The Quantified Halting Problem
e Let f(n) > n be proper.
e Define
Hy = {M;z : M accepts input z
after at most f(|z|) steps},
where M is deterministic.

e Assume the input is binary.
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Hy e TIME(f(n)?)
e For each input M;xz, we simulate M on z with an alarm
clock of length f(|z|).

— Use the single-string simulator (p. 57), the universal

e From p. 61, the total running time is O(¢k?f(n)?),
where £ is the length to encode each symbol or state of
M and k is M’s number of strings.

e As £ = O(logn), the running time is O(f(n)®), where
the constant is independent of M.

TM (p. 107), and the linear speedup theorem (p. 62).

Hy & TIME(f([n/2]))
e Suppose there is a TM My, deciding Hy in time
f(ln/2]).
e Consider machine Dy (M):

if My, (M;M) = “yes” then “no” else “yes”

e Dy on input M runs in the same time as My, on input
M; M, i.e., in time f([22H]) = f(n).
o Df(Df) = “yes” = Df;Df Q Hf = Df(Df) = “no.”

e Similarly, Dy(Dy) = “no” = Dy(Dy) = “yes.”
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The Time Hierarchy Theorem
Theorem 16 If f(n) > n is proper, then
TIME(f(n)) € TIME(f(2n +1)3).
e The quantified halting problem makes it so.
Corollary 17 P C EXP.
e P C TIME(2") because poly(n) < 2™ for n large enough.
e But by Theorem 16,

TIME(2") € TIME((22"1)?) C TIME(2") C EXP.
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Theorem 18 If f(n) is proper, then

Corollary 19 L C PSPACE.

The Space Hierarchy Theorem

SPACE(f(n)) € SPACE(f(n) log f(n)).
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The Reachability Method

A computation of a TM can be represented by
directional transitions between configurations.

The reachability method constructs a directed graph
with all the TM configurations as its nodes and edges
connecting two nodes if one yields the other.

The start node representing the initial configuration has

zero in degree.

When the TM is nondeterministic, a node may have an
out degree greater than one.
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The reachability method may give the edges on the fly
without explicitly storing the whole configuration graph.

[llustration of the Reachability Method

Initial
configuration

yes
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Theorem 20 Suppose f(n) is proper. Then
1.

Relations between Complexity Classes

SPACE(f(n)) € NSPACE(f(n)),
TIME(f(n)) C NTIME(f(n)).

NTIME(f(n)) € SPACE(f(n)).
NSPACE(f(n)) C TIME(kl°8n+7/(n)).

Proof of 2:
— Explore the computation tree of the NTM for “yes.”
— Use the depth-first search as f is proper.
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Proof of Theorem 20(2)
e (continued)
— Specifically, generate a f(n)-bit sequence denoting
the nondeterministic choices over f(n) steps.

— Simulate the NTM based on the choices.
— Recycle the space and then repeat the above steps

— Each path simulation consumes at most O(f(n))
space because it takes O(f(n)) time.

— The total space is O(f(n)) as space is recycled.

until a “yes” is encountered or the tree is exhausted.
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Proof of Theorem 20(3) (continued)

e We only care about

(Qa Z.) Wa, U2y . . . )wk—lauk—l)a

where ¢ is an integer between 0 and n for the position of
the first cursor.

e The number of configurations is therefore at most
K| x (n+1) x [B|F=DF0 = g(em ) (3)
for some ¢q, which depends on M.

e Add edges to the configuration graph based on the

transition function.
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Proof of Theorem 20(3)
e Let k-string NTM

M= (K,%,A,s)
with input and output decide L € NSPACE(f(n)).

e Use the reachability method on the configuration graph
of M on input z of length n.

e A configuration is a (2k + 1)-tuple

(Q7wlaulaw2au2a s awkauk)-
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Proof of Theorem 20(3) (concluded)

e © € L & there is a path in the configuration graph from
the initial configuration to a configuration of the form
(“yes”,,...) [there may be many of them].

