More Undecidability

- $\{M: M \text{ halts on all inputs}\}.$
 - Given M; x, we construct the following machine:
 - * $M_x(y)$: if y = x then M(x) else halt.
 - $-M_x$ halts on all inputs if and only if M halts on x.
 - So if the said language were recursive, H would be recursive, a contradiction.
 - This technique is called **reduction**.
- $\{M; x : \text{there is a } y \text{ such that } M(x) = y\}.$
- $\{M; x : \text{the computation } M \text{ on input } x \text{ uses all states of } M\}.$
- $\{M; x; y : M(x) = y\}.$

Reductions in Proving Undecidability

- ullet Suppose we are asked to prove L is undecidable.
- \bullet Language H is known to be undecidable.
- We try to find a computable transformation (or reduction) R such that

 $x \in L$ if and only if $R(x) \in H$.

• This suffices to prove that L is undecidable.

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is \bar{L} .

- Let L be decided by M (which is deterministic).
- Swap the "yes" state and the "no" state of M.
- The new machine decides \bar{L} .
- This idea does not work if is "recursive" is replaced with "recursively enumerable" (p. 79).

Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and \bar{L} are recursively enumerable.

- Suppose both L and \bar{L} are recursively enumerable, accepted by M and \bar{M} , respectively.
- Simulate M and \overline{M} in an interleaved fashion.
- If M accepts, then $x \in L$ and M' halts on state "yes."
- If \overline{M} accepts, then $x \not\in L$ and M' halts on state "no."

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are recursively enumerable (note that coRE is not $\overline{\text{RE}}$).

R: The set of all recursive languages.

- $R = RE \cap coRE$ (p. 116).
- There exist languages in RE but not in R or coRE (such as H).
- There are languages in coRE but not in R or RE (such as \bar{H}).
- There are languages in neither RE nor coRE.

Notations

- Suppose M is a TM accepting L.
- Write L(M) = L.
- If M(x) is never "yes" nor \nearrow (as required by the definition of acceptance), we define $L(M) = \emptyset$.
- Of course, if $M(x) = \nearrow$ for all x, then $L(M) = \emptyset$, too.

Nontrivial Properties of Sets in RE

- A property of a set accepted by a TM (a recursively enumerable set) is **trivial** if it is always true or false.
 - Is an RE set accepted by a TM? Always true.
- It can be defined by the set C of RE sets that satisfy it.
- The property is nontrivial if $\mathcal{C} \neq \text{RE}$ and $\mathcal{C} \neq \emptyset$.
- Up to now, all nontrivial properties of RE sets are undecidable (p. 113).
- In fact, Rice's theorem confirms that.

Rice's Theorem

Theorem 12 (Rice's theorem) Suppose $C \neq \emptyset$ is a proper subset of the set of all recursively enumerable languages. Then the question " $L(M) \in C$?" is undecidable.

- Assume that $\emptyset \not\in \mathcal{C}$ (otherwise, repeat the proof for the class of all recursively enumerable languages not in \mathcal{C}).
- Let $L \in \mathcal{C}$ be accepted by TM M_L (recall that $\mathcal{C} \neq \emptyset$).
- Let M_H accept the undecidable language H.
 - $M_H \text{ exists (p. 109)}.$

The Proof (continued)

• Consider machine $M_x(y)$:

if
$$M_H(x) =$$
 "yes" then $M_L(y)$ else \nearrow

• If we can prove that

$$L(M_x) \in \mathcal{C}$$
 if and only if $x \in H$, (2)

then we are done because the halting problem has been reduced to deciding $L(M_x) \in \mathcal{C}$.

• We proceed to prove claim (2).

The Proof (concluded)

- Suppose $x \in H$, i.e., $M_H(x) =$ "yes."
 - $M_x(y)$ determines this, and it either accepts y or never halts, depending on whether $y \in L$.
 - Hence $L(M_x) = L \in \mathcal{C}$.
- Suppose $M_H(x) = \nearrow$.
 - $-M_x$ never halts.
 - $-L(M_x)=\emptyset \not\in \mathcal{C}.$

Consequences of Rice's Theorem

Corollary 13 The following properties of recursively enumerative sets are undecidable.

- Emptiness.
- Finiteness.
- Regularity.
- $\bullet \ \ Context\mbox{-}freedom.$

Boolean Logic^a

Boolean variables: x_1, x_2, \ldots

Literals: x_i , $\neg x_i$.

Boolean connectives: \vee, \wedge, \neg .

Boolean expressions: Boolean variables, $\neg \phi$ (negation), $\phi_1 \lor \phi_2$ (disjunction), $\phi_1 \land \phi_2$ (conjunction).

- $\bigvee_{i=1}^n \phi_i$ stands for $\phi_1 \vee \phi_2 \vee \cdots \vee \phi_n$.
- $\bigwedge_{i=1}^n \phi_i$ stands for $\phi_1 \wedge \phi_2 \wedge \cdots \wedge \phi_n$.

