Composition of Reductions

Proposition 26 If Ri5 is a reduction from Ly to Ly and
Ro3 is a reduction from Lg to Lg, then the composition
Ris - Ro3 s a reduction from Ly to Lg.

e Clearly z € L, if and only if Rgg(R12(x)) € Ls.

e How to compute Ry3 - Roz in space O(logn)?

— Generating Rj2(z) before feeding it to Res may
consume too much space because Ri2(z) is on a work

string.?

2This would not be a problem if we had required reductions to be in
P instead of L.

Completeness?

As reducibility is transitive, problems can be ordered
with respect to their difficulty.

Is there a mazimal element?

Let C be a complexity class and L € C.

e L is C-complete if every L’ € C can be reduced to L.

— Every complexity class we have seen so far has
complete problems!

Complete problems capture the difficulty of a class
because they are the hardest, if they exist.
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2Cook, 1971.

The Proof (concluded)

e The trick is to let Rg3 drive the computation.
e It asks Rjs to deliver each bit of Ri2(x) when needed.

e When Ry3 wants the ith bit, Ri2(z) will run until the
ith bit is available; the beginning ¢ — 1 bits should not
be written to the string.

e This is feasible as R12(z) is produced in a write-only
manner.

— The ith output bit of Ri2(z) is well-defined because
once it is written, it will never be overwritten.
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Hardness
e Let C be a complexity class.
e [ is C-hard if every L’ € C can be reduced to L.

e Note that it is not required that L € C.
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[llustration of Completeness and Hardness

Complete Problems and Complexity Classes

Proposition 27 Let C' and C be two complexity classes
such that C' C C. Assume C' is closed under reductions and
L is a complete problem for C. ThenC =C" if L € C’.

e Every language A € C reduces to L € C'.

e Because C' is closed under reductions, A € C’.

e Hence C C (.
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Closedness under Reduction Two Immediate Corollaries

e A class C is closed under reductions if whenever L is
reducible to L' and L' € C, then L € C.

Proposition 27 implies that
e P = NP if and only if an NP-complete problem in P.
e P, NP, coNP, L, NL, PSPACE, and EXP are all closed

under reductions e L. =P if and only if a P-complete problem is in L.
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Complete Problems and Complexity Classes

Proposition 28 Let C' and C be two complexity classes
closed under reductions. If L is complete for both C and C',
then C =C'.

e All languages £ € C reduce to L € C'.
e Since C’ is closed under reductions, £ € C’.
e Hence C CC'.

e The proof for C' C C is symmetric.

Some Conventions To Simplify the Table

e M halts after at most |z |F — 2 steps.
— The string length hence never exceeds |z |*.

— Assume a large enough k to make it true for |z | > 2.

e Pad the table with | Js so that each row has length |z |*.

— The computation will never reach the right end of
the table for lack of time.

e If the cursor scans the jth position at time 4 when M is
at state ¢ and the symbol is o, then the (7, j)th entry is
a new symbol oy.
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Table of Computation

e Let M = (K,X,4,s) be a single-string polynomial-time
deterministic TM deciding L.

e Its computation on input x can be thought of as a
|z |* x |z |* table, where |z | is the time bound.

— It is a sequence of configurations.
e Rows correspond to time steps 0 to |z |* — 1.
e Columns are positions in the string of M.

e The (i,7)th table entry represents the contents of
position j of the string after i steps of computation.

Some Conventions To Simplify the Table (continued)

e If g is “yes” or “no,” simply use “yes” or “no” instead of
Og-

e Modify M so that the cursor starts not at > but at the
first symbol of the input.

e The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost >.

e So the first symbol in every row is a > and not a >,.
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A P-Complete Problem

Theorem 29 (Ladner, 1975) CIRCUIT VALUE is

Some Conventions To Simplify the Table (concluded) P-complete.

e If M has halted before its time bound of |z |¥, so that * It is casy fo sce that CIRCUIT VALUE € P.

