TRIPARTITE MATCHING

e We are given three sets B, G, and H, each containing n
elements.

e Let ' C B X G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples

in T', none of which has a component in common.

— KEach element in B is matched to a different element
in G and different element in H.

Theorem 43 (Karp, 1972) TRIPARTITE MATCHING IS

NP-complete.
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Related Problems

We are given a family F' = {51, 52,...,5,} of subsets of
a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.

SET PACKING asks if there are B disjoint sets in F'.

Assume |U| = 3m for some m € N and |5;| = 3 for all <.

EXACT COVER BY 3-SETS asks if there are m sets in F
that are disjoint and have U as their union.

Corollary 44 SET COVERING, SET PACKING, and EXACT
COVER BY 3-SETS are all NP-complete.
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SET COVERING SET PACKING
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INTEGER PROGRAMMING |s NP-Complete?

INTEGER PROGRAMMING asks whether a system of linear
inequalities with integer coefficients has an integer

solution.

Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

— SET COVERING can be expressed by the inequalities
Az > 1, Y i1 < B,0<z; <1, where
x x; is one if and only if S; is in the cover.
x A is the matrix whose columns are the bit vectors
of the sets 51,59, ....
+ 1 is the vector of 1s.

aPapadimitriou, 1981.
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The KNAPSACK Problem
e There is a set of n items.
e Item ¢ has value v; € Z™ and weight w; € ZT.

e Given K € Z™ and W € Z™, KNAPSACK asks if there

exists a subset S C {1,2,... ,n} such that ) ,_sw; <W
and ZiESvi Z K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK |s NP-Complete

KNAPSACK € NP: Guess an S and verify the constraints.
We assume v; = w; for all 2 and K = W.

KNAPSACK now asks if a subset of {wy,ws,... ,w,} adds
up to exactly K.

— Think of yourself as a radio DJ.

We shall reduce EXACT COVER BY 3-SETS to it.
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The Proof (continued)

We are given a family F' = {51,S5,...,5,} of size-3
subsets of U = {1,2,...,3m}.

EXACT COVER BY 3-SETS asks if there are m disjoint
sets in F' that cover the set U.

Think of a set as a bit vector in {0, 1}°™.

— 001100010 means the set {3, 4,8}, and 110010000
means the set {1,2,5}.

Our goal is 11---1.
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The Proof (continued)

A bit vector can also be considered as a binary number.

Set union resembles addition.

— 001100010 + 110010000 = 111110010, which denotes
the set {1,2,3,4,5,8}, as desired.

Trouble is there is carry.

— 001100010 + 001110000 = 010010010, which denotes
the set {2, 5,8}, not the desired {3,4,5, 8}.

Carry also leads to a situation where we obtain our
solution 11---1 with more than m sets in F'.
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The Proof (continued)

e — 001100010+ 001110000 + 101100000 + 000001101 =
111111111.

— But this “solution” {1,3,4,5,6,7,8,9} does not
correspond to an exact cover.

— Furthermore, it uses 4 sets instead of the required 3.

e To fix this problem, we enlarge the base just enough so

that there are no carries.

e Because there are n vectors in total, we change the base
from 2 to n + 1.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 307



The Proof (continued)

e Now in base n + 1, if there is a set S such that
3m

¢ o : "
Zvies v, = 11---1, then every bit position must be

contributed by exactly one v; and |S| = m.

e Set v; to be the (n + 1)-ary number corresponding to the
bit vector encoding .S;.

e Finally, set

(base n + 1).
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The Proof (concluded)

Suppose F' admits an exact cover, say {S1,S52,...,9m}.

Then picking S = {vy,vs,... ,v,} clearly results in

fU1_|_rU2_|_..._|_fUm:]_]_...

On the other hand, suppose there exists an S such that

3m

—
> v,esVi=11---11in base n + 1.

The no-carry property implies that |S| = m and
{S; : v; € S} is an exact cover.
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BIN PACKINGS

e We are given N positive integers a1, as,... ,an, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asks if these numbers can be partitioned
into B subsets, each of which has total sum at most C.

e Think of packing bags at the check-out counter.

Theorem 45 BIN PACKING s NP-complete.
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coNP

NP is the class of problems that have succinct

certificates (recall Proposition 35 on p. 240).

coNP is the class of problems that have succinct
disqualifications:

— A “no” instance of a problem in coNP possesses a
short proof of its being a “no” instance.