Implications: $\phi_1 \Rightarrow \phi_2$ is a shorthand for $\neg \phi_1 \lor \phi_2$.

Biconditionals: $\phi_1 \Leftrightarrow \phi_2$ is a shorthand for

$$(\phi_1 \Rightarrow \phi_2) \land (\phi_2 \Rightarrow \phi_1).$$

^aBoole (1815–1864), 1847.

Truth Assignments

- A truth assignment *T* is a mapping from boolean variables to truth values true and false.
- A truth assignment is **appropriate** to boolean expression ϕ if it defines the truth value for every variable in ϕ .
 - $\{x_1 = \mathtt{true}, x_2 = \mathtt{false}\}\$ it appropriate to $x_1 \vee x_2$.

Satisfaction

- $T \models \phi$ means boolean expression ϕ is true under T; in other words, T satisfies ϕ .
- ϕ_1 and ϕ_2 are equivalent, written

$$\phi_1 \equiv \phi_2$$
,

if for any truth assignment T appropriate to both of them, $T \models \phi_1$ if and only if $T \models \phi_2$.

- Equivalently, $T \models (\phi_1 \Leftrightarrow \phi_2)$.

Truth Tables

- Suppose ϕ has n boolean variables.
- A truth table contains 2^n rows, one for each possible truth assignment of the n variables together with the truth value of ϕ under that truth assignment.
- A truth table can be used to prove if two boolean expressions are equivalent.
- De Morgan's laws say that

$$\neg(\phi_1 \land \phi_2) = \neg\phi_1 \lor \neg\phi_2$$
$$\neg(\phi_1 \lor \phi_2) = \neg\phi_1 \land \neg\phi_2$$

$$\neg (\phi_1 \lor \phi_2) = \neg \phi_1 \land \neg \phi_2$$

Conjunctive Normal Forms

• A boolean expression ϕ is in **conjunctive normal** form (CNF) if

$$\phi = \bigwedge_{i=1}^{n} C_i,$$

where each clause C_i is the disjunction of one or more literals.

• For example,

$$(x_1 \lor x_2) \land (x_1 \lor \neg x_2) \land (x_2 \lor x_3).$$

is in CNF.

Disjunctive Normal Forms

• A boolean expression ϕ is in disjunctive normal form (DNF) if

$$\phi = \bigvee_{i=1}^{n} D_i,$$

where each **implicant** D_i is the conjunction of one or more literals.

• For example,

$$(x_1 \wedge x_2) \vee (x_1 \wedge \neg x_2) \vee (x_2 \wedge x_3).$$

is in DNF.

Any Expression ϕ Can Be Converted into CNFs and DNFs

 $\phi = x_j$: This is trivially true.

- $\phi = \neg \phi_1$ and a CNF is sought: Turn ϕ_1 into a DNF and apply de Morgan's laws to make a CNF for ϕ .
- $\phi = \neg \phi_1$ and a **DNF** is sought: Turn ϕ_1 into a CNF and apply de Morgan's laws to make a DNF for ϕ .
- $\phi = \phi_1 \vee \phi_2$ and a **DNF** is sought: Make ϕ_1 and ϕ_2 DNFs.
- $\phi = \phi_1 \vee \phi_2$ and a CNF is sought: Let $\phi_1 = \bigwedge_{i=1}^{n_1} A_i$ and $\phi_2 = \bigwedge_{i=1}^{n_2} B_i$ be CNFs. Set $\phi = \bigwedge_{i=1}^{n_1} \bigwedge_{j=1}^{n_2} (A_i \vee B_j)$.
- $\phi = \phi_1 \wedge \phi_2$: Similar.

Satisfiability

- A boolean expression ϕ is **satisfiable** if there is a truth assignment T appropriate to it such that $T \models \phi$.
- ϕ is **valid** or a **tautology**, a written $\models \phi$, if $T \models \phi$ for all T appropriate to ϕ .
- ϕ is **unsatisfiable** if and only if ϕ is false under all appropriate truth assignments if and only if $\neg \phi$ is valid.

^aWittgenstein (1889–1951), 1922.

SATISFIABILITY (SAT)

- The **length** of a boolean expression is the length of the string encoding it.
- SATISFIABILITY (SAT): Given a CNF ϕ , is it satisfiable?
- Solvable in time $O(n^22^n)$ on a TM by the truth table method.
- Solvable in polynomial time on an NTM, hence in NP (p. 80).
- A most important problem in answering the P = NP problem (p. 225).

