More Undecidability

e {M : M halts on all inputs}.

— Given M; x, we construct the following machine:
x* M, (y) :if y = x then M(x) else halt.

M, halts on all inputs if and only if M halts on x.

So if the said language were recursive, H would be

recursive, a contradiction.

This technique is called reduction.
e {M;x : there is a y such that M (z) = y}.
e {M;x : the computation M on input x uses all states of M }.

o {M;z;y: M(z) =y}

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 113

Reductions in Proving Undecidability

Suppose we are asked to prove L is undecidable.
Language H is known to be undecidable.

We try to find a computable transformation (or
reduction) R such that

xz € L if and only if R(z) € H.

This suffices to prove that L is undecidable.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 114

Complements of Recursive Languages

Lemma 10 If L is recursive, then so is L.
e Let L be decided by M (which is deterministic).

e Swap the “yes” state and the “no” state of M.

e The new machine decides L

e This idea does not work if is “recursive” is replaced with
“recursively enumerable” (p. 79).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 115

Recursive and Recursively Enumerable Languages

Lemma 11 L is recursive if and only if both L and L are

recursively enumerable.

e Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

e Simulate M and M in an interleaved fashion.
o If M accepts, then € L and M’ halts on state “yes.”

o If M accepts, then z ¢ L and M’ halts on state “no.”

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 116

R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable (note that coRE is not RE).

R: The set of all recursive languages.
e R = RENcoRE (p. 116).

e There exist languages in RE but not in R or coRE
(such as H).

e There are languages in coRE but not in R or RE

(such as H)

e There are languages in neither RE nor coRE.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 117

RE coRE

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 118

Notations
Suppose M is a TM accepting L.
Write L(M) = L.

If M(x) is never “yes” nor " (as required by the
definition of acceptance), we define L(M) = ().

Of course, if M(x) =" for all x, then L(M) = (), too.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 119

Nontrivial Properties of Sets in RE

A property of a set accepted by a TM (a recursively
enumerable set) is trivial if it is always true or false.

— Is an RE set accepted by a TM? Always true.
It can be defined by the set C of RE sets that satisfy it.
The property is nontrivial if C # RE and C # (.

Up to now, all nontrivial properties of RE sets are
undecidable (p. 113).

In fact, Rice’s theorem confirms that.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 120

Rice's Theorem

Theorem 12 (Rice’s theorem) Suppose C # 0 is a proper

subset of the set of all recursively enumerable languages.
Then the question “L(M) € C?” is undecidable.

e Assume that () € C (otherwise, repeat the proof for the

class of all recursively enumerable languages not in C).

o Let L € C be accepted by TM M, (recall that C # ().

o Let My accept the undecidable language H.
— My exists (p. 109).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 121

The Proof (continued)

e Consider machine M, (y):

if My (x) = “yes” then M (y) else

e If we can prove that
L(M,) € C if and only if z € H, (2)

then we are done because the halting problem has been
reduced to deciding L(M,) € C.

e We proceed to prove claim (2).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 122

The Proof (concluded)

e Suppose z € H, i.e., My (x) = “yes.”

— M, (y) determines this, and it either accepts y or
never halts, depending on whether y € L.

— Hence L(M,) =L €C.

e Suppose My (x) ="

— M, never halts.

~ L(M,)=0¢C.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 123

Consequences of Rice's Theorem

Corollary 13 The following properties of recursively

enumerative sets are undecidable.
e Fmptiness.
o [initeness.
o Regularity.

o (Context-freedom.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 124

Boolean Logic?

Boolean variables: z1,z2,....
Literals: xz;, —x;.
Boolean connectives: V, A, —.

Boolean expressions: Boolean variables, ¢ (negation),

¢1 V ¢2 (disjunction), ¢1 A ¢2 (conjunction).
o \/ | ¢; stands for ¢p1 V 2 V-V ¢n.
o A\._, ¢: stands for g1 A a2 A -+ A .
Implications: ¢; = ¢2 is a shorthand for —¢1 V ¢a.