— Only “no” instances have such proofs.

Clearly P C coNP.

It is not known if P = NP N coNP.
— Contrast this with R = RE N coRE.
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coNP as Decision Problems
e Suppose L is a coNP problem.

e There exists a polynomial-time nondeterministic
algorithm M such that:

— If x € L, then M (x) = “yes” for all computation
paths.

— If x ¢ L, then M (x) = “no” for some computation
path.

e We can swap “yes” and “no” in the above definition

without materially changing the coNP class (why?).
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An Alternative Characterization of coNP

Proposition 46 Let L C X* be a language. Then L € coNP
of and only if there is a polynomzially decidable and
polynomaally balanced relation R such that

L={z:Vy(z,y) € R}.

e L ={z:(z,y) € =R for some y}.

e Because —R remains polynomially balanced, L € NP by
Proposition 35 (p. 240).

Hence L € coNP by definition.
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Some coNP Problems

e VALIDITY € coNP.

— If ¢ is not valid, it can be disqualified very succinctly:
a truth assignment that does not satisty it.

e SAT COMPLEMENT € coNP.

— The disqualification is a truth assignment that

satisfies it.

e HAMILTONIAN PATH COMPLEMENT € coNP.

— The disqualification is a Hamiltonian path.
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coNP Completeness

Proposition 47 L is NP-complete if and only if its
complement L = ¥* — L is coNP-complete.

Proof (=; the < part is symmetric)
e Let L' be any coNP language.
e Hence L' € NP.
e Let R be the reduction from L’ to L.

So x € L' if and only if R(z) € L.

So x € L’ if and only if R(z) € L.

R is a reduction from L’ to L.
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Some coNP-Complete Problems

e SAT COMPLEMENT is coNP-complete.

— SAT COMPLEMENT is the complement of SAT.

e VALIDITY is coNP-complete.
— ¢ is valid if and only if —¢ is not satisfiable.
— The reduction from SAT COMPLEMENT to VALIDITY

is hence easy.

e HAMILTONIAN PATH COMPLEMENT is coNP-complete.
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Possible Relations between P, NP, coNP
e P = NP = coNP.
e NP = coNP but P # NP.

e NP # coNP and P # NP (current “consensus”).
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coNP Completeness and NP Completeness

Proposition 48 If a coNP-complete problem is in NP, then
NP = coNP.

e Let L € NP be coNP-complete.
e Let NTM M decide L.

For any L' € coNP, there is a reduction R from L’ to L.

L' € NP as it is decided by NTM M (R(z)).

— Alternatively, NP is closed under complement.

The other direction NP C coNP is symmetric.
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coNP Completeness and NP Completeness
(concluded)

Similarly,

Proposition 49 If a NP-complete problem s in coNP, then
NP = coNP.

Hence NP-complete problems are unlikely to be in coNP and

coNP-complete problems are unlikely to be in NP.
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The Primality Problem

An integer p is prime if p > 1 and all positive numbers
other than 1 and p itself cannot divide it.

PRIMES asks if an integer N is a prime number.

Dividing N by 2,3,...,v/N is not efficient.

— The length of N is only log N, but v N = 20-5leg V.

A polynomial-time algorithm for PRIMES was not found
until 2002 by Agrawal, Kayal, and Saxena)

We will focus on efficient “probabilistic” algorithms for
PRIMES (used in Mathematica, e.g.).
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if n = a® for some a,b > 1 then
return “composite”;
end if
for r=2,3,... ,n—1do
if gcd(n,r) > 1 then
return “composite”;
end if
if r is a prime then

Let g be the largest prime factor of r — 1;
if ¢ > 4y/rlogn and n(""Y/9 £ 1 mod r then

break; {Exit the for-loop.}
end if
end if
: end for{r — 1 has a prime factor ¢ > 4/7logn.}
: fora=1,2,...,2yrlogn do
if (z —a)” # (2" —a) mod (z" — 1) in Z,[z ] then
return “composite”;
end if
: end for
: return “prime”; {The only place with “prime” output.}
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DP

e DP = NP N coNP is the class of problems that have
succinct certificates and succinct disqualifications.

— Each “yes” instance has a succinct certificate.

— Each “no” instance has a succinct disqualification.