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT) and VALIDITY

- UNSAT (SAT COMPLEMENT): Given a boolean expression ϕ , is it unsatisfiable?
- VALIDITY: Given a boolean expression ϕ , is it valid?
 - $-\phi$ is valid if and only if $\neg\phi$ is unsatisfiable.
 - So unsat and validity have the same complexity.
- Both are solvable in time $O(n^22^n)$ on a TM by the truth table method.

Relations among SAT, UNSAT, and VALIDITY

- The negation of an unsatisfiable expression is a valid expression.
- None of the three problems—satisfiability, unsatisfiability, validity—are known to be in P.

Horn Clauses

• A Horn clause is a clause with at most one *positive* literal.

$$-\neg x_2 \lor x_3, \neg x_1 \lor \neg x_2 \lor \neg x_3.$$

• A Horn clause of form $y \vee \neg x_1 \vee \neg x_2 \vee \cdots \vee \neg x_m$ can be rewritten as an implication

$$(x_1 \wedge x_2 \wedge \cdots \wedge x_m) \Rightarrow y,$$

where y is the positive literal.

- If m = 0, use true $\Rightarrow y$, also in implication form.
- If a Horn clause has no positive literals, we keep its non-implication form, $\neg x_1 \lor \neg x_2 \lor \cdots \lor \neg x_m$.

Satisfiability of CNFs with Horn Clauses Is in P

- Interpret a truth assignment as a set T of those variables that are assigned true.
 - $-T \models x_i \text{ if and only if } x_i \in T.$
 - $-x_i \notin T$ means $x_i =$ false not that x_i is undetermined.
- Let ϕ be a conjunction of Horn clauses.
- We will prove that satisfiability of ϕ is in P.

The Algorithm

```
    T := ∅; {All variables are false.}
    while not all implications are satisfied do
    Pick a (x<sub>1</sub> ∧ x<sub>2</sub> ∧ · · · ∧ x<sub>m</sub>) ⇒ y not satisfied by T;
    Add y to T; {Make y true (it was false).}
    end while
    if T ⊨ φ then
    return "φ is satisfiable";
    else
    return "φ is unsatisfiable";
    end if
```

Analysis of the Algorithm

- T is monotonically increasing in size.
- Eventually T will be large enough to make all implications (but not necessarily all Horn clauses) true.
 - Note we only make false variables true, never vice versa.
 - Reversing y's truth value will not make currently satisfied implications false.
- So the **while** loop will terminate.
- By the time the **while** loop exits, all implications are satisfied by T.
- The running time is clearly polynomial.

Analysis of the Algorithm (continued)

- Any set T' satisfying all the implications must be such that $T \subseteq T'$.
 - Otherwise, consider the first time in the execution of the algorithm at which $T \not\subseteq T'$.
 - That $(x_1 \wedge x_2 \wedge \cdots \wedge x_m) \Rightarrow y$ causes the insertion of y to T means $T \models x_1 \wedge x_2 \wedge \cdots \wedge x_m$ (and $T \not\models y$).
 - Hence $y \notin T'$ but $\{x_1, x_2, \dots, x_m\} \in T'$.
 - Hence $T \not\models (x_1 \land x_2 \land \cdots \land x_m) \Rightarrow y$, a contradiction.

Analysis of the Algorithm (concluded)

- If $T \not\models \neg x_1 \lor \neg x_2 \lor \cdots \lor \neg x_m$, then $\{x_1, x_2, \dots, x_m\} \subseteq T$.
- Hence no supersets of T can satisfy this clause.
- Because to satisfy all the implications must be a superset of T, ϕ is unsatisfiable.

Boolean Functions

• An *n*-ary boolean function is a function

$$f: \{\mathtt{true}, \mathtt{false}\}^n \to \{\mathtt{true}, \mathtt{false}\}.$$

- It can be represented by a truth table.
- There are 2^{2^n} such boolean functions.
 - Each of the 2^n truth assignments can make f true or false.

Boolean Functions (continued)

- A boolean expression expresses a boolean function.
 - Think of its truth value under all truth assignments.
- A boolean function expresses a boolean expression.
 - $-\bigvee_{T \models \phi, \text{ literal } y_i \text{ is true under } T} (y_1 \wedge y_2 \wedge \cdots \wedge y_n).$
 - The boolean function on p. 129 produces $p \wedge q$.
 - The length is $\leq n2^n \leq 2^{2n}$.
 - In general, the exponential length in n cannot be avoided (p. 150)!

^aWe mean the logical connectives here.

Boolean Circuits

- A boolean circuit is a graph C whose nodes are the gates.
- There are no cycles in C.
- All nodes have indegree (number of incoming edges) equal to 0, 1, or 2.
- Each gate has a **sort** from

 $\{\texttt{true}, \texttt{false}, \lor, \land, \neg, x_1, x_2, \dots\}.$

Boolean Circuits (concluded)

- Gates of sort from $\{true, false, x_1, x_2, ...\}$ are the inputs of C and have an indegree of zero.
- The **output gate**(s) has no outgoing edges.
- A boolean circuit computes a boolean function.

