Generalized 2SAT: MAX2SAT
Consider a 2SAT expression.
Let K € N.

MAXZ2SAT is the problem of whether there is a truth

assignment that satisfies at least K of the clauses.

MAX2SAT becomes 2SAT when K equals the number of

clauses.
MAX2SAT is an optimization problem.

MAX2SAT € NP: Guess a truth assignment and verify

the count.
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MAX2SAT Is NP-Complete®

e Consider the following 10 clauses:

() A (y) A (2) A (w)
(mzV—y) A (myV -z)A(-zV x)
(xV—-w)A(yV-w)A(zV-w)
e Let the 2SAT formula r(x,y, 2z, w) represent the
conjunction of these clauses.
e How many clauses can we satisty?

e The clauses are symmetric with respect to x, y, and z.

a@Garey, Johnson, Stockmeyer, 1976.
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The Proof (continued)

All of z,y, z are true: By setting w to true, we can satisty
4+ 0+ 3 =7 clauses.

Two of z,y, z are true: By setting w to true, we can
satisfy 3+ 2 + 2 = 7 clauses.

One of z,vy, z is true: By setting w to false, we can satisfy
1+ 3+ 3 =7 clauses.

None of z,y, z is true: By setting w to false, we can
satisty 0 + 3 + 3 = 6 clauses, whereas by setting w to
true, we can satisty only 1+ 3 + 0 = 4 clauses.
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The Proof (continued)

Any truth assignment that satisfies z V y V z can be
extended to satisfy 7 of the 10 clauses and no more.

Any other truth assignment can be extended to satisfy
only 6 of them.
The reduction from 3SAT ¢ to MAX2SAT R(¢):

— For each clause C; = (aV 8V ) of ¢, add group
r(a, B,y,w;) to R(¢).
— If ¢ has m clauses, then R(¢) has 10m clauses.

Set K = Tm.
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The Proof (concluded)

e We now show that K clauses of R(¢) can be satisfied if
and only if ¢ is satisfiable.

e Suppose 7m clauses of R(¢) can be satisfied.

— 7 clauses must be satisfied in each group because

each group can have at most 7 clauses satisfied.

— Hence all clauses of ¢ must be satisfied.

e Suppose all clauses of ¢ are satisfied.

— Each group can set its w; appropriately to have 7
clauses satisfied.
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NAESAT

e The NAESAT (for “not-all-equal” SAT) is like 3SAT.

e But we require additionally that there be a satisfying
truth assignment under which no clauses have the three

literals equal in truth value.

— Each clause must have one literal assigned true and

one literal assigned false.
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NAESAT Is NP-Complete®

Recall the reduction of CIRCUIT SAT to SAT on p. 203.

It produced a CNF ¢ in which each clause has at most 3
literals.

Add the same variable z to all clauses with fewer than 3
literals to make it a 3SAT formula.

Goal: The new formula ¢(z) is NAE-satisfiable if and
only if the original circuit is satisfiable.

aKarp, 1972.
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The Proof (continued)

e Suppose T NAE-satisfies ¢(z).
— T also NAE-satisfies ¢(z).
— Under T or T, variable z takes the value false.

— This truth assignment must still satisfy all clauses of
0.

— So it satisfies the original circuit.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 261



The Proof (concluded)

e Suppose there is a truth assignment that satisfies the

circuit.

— Then there is a truth assignment 7' that satisfies

every clause of ¢.

Extend T by adding T'(z) = false to obtain 7",

T' satisfies ¢(z).

So in no clauses are all three literals false under 7".

Under T”, in no clauses are all three literals true.

x Review the construction on p. 204 and p. 205.
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Undirected Graphs

e An undirected graph G = (V, F) has a finite set of

nodes, V', and a set of undirected edges, E.

e It is like a directed graph except that the edges have no

directions and there are no self-loops.

e We use [, 7] to denote the fact that there is an edge

between node ¢ and node ;.
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Independent Sets

Let G = (V, E) be an undirected graph.
ICV.

I is independent if whenever ¢, 7 € I, there is no edge

between ¢ and j.

The INDEPENDENT SET problem: Given an undirected

graph and a goal K, is there an independent set of size
K?

