisfies it.
- HAMILTONIAN PATH COMPLEMENT \in coNP.
 - The disqualification is a Hamiltonian path.

coNP Completeness

Proposition 47 L is NP-complete if and only if its complement $\bar{L} = \Sigma^* - L$ is coNP-complete.

Proof $(\Rightarrow$; the \Leftarrow part is symmetric)

- Let \bar{L}' be any coNP language.
- Hence $L' \in NP$.
- Let R be the reduction from L' to L.
- So $x \in L'$ if and only if $R(x) \in L$.
- So $x \in \bar{L}'$ if and only if $R(x) \in \bar{L}$.
- R is a reduction from \bar{L}' to \bar{L} .

Some coNP-Complete Problems

- SAT COMPLEMENT is coNP-complete.
 - SAT COMPLEMENT is the complement of SAT.
- VALIDITY is coNP-complete.
 - $-\phi$ is valid if and only if $\neg\phi$ is not satisfiable.
 - The reduction from SAT COMPLEMENT to VALIDITY is hence easy.
- HAMILTONIAN PATH COMPLEMENT is coNP-complete.

Possible Relations between P, NP, coNP

- P = NP = coNP.
- NP = coNP but P \neq NP.
- $NP \neq coNP$ and $P \neq NP$ (current "consensus").

coNP Completeness and NP Completeness

Proposition 48 If a coNP-complete problem is in NP, then NP = coNP.

- Let $L \in NP$ be coNP-complete.
- Let NTM M decide L.
- For any $L' \in \text{coNP}$, there is a reduction R from L' to L.
- $L' \in NP$ as it is decided by NTM M(R(x)).
 - Alternatively, NP is closed under complement.
- The other direction $NP \subseteq coNP$ is symmetric.

coNP Completeness and NP Completeness (concluded)

Similarly,

Proposition 49 If a NP-complete problem is in coNP, then NP = coNP.

Hence NP-complete problems are unlikely to be in coNP and coNP-complete problems are unlikely to be in NP.

The Primality Problem

- An integer p is **prime** if p > 1 and all positive numbers other than 1 and p itself cannot divide it.
- \bullet PRIMES asks if an integer N is a prime number.
- Dividing N by $2, 3, \ldots, \sqrt{N}$ is not efficient.
 - The length of N is only $\log N$, but $\sqrt{N} = 2^{0.5 \log N}$.
- A polynomial-time algorithm for PRIMES was not found until 2002 by Agrawal, Kayal, and Saxena!
- We will focus on efficient "probabilistic" algorithms for PRIMES (used in *Mathematica*, e.g.).

```
1: if n = a^b for some a, b > 1 then
      return "composite";
 3: end if
 4: for r = 2, 3, \ldots, n-1 do
     if gcd(n,r) > 1 then
     return "composite";
     end if
      if r is a prime then
     Let q be the largest prime factor of r-1;
    if q \ge 4\sqrt{r} \log n and n^{(r-1)/q} \ne 1 \mod r then
11:
     break; {Exit the for-loop.}
12:
        end if
13:
      end if
14: end for \{r-1 \text{ has a prime factor } q \geq 4\sqrt{r} \log n.\}
15: for a = 1, 2, \ldots, 2\sqrt{r} \log n do
16: if (x-a)^n \neq (x^n-a) \mod (x^r-1) in Z_n[x] then
17:
     return "composite";
18:
      end if
19: end for
20: return "prime"; {The only place with "prime" output.}
```

DP

- DP \equiv NP \cap coNP is the class of problems that have succinct certificates and succinct disqualifications.
 - Each "yes" instance has a succinct certificate.
 - Each "no" instance has a succinct disqualification.
 - No instances have both.
- $P \subseteq DP$.
- We will see that PRIMES \in DP.
 - In fact, PRIMES \in P as mentioned earlier.

Primitive Roots in Finite Fields

Theorem 50 (Lucas and Lehmer, 1927) A number p > 1 is prime if and only if there is a number 1 < r < p (called the **primitive root** or **generator**) such that

- 1. $r^{p-1} = 1 \mod p$, and
- 2. $r^{(p-1)/q} \neq 1 \mod p$ for all prime divisors q of p-1.
- The above theorem can be used to test efficiently primes of the form $2^m + 1$.
- We will prove the theorem later.

Pratt's Theorem

Theorem 51 (Pratt, 1975) PRIMES $\in NP \cap coNP$.

- PRIMES is in coNP because a succinct disqualification is a divisor.
- Suppose p is a prime.
- p's certificate includes the r in Theorem 50 (p. 324).
- Use recursive doubling to check if $r^{p-1} = 1 \mod p$ in time polynomial in the length of the input, $\log_2 p$.
- We also need all *prime* divisors of $p-1: q_1, q_2, \ldots, q_k$.
- Checking $r^{(p-1)/q_i} \neq 1 \mod p$ is also easy.