Boolean Circuits and Expressions

- They are equivalent representations.
- One can construct one from the other:

An Example

$$((x_1 \land x_2) \land (x_3 \lor x_4)) \lor (\neg (x_3 \lor x_4))$$

• Circuits are more economical because of the possibility of sharing.

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit has no variable gates.

- CIRCUIT SAT \in NP: Guess a truth assignment and then evaluate the circuit.
- CIRCUIT VALUE \in P: Evaluate the circuit from the input gates gradually towards the output gate.

Some Boolean Functions Need Exponential Circuits

Theorem 14 (Shannon, 1949) For any $n \geq 2$, there is an n-ary boolean function f such that no boolean circuits with $2^n/(2n)$ or fewer gates can compute it.

- There are 2^{2^n} different *n*-ary boolean functions.
- There are at most $((n+5) \times m^2)^m$ boolean circuits with m or fewer gates.
- But $((n+5) \times m^2)^m < 2^{2^n}$ when $m = 2^n/(2n)$. - $m \log_2((n+5) \times m^2) = 2^n (1 - \frac{\log_2 \frac{4n^2}{n+5}}{2n}) < 2^n$ for $n \ge 2$.
- Can be improved to "almost all boolean functions..."

Proper (Complexity) Functions

- We say that $f : \mathbb{N} \to \mathbb{N}$ is a **proper (complexity)** function if the following hold:
 - f is nondecreasing.
 - There is a k-string TM M_f such that $M_f(x) = \sqcap^{f(|x|)}$ for any x.
 - M_f halts after O(|x| + f(|x|)) steps.
 - $-M_f$ uses O(f(|x|)) space besides its input x.

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f + g, fg, and 2^g .
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
 - For example, $TIME(f(n)) = TIME(2^{f(n)})$ for some recursive function f (the **gap theorem**).
- We shall henceforth use only proper functions in relation to complexity classes $\mathrm{TIME}(f(n))$, $\mathrm{SPACE}(f(n))$, $\mathrm{NTIME}(f(n))$, and $\mathrm{NSPACE}(f(n))$.

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
 - Run the TM associated with f to produce an output of length f(n) first.
 - The space-bound computation must repeat a configuration if it runs for more than $c^{n+f(n)}$ steps for some c (p. 171).
 - So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such that for every $n \in \mathbb{N}$, for every x of length n, and for every computation path of M,
 - M halts after precise f(n) steps, and
 - All of its strings are at halting of length precisely g(n).
 - * If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

Proposition 15 Suppose a (deterministic or nondeterministic) TM M decides L within time (space) f(n), where f is proper. Then there is a precise TM M' which decides L in time O(n + f(n)) (space O(f(n)), respectively).

The Proof

- M' on input x first simulates the TM M_f associated with the proper function f on x.
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."
- If f is a space bound:
 - M' simulates on M_f 's output string.
 - The total space, besides the input string, is O(f(n)).

The Proof (concluded)

- If f is a time bound:
 - The simulation of each step of M on x is matched by advancing the cursor on the "clock" string.
 - The simulation stops at the moment the "clock" string is exhausted.
 - The time bound is therefore O(|x| + f(|x|)).

The Most Important Complexity Classes

• We write expressions like n^k to denote the union of all complexity classes, one for each value of k.

```
– For example, NTIME(n^k) = \bigcup_{j>0} NTIME(n^j).
```

 $P = TIME(n^k)$

 $NP = NTIME(n^k)$

 $PSPACE = SPACE(n^k)$

 $NPSPACE = NSPACE(n^k)$

 $EXP = TIME(2^{n^k})$

 $L = SPACE(\log n)$

 $NL = NSPACE(\log n)$

Complements of Nondeterministic Classes

- From p. 117, we know R, RE, and coRE are distinct.
 - coRE contains the complements of languages in RE,
 not the languages not in RE.
- Recall that the **complement** of L, denoted by L, is the language $\Sigma^* L$.
 - SAT COMPLEMENT is the set of unsatisfiable boolean expressions.
 - HAMILTONIAN PATH COMPLEMENT is the set of graphs without a Hamiltonian path.

The Co-Classes

• For any complexity class C, coC denotes the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- Clearly, if C is a deterministic time or space complexity class, then $C = \cos C$.
 - They are said to be **closed under complement**.
 - A deterministic TM deciding L can be converted to one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states.
- Whether nondeterministic classes for time are closed under complement is not known (p. 79).

Comments

• Then coC is the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- It is true that $x \in L$ if and only if $x \notin \bar{L}$.
- But it is not true that $L \in \mathcal{C}$ if and only if $L \notin \text{co}\mathcal{C}$.
 - $-\cos\mathcal{C}$ is not defined as $\bar{\mathcal{C}}$.