Biconditionals: ¢1 < ¢2 is a shorthand for
(91 = ¢2) A (92 = ¢1).
aBoole (1815-1864), 1847.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 125

Truth Assignments

e A truth assignment T is a mapping from boolean

variables to truth values true and false.

e A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every

variable in ¢.

— {1 = true,x9 = false} it appropriate to z1 V xs.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 126

Satisfaction

e T = ¢ means boolean expression ¢ is true under 7T'; in
other words, T' satisfies ¢.

e ¢; and ¢, are equivalent, written

P1 = Pa,

if for any truth assignment 7' appropriate to both of
them, T' |= ¢ if and only if T' = ¢s.

— Equivalently, T |= (41 < ¢2).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 127

Truth Tables

Suppose ¢ has n boolean variables.

A truth table contains 2" rows, one for each possible

truth assignment of the n variables together with the

truth value of ¢ under that truth assignment.

A truth table can be used to prove if two boolean

expressions are equivalent.
De Morgan’s laws say that

(1 AP2) = g1V g
—(¢1V ¢2))1 A\ 2

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 128

Truth Table

AN
0

0
0
1

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 129

Conjunctive Normal Forms

e A boolean expression ¢ is in conjunctive normal
form (CNF) if

where each clause C); is the disjunction of one or more
literals.

e For example,
(5171 V 562) A (331 V —l$2) N (332 V 333).

is in CNF.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 130

Disjunctive Normal Forms

e A boolean expression ¢ is in disjunctive normal form
(DNF) if

where each implicant D; is the conjunction of one or

more literals.

e For example,
(5171 A 562) V (331 A —lLB2) V (332 A 333).

is in DNF.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 131

Any Expression ¢ Can Be Converted into CNFs and DNFs
¢ = x;: This is trivially true.

¢ = ~¢1 and a CNF is sought: Turn ¢; into a DNF and apply
de Morgan’s laws to make a CNF' for ¢.

¢ = =¢1 and a DNF is sought: Turn ¢; into a CNF and apply
de Morgan’s laws to make a DNF for ¢.

¢ = ¢1V ¢2 and a DNF is sought: Make ¢; and ¢2 DNFs.

¢ = ¢1V ¢ and a CNF is sought: Let ¢1 = AL, A; and
P2 = /\:;21 B; be CNFs. Set ¢ = /\lell /\;nil(Az V Bj).

¢ = ¢1 A ¢2: Similar.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 132

Satisfiability

e A boolean expression ¢ is satisfiable if there is a truth
assignment T’ appropriate to it such that T' = ¢.

e ¢ is valid or a tautology,® written = ¢, if T |= ¢ for all
T appropriate to ¢.

e ¢ is unsatisfiable if and only if ¢ is false under all

appropriate truth assignments if and only if —¢ is valid.

@Wittgenstein (1889-1951), 1922.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 133

SATISFIABILITY (SAT)

The length of a boolean expression is the length of the
string encoding it.

SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable?

Solvable in time O(n?2") on a TM by the truth table
method.

Solvable in polynomial time on an NTM, hence in NP
(p. 80).

A most important problem in answering the P = NP
problem (p. 225).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 134

UNSATISFIABILITY (UNSAT or SAT COMPLEMENT)
and VALIDITY

e UNSAT (SAT COMPLEMENT): Given a boolean expression
@, is it unsatisfiable?

e VALIDITY: Given a boolean expression ¢, is it valid?
— ¢ is valid if and only if —¢ is unsatisfiable.

— S0 UNSAT and VALIDITY have the same complexity.

e Both are solvable in time O(n?2") on a TM by the truth
table method.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 135

Relations among SAT, UNSAT, and VALIDITY

T

Unsatisfiable

\/

e The negation of an unsatisfiable expression is a valid

expression.

e None of the three problems—satisfiability,
unsatisfiability, validity—are known to be in P.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 136

Horn Clauses

e A Horn clause is a clause with at most one positive
literal.
— x99 V3, 711V X9 V 3.

e A Horn clause of form yV —x1 V —2o V ---V —x,, can be

rewritten as an implication

(:1:1/\:132/\---/\:1:m):>y,

where y is the positive literal.