“yes” or “no” appears at a row before the last, then all e For any L € P, we will construct a reduction R from L
subsequent rows will be identical to that row. to CIRCUIT VALUE.

e M accepts z if and only if the (|2 |¥ — 1, §)th entry is e Given any input z, R(x) is a variable-free circuit such
“yes” for some j. that x € L if and only if R(z) evaluates to true.

e Let M decide L in time nk.

e Let T be the computation table of M on z.
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Comments
The Proof (continued)

Each row is essentially a configuration.

If the input 2 = 010001, then the first row is e When i =0, or j =0, or j = |2[* — 1, then the value of

T;; is known.
o |*

>0.10001| || |--+| ]

— The jth symbol of z or | |, a >, and a | |, respectively.

— Three out of four of T’s borders are known.

e A typical row may be sabcdefL
=) > L
>10100401110100 | || |--+] ] > L
> L
| |* > L
——f
e The last rows must look like > - - - “yes” - - - |_|
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The Proof (continued)

Consider other entries T;;.

T;; depends on only T;_1 1, T;—1,, and T;_1 j41.

Ti15-1 | Ticiy | Tici+1
’1‘;.

e Let I' denote the set of all symbols that can appear on
the table: X U {0, :0 € ¥,q € K}.

Encode each symbol of I' as an m-bit number, where
m = [logy | T'[]

(state assignment in circuit design).

The Proof (continued)

e Each bit S;;¢ depends on only 3m other bits:

Tic1j-10 Si—1j-11 Si—1j-12 + Sicij-1m

Ti 1,5 Si—1,5,1 Si—1,5,2 o Sic14m

Tic1j+10 Sicijy11 Sicijeie 0 Sicijtim
e So there are m boolean functions F, Fs, ... , F,, with

3m inputs each such that for all 7,5 > 0,

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 222

The Proof (continued)

e Let binary string S;;155;2 - - - Sijm encode Tj;.

e The computation table is now a table of binary entries
Sije, where
0<i<nt—1,
1<Z<m.

Sije = Fy(Sic1,j-1,1,8i-1,j-1,2,--- » Si—1,j—1,m»
Si—1,3,1,5i-1,4,2, - - - 5 Oi=1,5,m;
Si1,j+1,1, Si—1,j41,2, -+ s Sim1,j+1,m)-
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e We may treat them interchangeably without ambiguity.

The Proof (continued)

These F;’s depend on only M’s specification, not on .
e Their sizes are fixed.

These boolean functions can be turned into boolean

circuits.

Compose these m circuits in parallel to obtain circuit C
with 3m-bit inputs and m-bit outputs.

- Schematically, C(Ti—l,j—laTi—l,j;Ti—l,j—i-l) = ,Tz]
— C is like an ASIC (application-specific IC) chip.
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Circuit C
Ti-l,j-l Ti-l,j Ti-l,j+1
EEEEEEEEEEE
C
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The Proof (concluded)

e A copy of circuit C is placed at each entry of the table.
— Exceptions are the top row and the two extreme
columns.
e R(z) consists of (|2 |¥ —1)(| 2 |¥ —2) copies of circuit C.

e Without loss of generality, assume the output
“yes” /“no” (coded as 1/0) appear at position
(ol —1,1).

The Computation Tableau and R(z)

>abcdef L

> L

o K K

> L
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A Corollary
The construction in the above proof shows the following.

Corollary 30 If L € TIME(T(n)), then a circuit with
O(T?%(n)) gates can decide if x € L for |z | = n.
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MONOTONE CIRCUIT VALUE

e A monotone boolean circuit’s output cannot change from
true to false when one input changes from false to true.

e Monotone boolean circuits are hence less expressive than
general circuits as they can compute only monotone
boolean functions.

— Monotone circuits do not contain — gates.

e MONOTONE CIRCUIT VALUE is CIRCUIT VALUE applied

to monotone circuits.