— Many applications.
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INDEPENDENT SET |s NP-Complete

e This problem is in NP: Guess a set of nodes and verify
that it is independent and meets the count.

e If a graph contains a triangle, any independent set can

contain at most one node of the triangle.
e We consider graphs whose nodes can be partitioned in m
disjoint triangles.

— If the special case is hard, the original problem must

be at least as hard.
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Reduction from 3SAT to INDEPENDENT SET
Let ¢ be an instance of 3SAT with m clauses.

We will construct graph G (with constraints as said)
with K = m such that ¢ is satisfiable if and only if G
has an independent set of size K.

There is a triangle for each clause with the literals as the
nodes.

Add additional edges between x and —x for every

variable z.
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A Sample Construction

(331 V 9o V 563) A (—1331 V T V _ICI?3) A (_I£E1 V L2 V $3).
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The Proof (continued)

e Suppose GG has an independent set I of size K = m.

— An independent set can contain at most m nodes,
one from each triangle.

An independent set of size m exists if and only if it
contains exactly one node from each triangle.

Truth assignment 1" assigns true to those literals in 1.

T is consistent because contradictory literals are
connected by an edge, hence not both in 1.

T satisfies ¢ because it has a node from every
triangle, thus satisfying every clause.
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The Proof (concluded)

e Suppose a satisfying truth assignment 1" exists for ¢.

— Collect one node from each triangle whose literal is

true under 7T'.

— This set of m nodes must be independent by

construction.

Corollary 36 4-DEGREE INDEPENDENT SET 1is
NP-complete.

Theorem 37 INDEPENDENT SET is NP-complete for planar
graphs.
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CLIQUE and NODE COVER

e We are given an undirected graph GG and a goal K.

e CLIQUE asks if there is a set of K nodes that form a
clique, which have all possible edges between them.

e NODE COVER asks if there is a set C' with K or fewer
nodes such that each edge of G has at least one of its
endpoints in C.
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CLIQUE Is NP-Complete

Corollary 38 CLIQUE is NP-complete.

e Let G be the complement of G, where [z,y] € G if and
only if [z,y] &€ G.

e ] is a clique in G < I is an independent set in G.
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NODE COVER Is NP-Complete

Corollary 39 NODE COVER s NP-complete.

e [ is an independent set of G = (V, E) if and only if
V — I is a node cover of G.
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MIN CUT and MAX CUT

A cut in an undirected graph G = (V, E) is a partition

of the nodes into two nonempty sets S and V' — §S.

The size of a cut (S,V — ) is the number of edges
between S and V — S.

MIN CUT € P by the maxflow algorithm.

MAX CUT asks if there is a cut of size at least K.

— K is part of the input.
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MAX CUT Is NP-Complete?

e We will reduce NAESAT to MAX CUT.
e Given an instance ¢ of 3SAT with m clauses, we shall
construct a graph G = (V, E) and a goal K such that:
— There is a cut of size at least K if and only if ¢ is
NAE-satisfiable.
e Our graph will have multiple edges between two nodes.

— Each such edge contributes one to the cut if its nodes
are separated.

a2Garey, Johnson, Stockmeyer, 1976.
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Reduction from NAESAT to MAX CUT
Suppose ¢’s m clauses are C7,Cs, ... ,C,.
The boolean variables are x1,x9,... ,Tp,.
(G has 2n nodes: x1,x2,... ,Zn, L1, T, ..., Ly,
Each clause with 3 distinct literals makes a triangle in G.

For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

No need to consider clauses with one literal (why?).

For each variable z;, add n; copies of the edge [x;, z;],

where n; is the number of occurrences of x; and —x; in ¢.
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The Construction

N\

n.copies ™
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A Sample Construction (Cut Size Is 13)

(x1 Vo V) A(xyV-x3V-x3)A(—xyVzgVxs).
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The Proof
Set K = bm.

Suppose there is a cut (S, V — 5) of size 5m or more.

A clause (a triangle or two parallel edges) contributes at

most 2 to a cut no matter how you split it.
Suppose both z; and —x; are on the same side of the cut.

Then they together contribute at most 2n; edges to the
cut as they appear in at most n; different clauses.
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The Proof (continued)

e Changing the side of a literal contributing at most n; to

the cut does not decrease the size of the cut.

e Hence we assume variables are separated from their

negations.

e The total number of edges in the cut that join opposite

literals is ) ., n; = 3m.