e The problem is therefore that of REACHABILITY on a
graph with O(c’8 n+f(n)) nodes.

e It is in TIME(c'8™*+/(")) for some ¢ because

REACHABILITY is in TIME(n*) for some k and

k
(cllogn-i-f(n)) = (cF)losnti(m),
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A Corollary of the Reachability Method

Corollary 21 For any NTM M in NSPACE(f(n)), where
f(n) =Qogn), there is a TM in SPACE(f(n)) that writes
out the configuration graph of M(x), given input x.

e From the proof of Theorem 20 (p. 169), especially
Eq. (3) on p. 172, the number of configurations is
O(cf(”)) for some constant c.

e Use two counters each with space O(f(n)) to enumerate
all possible pairs of configurations, (Cy,C3).

e Write (C1,C2) to the output string if Cy yields Cs.
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The Grand Chain of Inclusions

L C NL C P C NP C PSPACE C EXP.

It is known that PSPACE C EXP.

By Corollary 19 (p. 166), we know L C PSPACE.

The chain must break somewhere between L and
PSPACE.

e We suspect all four inclusions are proper.

But there are no proofs yet.
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Nondeterministic Space and Deterministic Space

e By Theorem 5 (p. 83),
NTIME(f(n)) € TIME(c/™),
an exponential gap.

e There is no proof that the exponential gap is inherent,
however.

e How about NSPACE vs. SPACE?

e Surprisingly, the relation is only quadratic, a
polynomial, by Savitch’s theorem.
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Savitch's Theorem
Theorem 22 (Savitch, 1970)
REACHABILITY € SPACE(log” n).
e Let G be a graph with n nodes.
e For ¢ > 0, let
PATH(z,y,1)

mean there is a path from node z to node y of length at
most 2°.

e There is a path from z to y if and only if
PATH(z,y, [logn]) holds.
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The Algorithm for PATH(z, y, i)
The Simple Idea for Computing PATH(z,y, 1) 1: if 4 = 0 then

e For i > 0, PATH(z, y,4) if and only if there exists a z if =y or (z,y) € G then

such that PATH(z, z,7 — 1) and PATH(z,y,7 — 1).

2
3 return true;
4 else
e For PATH(z,y,0), check the input graph or if z = y. 5 return false;
6: d if
e We compute PATH(z, y, [logn]) with a depth-first , endt
8
9

search on a tree with nodes (z,y,1)s.

: else
for z=1,2,...,ndo

e Like stacks in recursive calls, we keep only the current if PATH(z, 2,7 — 1) and PATH(2,y,i — 1) then

path of (x,y, i)s. 10: return true;
11: end if
e The space requirement is proportional to the depth of 12:  end for
the tree, [logn]. 13: return false;
14: end if
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The Relation between Nondeterministic Space and

PATH(x,y,] L :
(x.ylog n) Deterministic Space Only Quadratic

PATH(x.z,log n-1) PATH(z,y,log n-1) Corollary 23 Let f(n) > logn be proper. Then
NSPACE(f(n)) C SPACE(f?*(n)).

e Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

“0 e From p. 172, the configuration graph has O(c/(™)
e Depth is [logn], and each node (z,y,%) needs space nodes; hence each node takes space O(f(n)).
O(logn). e But the graph is implicit—we check for connectedness
e The total space is O(log? n). only when i = 0, by examining the input string.
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Functions and Nondeterministic TMs

e An NTM computes function F' if the following hold:

Implications of Savitch’s Theorem — On input z, each computation path either outputs

the correct answer F'(z) or ends up in state “no.”