— No instances have both.
e P C DP.

e We will see that PRIMES € DP.

— In fact, PRIMES € P as mentioned earlier.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 323



Primitive Roots in Finite Fields

Theorem 50 (Lucas and Lehmer, 1927) A number
p > 1 1s prime if and only if there is a number 1 <r <p

(¢alled the primitive root or generator ) such that

1. Y71 =1 mod p, and
2. rP=1/a £ 1 mod p for all prime divisors q¢ of p — 1.

e The above theorem can be used to test efficiently primes
of the form 2™ + 1.

e We will prove the theorem later.
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Pratt’'s Theorem
Theorem 51 (Pratt, 1975) PRIMES € NPN coNP.

e PRIMES is in coNP because a succinct disqualification is

a divisor.
Suppose p is a prime.
p’s certificate includes the r in Theorem 50 (p. 324).

Use recursive doubling to check if 77! =1 mod p in

time polynomial in the length of the input, log, p.

We also need all prime divisors of p — 1: q1,qo, ... , qi.

Checking r(?~1)/% £ 1 mod p is also easy.
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The Proof (concluded)

Checking ¢1,qo, ... ,qr are all the divisors of p — 1 is

easy.
We still need certificates for the primality of the g;’s.

The complete certificate is recursive and tree-like:
C(p) = (r;q1,C(q1), 92, C(q2) - - -, qk, C(qr))-

C'(p) can also be checked in polynomial time.

We next prove that C(p) is succinct.
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The Succinctness of the Certificate

Lemma 52 The length of C(p) is at most quadratic at

51ogs p.

e This claim holds when p = 2 or p = 3.

e In general, p — 1 has k£ < log, p prime divisors
G =2,92,-..,Gk-

e ('(p) requires: 2 parentheses and 2k < 2log, p separators
(length at most 2log, p long), r (length at most log, p),
g1 = 2 and its certificate 1 (length at most 5 bits), the
g;’s (length at most 2log, p), and the C(g;)s.
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The Proof (concluded)

e ('(p) is succinct because

k
C(p)l < 5logyp+5+5) logsg
1 =2

L 2
5log,p+5+5 (Z log, qz->

=2
1
5log2p+5+51og2pT

51og, p + 5+ 5(logy p — 1)°
5logsp + 10 — 5logy p < 5log?
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Basic Modular Arithmetics?
Let m,n € Z™T.
m|n means m divides n and m is n’s divisor.

We call the numbers 0,1,... ,n — 1 the residue modulo

n.

The greatest common divisor of m and n is denoted

ged(m,n).

The r in Theorem 50 (p. 324) is a primitive root of p.

We now prove the existence of primitive roots and then
Theorem 50.

2Carl Friedrich Gauss (1777-1855).
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Euler's® Totient or Phi Function

®(n)={m:1<m <n,ged(m,n) =1}

be the set of all positive integers less than n that are

prime to n (Z} is a more popular notation).

— ®(12) ={1,5,7,11}.
Define Euler’s function of n to be ¢(n) = |®(n)]|.
¢(p) = p — 1 for prime p, and ¢(1) = 1 by convention.

Euler’s function is not expected to be easy to compute

without knowing n’s factorization.

2Leonhard Euler (1707-1783).
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Two Properties of Euler's Function

The inclusion-exclusion principle® can be used to prove the
following.

Lemma 53 ¢(n) =n[],,(1- ).

o If n =p{'p5---p;* is the prime factorization of n, then

¢(n)=nﬁ<1—;>.

Corollary 54 ¢(mn) = ¢(m)é(n) if ged(m,n) = 1.

aSee my Discrete Mathematics lecture notes.
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A Key Lemma
Lemma 55 . ¢(m)=n.

o Let Hle pfi be the prime factorization of n and consider

14

[Tlo(1) + d(pi) + -+ $(0F) 1. (4)

1=1

e Equation (4) equals n because ¢(p¥) = p* — pf_l by
Lemma 53.

. l k!
e Expand Eq. (4) to yield Zk;gkl,... <k [[;—;0P;%).
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The Proof (concluded)
e By Corollary 54 (p. 331),

14 I
[Tsi) =9 (Hp> -

1=1

/

14 k, . . . . ¢ :
e BEach [[._;p," is a unique divisor of n = [[,_; pfz.

e Equation (4) becomes

> p(m).

m|n
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