— The total number of literals is 3m.
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The Proof (concluded)

The remaining 2m edges in the cut must come from the
m triangles or parallel edges that correspond to the

clauses.
As each can contribute at most 2 to the cut, all are split.

A split clause means at least one of its literals is true
and at least one false.

The other direction is left as an exercise.
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A New Cut (Cut Size Is 15)

(x1 Vo V) A(xyV-x3Vx3)A(—xyV-xgVxs).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 283



MAX BISECTION

MAX CUT becomes MAX BISECTION if we require that
15| =1V =5

It has many applications, especially in VLSI layout.
Sometimes imposing additional restrictions makes a
problem easier.

— SAT to 2SAT.

Other times, it makes the problem as hard or harder.
— MIN CUT to BISECTION WIDTH.

— LINEAR PROGRAMMING to INTEGER PROGRAMMING.
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MAX BISECTION Is NP-Complete

We shall reduce the more general MAX CUT to MAX
BISECTION.

Add |V| isolated nodes to G to yield G'.
G’ has 2 x |V| nodes.

As the new nodes have no edges, moving them around
contributes nothing to the cut.
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The Proof (concluded)

e Every cut (S,V — 5) of G = (V, E) can be made into a
bisection by appropriately allocating the new nodes
between S and V' — S.

e Hence each cut of G can be made a cut of G’ of the

same size, and vice versa.
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BISECTION WIDTH

e BISECTION WIDTH is like MAX BISECTION except that it

asks if there is a bisection of size at most K (sort of MIN

BISECTION).

e Unlike MIN CUT, BISECTION WIDTH remains
NP-complete.
— A graph G = (V, E), where |V | = 2n, has a bisection
of size K if and only if the complement of G has a

bisection of size n? — K.
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[llustration
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HAMILTONIAN PATH Is NP-Complete?

e Given an undirected graph, the question whether it has

a Hamiltonian path is NP-complete.
e The “messy” reduction is from 3SAT.

e We skip the proof.

aKarp, 1972.
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TSP (D) Is NP-Complete

Corollary 40 Tsp (D) is NP-complete.

Given a graph G with n nodes, define d;; =1 if

Set the budget B =n + 1.

Note that if G has no Hamiltonian paths, then any tour
must contain at least two edges with weight 2.

The total cost is then at least (n —2) +2-2=n+ 2.

There is a tour of length B or less if and only if G has a
Hamiltonian path.
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Hamiltonian Path and TSP Tour
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Graph Coloring

k-COLORING asks if the nodes of a graph can be colored
with k£ colors (or fewer) such that no two adjacent nodes
have the same color.

2-COLORING is in P.
3-COLORING is NP-complete.

Since 3-COLORING is a special case of k-COLORING for
any k > 4, k-COLORING is NP-complete for £ > 3.
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3-COLORING Is NP-Complete?

We will reduce NAESAT to 3-COLORING.

We are given a set of clauses C1,Cs, ..., (), each with 3
literals.

The boolean variables are x1,x9,... , T,

We shall construct a graph G such that it can be colored
with colors {0, 1,2} if and only if all the clauses can be
NAE-satisfied.

aKarp, 1972.
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The Proof (continued)

e Every variable z; is involved in a triangle |a, x;, —x; ]

with a common node a.

e Each clause C; = (¢;1 V ¢i2 V ¢;3) is also represented by a

triangle
[Cila Ci2, Ci3 ]

e There is an edge between ¢;; and the node that
represents the jth literal of Cj.
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Construction for - -- A (z1 V -z V —x3) A - - -

a 2
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The Proof (continued)

Suppose the graph is 3-colorable.

e Assume without loss of generality that node a takes the
color 2, x; takes the color 1, and —x; takes the color 0.

A triangle must use all 3 colors.

The clause triangle cannot be linked to nodes with all 1s
or all Os; otherwise, it cannot be colored with 3 colors.

Treat 1 as true and 0 as false (it is consistent).
Treat 2 as either true or false; it does not matter.

As each clause triangle contains one color 1 and one
color 0, the clauses are NAE-satisfied.
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The Proof (concluded)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth
values (color 0 for false and color 1 for true).
e For each clause triangle:

— Pick any two literals with opposite truth values and
color the corresponding nodes with 0 if the literal is

true and 1 if it is false.

— Color the remaining node with color 2.
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