* PSPACE = NSPACE. — At least one computation path ends up with F'(z).

e Nondeterminism is less powerful with respect to space. e So all successful paths agree on their output.

e It may be very powerful with respect to time as it is not

e Existence of output indicates successful computation.
known if P = NP.

e As before, the machine observes a space bound f(n) if
at halting all strings (except for the input and output
ones) are of length at most f(|z|).
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Nondeterministic Space Is Closed under Complement How an NTM Computes a Function

e Closure under complement is trivially true for X
deterministic complexity classes (p. 160).

e On p. 186, we shall prove
coNSPACE(f(n)) = NSPACE(f(n)).

e So

coNL NL,
coPSPACE = NPSPACE.

e But there are still no hints of coNP = NP.
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The Immerman-Szelepscényi Theorem

Theorem 24 (Szelepscényi, 1987, Immerman, 1988)
Given a graph G and a node x, the number of nodes
reachable from x in G can be computed by an NTM within
space O(logn).

e The algorithm has four nested loops.
e Let n be the number of nodes.

e S(k) denotes the set of nodes in G that can be reached
from z by paths of length at most k.

e So |S(n —1)| is the desired answer.
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The Third Loop, for u € S(k)

m := 0; {Count members of S(k — 1) encountered.}
reply := false;
forv=1,2,... ,ndo
if v € S(k—1) then
m:=m+1;
if G(v,u) then
reply := true;
end if
end if
end for

: if m < |S(k —1)| then

“no”; {Cannot be sure of the validity of reply.}

: end if
: return reply;

The Algorithm: Top 2 Levels
1: |S(0)] :=1;
2: fork=1,2,... ,n—1do

3:  {Compute |S(k)| from |S(k — 1)| saved in previous loop.}
4 £:=0;

5 foru=1,2,...,ndo

6: if w € S(k) then

7: £:=£4+1;

8: end if

9: end for

10:  |S(k)| :=¢;

11: end for

12: return |S(n —1);

(Need |S(k — 1)|, but not earlier ones.)
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©O© 00 N O o s W N =

11:
12:
13:

The Fourth Loop, for v € S(k — 1)
$:=x;
fori=1,2,... ,k—1do

Guess a node t € {1,2,... ,n}; {Nondeterminism.}

if (s,t) € G then
“no”;
end if
s =1t
end for
if t = v then
return true;
else
“no”;
end if
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Degrees of Difficulty
e When is a problem more difficult than another?

e B reduces to A if there is a transformation R which for

every input z of B yields an equivalent input R(z) of A.
Wrap Up the Proof (@)

— The answer to x for B is the same as the answer to
e Space is needed for k, |S(k — 1), £, u, m, v, s, 1, t. R(z) for A.

e The nondeterministic algorithm needs space O(logn). — There must be restrictions on the complexity of
computing R.
— Otherwise, R(z) might as well solve B.

e Problem A is at least as hard as problem B if B reduces

to A.
©2002 Yuh-Dauh Lyuu, National Taiwan University Page 190 ©2002 Yuh-Dauh Lyuu, National Taiwan University Page 192
Closure under Complement of Nondeterministic Space Reduction
Corollary 25 If f > logn is proper, then
NSPACE(f(n)) = coNSPACE(f(n)). |
X R(X)  algorithm| | yesno
e Run the above algorithm on the configuration graph of 3' R "I for A >
the NTM M deciding L € NSPACE(f(n)) on input z. |
e We accept only if no accepting configurations have been i
encountered and if |S(n — 1)| is computed. -
— The existence of [S(n — 1)| means that every Solving problem B by calling the algorithm for problem once
reachable configuration has been visited. and without further processing its answer.
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Reduction between Languages

Language L, is reducible to L if there is a function R
computable by a deterministic TM in space O(logn).

Furthermore, for all inputs x, € Ly if and only if

R is called a (Karp) reduction from L; to Ls.

Note that by Theorem 20 (p. 169), R runs in polynomial

time.

Reduction of HAMILTONIAN PATH to SAT

Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable if and only if G has a
Hamiltonian path.