The Proof (concluded)

- Checking q_1, q_2, \ldots, q_k are all the divisors of p-1 is easy.
- We still need certificates for the primality of the q_i 's.
- The complete certificate is recursive and tree-like:

$$C(p) = (r; q_1, C(q_1), q_2, C(q_2), \dots, q_k, C(q_k)).$$

- C(p) can also be checked in polynomial time.
- We next prove that C(p) is succinct.

The Succinctness of the Certificate

Lemma 52 The length of C(p) is at most quadratic at $5 \log_2^2 p$.

- This claim holds when p = 2 or p = 3.
- In general, p-1 has $k < \log_2 p$ prime divisors $q_1 = 2, q_2, \dots, q_k$.
- C(p) requires: 2 parentheses and $2k < 2\log_2 p$ separators (length at most $2\log_2 p \log_2 p$, r (length at most $\log_2 p$), $q_1 = 2$ and its certificate 1 (length at most 5 bits), the q_i 's (length at most $2\log_2 p$), and the $C(q_i)$ s.

The Proof (concluded)

 \bullet C(p) is succinct because

$$|C(p)| \leq 5\log_2 p + 5 + 5\sum_{i=2}^k \log_2^2 q_i$$

$$\leq 5\log_2 p + 5 + 5\left(\sum_{i=2}^k \log_2 q_i\right)^2$$

$$\leq 5\log_2 p + 5 + 5\log_2^2 \frac{p-1}{2}$$

$$< 5\log_2 p + 5 + 5(\log_2 p - 1)^2$$

$$= 5\log_2^2 p + 10 - 5\log_2 p \leq 5\log^2 p$$

for $p \geq 4$.

Basic Modular Arithmetics^a

- Let $m, n \in \mathbb{Z}^+$.
- m|n means m divides n and m is n's divisor.
- We call the numbers $0, 1, \ldots, n-1$ the **residue** modulo n.
- The greatest common divisor of m and n is denoted gcd(m, n).
- The r in Theorem 50 (p. 324) is a primitive root of p.
- We now prove the existence of primitive roots and then Theorem 50.

^aCarl Friedrich Gauss (1777–1855).

Euler's^a Totient or Phi Function

• Let

$$\Phi(n) = \{m : 1 \le m < n, \gcd(m, n) = 1\}$$

be the set of all positive integers less than n that are prime to n (Z_n^* is a more popular notation).

$$- \Phi(12) = \{1, 5, 7, 11\}.$$

- Define Euler's function of n to be $\phi(n) = |\Phi(n)|$.
- $\phi(p) = p 1$ for prime p, and $\phi(1) = 1$ by convention.
- Euler's function is not expected to be easy to compute without knowing n's factorization.

^aLeonhard Euler (1707–1783).

Two Properties of Euler's Function

The inclusion-exclusion principle^a can be used to prove the following.

Lemma 53 $\phi(n) = n \prod_{p|n} (1 - \frac{1}{p}).$

• If $n = p_1^{e_1} p_2^{e_2} \cdots p_t^{e_t}$ is the prime factorization of n, then

$$\phi(n) = n \prod_{i=1}^{t} \left(1 - \frac{1}{p_i} \right).$$

Corollary 54 $\phi(mn) = \phi(m)\phi(n)$ if gcd(m,n) = 1.

^aSee my *Discrete Mathematics* lecture notes.

A Key Lemma

Lemma 55 $\sum_{m|n} \phi(m) = n$.

• Let $\prod_{i=1}^{\ell} p_i^{k_i}$ be the prime factorization of n and consider

$$\prod_{i=1}^{\ell} [\phi(1) + \phi(p_i) + \dots + \phi(p_i^{k_i})]. \tag{4}$$

- Equation (4) equals n because $\phi(p_i^k) = p_i^k p_i^{k-1}$ by Lemma 53.
- Expand Eq. (4) to yield $\sum_{k'_1 \leq k_1, \dots, k'_{\ell} \leq k_{\ell}} \prod_{i=1}^{\ell} \phi(p_i^{k'_i})$.

The Proof (concluded)

• By Corollary 54 (p. 331),

$$\prod_{i=1}^{\ell} \phi(p_i^{k_i'}) = \phi\left(\prod_{i=1}^{\ell} p_i^{k_i'}\right).$$

- Each $\prod_{i=1}^{\ell} p_i^{k_i'}$ is a unique divisor of $n = \prod_{i=1}^{\ell} p_i^{k_i}$.
- Equation (4) becomes

$$\sum_{m|n} \phi(m).$$