Cook’s Theorem: the First NP-Complete Problem
Theorem 32 (Cook, 1971) SAT is NP-complete.

e sAT € NP (p. 80).

e CIRCUIT SAT reduces to SAT (p. 203).

e Now we only need to show that all languages in NP can
be reduced to CIRCUIT SAT.
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MONOTONE CIRCUIT VALUE Is P-Complete

Despite their limitations, MONOTONE CIRCUIT VALUE is as
hard as CIRCUIT VALUE.

Corollary 31 MONOTONE CIRCUIT VALUE is P-complete.

e Given any general circuit, we can “move the —’s

downwards” using de Morgan’s laws. (Think!)
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The Proof (continued)
Let single-string NTM M decide L € NP in time n*.

e Assume M has exactly two nondeterministic choices at
each step: choices 0 and 1.

For each input z, we construct circuit R(z) such that
z € L if and only if R(z) is satisfiable.

e A sequence of nondeterministic choices is a bit string

k
B = (co,c1,- 5z k1) e {o,1}!=I".

Once B is fixed, the computation is deterministic.
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The Proof (continued)

e Each choice of B results in a deterministic

on p. 228.

e Each circuit C' at time % has an extra binary input ¢
corresponding to the nondeterministic choice.

polynomial-time computation, hence a table like the one
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The Computation Tableau for NTMs and R(x)

= e = e = = e o 3 e 3

L] b £ £ £ £ mumm—c

> L

:
]
]
]
]
¢

The Proof (concluded)

The overall circuit R(z) (on p. 235) is satisfiable if there
is a truth assignment B such that the computation table

accepts.

This happens if and only if M accepts z, i.e., x € L.
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Parsimonious Reductions

The reduction R in Cook’s theorem (p. 232) is such that

— Each satisfying truth assignment for circuit R(x)
corresponds to an accepting computation path for

The number of satisfying truth assignments for R(x)
equals that of M (z)’s accepting computation paths.

This kind of reduction is called parsimonious.

We will loosen the requirement for parsimonious
reduction: It runs in deterministic polynomial time.

©2002 Yuh-Dauh Lyuu, National Taiwan University

Page 235

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 237



The Proof (concluded)

. e Now suppose L € NP.
Two Notions W Supp

_ ) ) e NTM N decides L in time |z |*.
e Let R C ¥* x ¥* be a binary relation on strings.

e Define R as follows: (z,y) € R if and only if y is the

is call 1 iall i le if
* R is called polynomially decidable i encoding of an accepting computation of NV on input z.

{z;y: (z,y) € R} e Clearly R is polynomially balanced because N is

is in P. polynomially bounded.
e Ris said to be polynomially balanced if (z,y) € R e R is polynomially decidable because it can be efficiently

implies |y| < |z |¥ for some k > 1. verified by checking with N’s transition function.

e Finally L = {z : (z,y) € R for some y} because N

decides L.
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An Alternative Characterization of NP Comments
Proposition 33 (Edmonds, 1965) Let L C ¥* be a e Any “yes” instance x of an NP problem has at least one
language. Then L € NP if and only if there is a polynomially succinct certificate or polynomial witness .

decidable and polynomially balanced relation R such that e “No” instances have none.

L={z:3y(z,y) € R}. e Certificates are short and easy to verify.

e Suppose such an R exists. — An alleged satisfying truth assignment for SAT; an

e L can be decided by this NTM: alleged Hamiltonian path for HAMILTONIAN PATH.

— On input z, the NTM guesses a y of length < |z |* e Certificates may be hard to generate (otherwise, NP

and tests if (z,y) € R in polynomial time. equals P), but verification must be easy.

— It returns “yes” if the test is positive. e NP is the class of easy-to-verify (in P) problems.
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You Have an NP-Complete Problem (for Your Thesis)

e From Propositions 27 (p. 212) and Proposition 28
(p. 214), it is the least likely to be in P.

e Approximations.

e Special cases.

e Average performance.

e Randomized algorithms.

e Exponential-time algorithms that work well for small
problems.

e “Heuristics” (and pray).

3SAT Is NP-Complete

Recall Cook’s Theorem (p. 232) and the reduction of
CIRCUIT SAT to SAT (p. 203).
e The resulting CNF has at most 3 literals for each clause.