— If m = 0, use true = vy, also in implication form.

e If a Horn clause has no positive literals, we keep its

non-implication form, -xz1 V 2o V - -+ V —xpy,.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 137

Satisfiability of CNFs with Horn Clauses Is in P

e Interpret a truth assignment as a set 1T’ of those

variables that are assigned true.
— T = z; if and only if z; € T.

— x; € T means x; = false not that z; is

undetermined.
e Let ¢ be a conjunction of Horn clauses.

e We will prove that satisfiability of ¢ is in P.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 138

The Algorithm

. T :=(); {All variables are false.}

while not all tmplications are satisfied do
Pick a (x1 Azo A--- A z,,) = y not satisfied by T';
Add y to T'; {Make y true (it was false).}

end while

if T = ¢ then
return “¢ is satisfiable”;

else

1

2:
3:
4:
5:
6:
7
8:
9:

return “¢ is unsatisfiable”;
end if

[t
<

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 139

Analysis of the Algorithm

T' is monotonically increasing in size.
Eventually T" will be large enough to make all
implications (but not necessarily all Horn clauses) true.

— Note we only make false variables true, never vice

versa.

— Reversing y’s truth value will not make currently
satisfied implications false.

So the while loop will terminate.

By the time the while loop exits, all implications are
satisfied by T.

The running time is clearly polynomial.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 140

Analysis of the Algorithm (continued)

e Any set T' satisfying all the implications must be such
that T' C T".

— Otherwise, consider the first time in the execution of
the algorithm at which T ¢ T".

That (z1 Axa A-++ A x,,) = y causes the insertion of
ytoT means T = x1 Axag A--- ANz, (and T £~ y).

Hence y ¢ T' but {x1,x2,... ,xm} € T".

Hence T (= (x1 Axa A -+ AN xym) = ¥y, a contradiction.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 141

Analysis of the Algorithm (concluded)

o If Tt -1V —x2V- -V Xy, then
{x1,29,... ,2,} CT.

e Hence no supersets of T' can satisfy this clause.

e Because to satisty all the implications must be a
superset of T', ¢ is unsatisfiable.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 142

Boolean Functions

e An n-ary boolean function is a function

f : {true,false}"™ — {true,false}.

e It can be represented by a truth table.

e There are 22" such boolean functions.

— Each of the 2" truth assignments can make f true or
false.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 143

Boolean Functions (continued)

e A boolean expression expresses a boolean function.

— Think of its truth value under all truth assignments.

e A boolean function expresses a boolean expression.

\/T = ¢, literal y; is true under T(yl AN /P RARRRNA yn)

The boolean function on p. 129 produces p A q.
The length? is < n2" < 227,

In general, the exponential length in n cannot be
avoided (p. 150)!

2We mean the logical connectives here.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 144

Boolean Circuits

A boolean circuit is a graph C whose nodes are the
gates.

There are no cycles in C.

All nodes have indegree (number of incoming edges)

equal to 0, 1, or 2.

Each gate has a sort from

{true, false,V, A, 0,21, Zo,...

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 145

Boolean Circuits (concluded)

Gates of sort from {true,false,z1,x2,...} are the
inputs of C' and have an indegree of zero.

e The output gate(s) has no outgoing edges.

e A boolean circuit computes a boolean function.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 146

Boolean Circuits and Expressions

e They are equivalent representations.

e One can construct one from the other:

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 147

An Example

(Ce,Hx,)Ux,Ux,)) U(=(x,0x,))
]

e Circuits are more economical because of the possibility
of sharing.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 148

CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment

such that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the
circuit has no variable gates.

e CIRCUIT SAT € NP: Guess a truth assignment and then

evaluate the circuit.

e CIRCUIT VALUE € P: Evaluate the circuit from the input

gates gradually towards the output gate.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 149

Some Boolean Functions Need Exponential Circuits

Theorem 14 (Shannon, 1949) For any n > 2, there is an
n-ary boolean function f such that no boolean circuits with

2™ /(2n) or fewer gates can compute it.
e There are 22" different n-ary boolean functions.

e There are at most ((n +5) x m?)™ boolean circuits with

m or fewer gates.

e But ((n+5) x m?)™ < 22" when m = 2"/(2n).