Suppose G has n nodes: 1,2,...,n.
R(G) has n? boolean variables z;;, 1 < 1,5 < n.

z;; means “node j is the ith node in the Hamiltonian
path.”
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A Paradox?

Degree of difficulty is not defined in terms of absolute
complexity.

A language A € TIME(n®) may be “casier” than a
language B € TIME(n?).
This happens when A is reducible to B.

— In this situation, it is necessary that | R(z) | = Q(n33)
or that R runs in time Q(n%) so that A ¢ TIME(n*)
for some k < 99.

The Clauses of R(G)

. Each node 7 must appear in the path.

® 21; Vx2; V-V xy; for each j.

. No node j appears twice in the path.

e —z;; V —x; for all ¢, j, k with i # k.

. Every position ¢ on the path must be occupied.

® i1V ITiaV:-V x;, for each i.

. No two nodes j and k occupy the same position in the path.

o —x;; V —xyy for all 4, 5, k with j # k.

. Nonadjacent nodes ¢ and j cannot be adjacent in the path.

o —xp; V xpyr1; forall (4,j) Gand k=1,2,... ,n—1.
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The Proof

e R(G) can be computed efficiently.

e Suppose T = R(G). Reduction of REACHABILITY to CIRCUIT VALUE

e Clauses of 1 and 2 imply that for each j, there is a o Note that both problems are in P.

unique 4 such that T' = ;. e Given a graph G = (V, E), we shall construct a

e Clauses of 3 and 4 imply that for each i, there is a variable-free circuit R(G).

unique j such that T |= z;;. e The output of R(G) is true if and only if there is a path

e So there is a permutation 7 of the nodes such that from node 1 to node n in G.

7(i) = j if and only if T' |= z;;. e Idea: the Floyd-Warshall algorithm.

e Clauses of 5 guarantees that (w(1),7(2),... ,7(n)) is a
Hamiltonian path.
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The Gat
The Proof (concluded) e Gates

e The gates are

e Conversely, suppose G has a Hamiltonian path
— gijr with 1 <4, <nand 0 <k < n.

(m(1),7(2),...,m(n)), — hijp with 1 <i,j, k < n.
where 7 is a permutation. e gijr: There is a path from node 7 to node j without
e Clearly, the truth assignment passing through a node bigger than k.
® hijr: There is a path from node ¢ to node j passing

T(z;;) = true if and only if (i) = j
through k£ but not any node bigger than k.
satisfies all clauses of R(G).

Input gate g;jo = true if and only if i = j or (4,5) € E.
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The Construction

e hiji is an AND gate with predecessors g; k k—1 and
9k.j k-1, Where k =1,2,...,n.

® g;;r is an OR gate with predecessors g; j x—1 and h; ; &,
where kK =1,2,... ,n.

® gi.n is the output gate.

e Interestingly, R(G) uses no — gates: It is a monotone
circuit.

e The depth of R(G) is O(n), which is not optimal.
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Reduction of CIRCUIT SAT to SAT

e Given a circuit C, we shall construct a boolean
expression R(C) such that R(C) is satisfiable if and only
if C' is satisfiable.

— R(C) will turn out to be a CNF.

e The variables of R(C) are those of C plus g for each
gate g of C.

e Each gate of C will be turned into equivalent clauses of

R(C).

e Recall that clauses are Aed together.

The Clauses of R(C)
g is a variable gate z: Add clauses (mg V z) and (g V —z).
e Meaning: g & x.
g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.
g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C) true.

g is a — gate with predecessor gate h: Add clauses
(mg VvV —h) and (g V h).
e Meaning: g < —h.
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The Clauses of R(C) (concluded)

g is a V gate with predecessor gates h and h': Add
clauses (—h V g), (k' V g), and (A V A’V —g).
e Meaning: g < (hV H).
g is a A gate with predecessor gates h and h': Add
clauses (=g V h), (—g V '), and (—=h V =h' V g).
e Meaning: g < (R AR).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.
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