— This shows that 3SAT where each clause has at most
3 literals is NP-complete.

Finally, duplicate one literal once or twice to make it a
3sAT formula.

Note: The overall reduction remains parsimonious.
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3SAT
e k-SAT, where k € ZT, is the special case of SAT.

e The formula is in CNF and all clauses have exactly k
literals (repetition of literals is allowed).

e For example,

(331 VzoV —1333) A (331 Vxi1V ﬂxg) A (321 V —xg V —\283).
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Another Variant of 3SAT

Proposition 34 3sAT is NP-complete for expressions in
which each variable is restricted to appear at most three
times, and each literal at most twice. (3SAT here requires
only that each clause has at most 3 literals.)

e Consider a general 3SAT expression in which x appears k

times.

e Replace the first occurrence of by x1, the second by
Z9, and so on, where z1,x2,...,xr are k new variables.
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The Proof (concluded)

e Add (—z1 Vxza) A(—ma Va3) A+ A (—zk V1) to the

expression.
— This is logically equivalent to
T1 =Ty = =T = 21
— Each clause may have fewer than 3 literals.

e The resulting equivalent expression satisfies the

condition for z.

[llustration: Directed Graph for
(.’L‘l V .TQ) A (.771 V ﬁ.T3) A (_'.1'1 V .’L'Q) A (.’EQ V .’L‘3)

.Xl il Xg

®
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28AT and Graphs

Define graph G(¢) as follows:
— The nodes are the variables and their negations.

— Add edges (—a, 8) and (=8, a) to G(¢) f aV B is a
clause in ¢.

% Two edges are added for each clause.
e Think of the edges as ~a = 8 and -8 = «a.

b is reachable from a iff —a is reachable from —b.

Paths in G(¢) are valid implications.
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Let ¢ be an instance of 2sAT: Each clause has 2 literals.

x For example, if zV —y € ¢, add (—z, —y) and (y, z).

Properties of G(¢)

Theorem 35 ¢ is unsatisfiable if and only if there is a
variable x such that there are paths from x to —x and from

-z to z in G(¢).
e Suppose such paths exist, but ¢ can be satisfied by a
truth assignment 7.
— Without loss of generality, assume T'(z) = true.

— As there is a path from z to -z and T'(—z) = false,
there must be an edge (o, 8) on this path such that
T(c) = true and T(B) = false.

— Hence (—a V B) is a clause of ¢.

— But this clause is not satisfied by T', a contradiction.
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The Proof (continued)

e Now suppose there is no variable with such paths in

G(¢9).

— We shall construct a satisfying truth assignment.

— It is enough that no edges go from true to false.

— Pick any node o which has not had a truth value and
there is no path from it to -« (always doable by
assumption, why?).

— Assign nodes reachable from « true and their
negations false.

* The negations are those nodes that can reach —a.

The Proof (concluded)

e (continued)

Can there be nodes a without a truth value because

there is a path from «a to —a?

— Well, every node must have had a truth value.
% If o does not, then there is a path from o to —a.
* But then the algorithm could have picked —q,
assigning false to a!
— The assignments make sure a false node never follows
a true node.

Hence ¢ is satisfied by the assignments.
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The Proof (continued)

e (continued)

— The above steps are well-defined.
% If a could reach both 8 and —f3, then there would
be a path from = to —«, hence a path from « to
—al
x If there were a path from a to a node y already
assigned false, then —y can reach -« and o had
been assigned false before!

— We keep picking such o’s until we run out of them.
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2SAT Isin NL C P
e NL is a subset of P (p. 175).
e By Corollary 25 on p. 191, coNL equals NL.

e We need to show only that recognizing unsatisfiable
expressions is in NL.

e In nondeterministic logarithmic space, we can test the
conditions of Theorem 35 by guessing a variable z and
testing if —x is reachable from z and if —x can reach x.

— See the algorithm for REACHABILITY (p. 92).
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