— mlogs((n + 5) x m?) = 27(1 — logé—gﬁ) < 2™ for
n > 2.

e Can be improved to “almost all boolean functions...”

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 150

Proper (Complexity) Functions

e We say that f : N — N is a proper (complexity)
function if the following hold:

— f is nondecreasing.

— There is a k-string TM M¢ such that
My (z) = Uz for any .

— My halts after O(|z| + f(|z|)) steps.
— My uses O(f(]x|)) space besides its input x.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 151

Examples of Proper Functions

Most “reasonable” functions are proper: ¢, [logn],
polynomials of n, 2", v/n, n!, etc.

If f and g are proper, then so are f + g, fg, and 29.

Nonproper functions when serving as the time bounds
for complexity classes spoil “the theory building.”

— For example, TIME(f(n)) = TIME(2/(™) for some
recursive function f (the gap theorem).

We shall henceforth use only proper functions in relation
to complexity classes TIME(f(n)), SPACE(f(n)),
NTIME(f(n)), and NSPACE(f(n)).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 152

Space-Bounded Computation and Proper Functions

e In the definition of space-bounded computations, the
TMs are not required to halt at all.

e When the space is bounded by a proper function f,
computations can be assumed to halt:

— Run the TM associated with f to produce an output
of length f(n) first.

— The space-bound computation must repeat a
configuration if it runs for more than ¢*+f(") steps

for some ¢ (p. 171).

— So we can count steps to prevent infinite loops.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 153

Precise Turing Machines

e A TM M is precise if there are functions f and g such
that for every n € N, for every z of length n, and for
every computation path of M,

— M halts after precise f(n) steps, and

— All of its strings are at halting of length precisely

g(n).
x If M is a TM with input and output, we exclude
the first and the last strings.

e N can be deterministic or nondeterministic.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 154

Precise TMs Are General

Proposition 15 Suppose a (deterministic or
nondeterministic) TM M decides L within time (space)

f(n), where f is proper. Then there is a precise TM M’
which decides L in time O(n + f(n)) (space O(f(n)),

respectively).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 155

The Proof

e M' on input z first simulates the TM M associated

with the proper function f on z.

o M;’s output of length f(|x|) will serve as a “yardstick”

or an “alarm clock.”

e If f is a space bound:
— M’ simulates on My’s output string.

— The total space, besides the input string, is O(f(n)).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 156

The Proof (concluded)

o If f is a time bound:

— The simulation of each step of M on z is matched by

advancing the cursor on the “clock” string.

— The simulation stops at the moment the “clock”
string is exhausted.

— The time bound is therefore O(|z | + f(|z])).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 157

The Most Important Complexity Classes

e We write expressions like n* to denote the union of all

complexity classes, one for each value of k.

— For example, NTIME(n*) = |, , NTIME(n?).

P TIME(n*)
NP NTIME (n")
)

PSPACE SPACE(n”
NPSPACE NSPACE(n")
EXP TIME(2™")
L SPACE(logn)
NL NSPACE(logn)

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 158

Complements of Nondeterministic Classes

e From p. 117, we know R, RE, and coRE are distinct.

— coRE contains the complements of languages in RE,
not the languages not in RE.

e Recall that the complement of L, denoted by L, is the
language X* — L.
— SAT COMPLEMENT is the set of unsatisfiable boolean

expressions.

— HAMILTONIAN PATH COMPLEMENT is the set of
graphs without a Hamiltonian path.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 159

The Co-Classes

e For any complexity class C, coC denotes the class

{L:LecC}.

e Clearly, if C is a deterministic time or space complexity
class, then C = coC.

— They are said to be closed under complement.

— A deterministic TM deciding L can be converted to
one that decides L within the same time or space
bound by reversing the “yes” and “no” states.

e Whether nondeterministic classes for time are closed
under complement is not known (p. 79).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 160

Comments

e Then coC is the class

{L:LecC}.

e It is true that z € L if and only if x & L.

e But it is not true that L € C if and only if L & coC.

— ¢oC is not defined as C

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 161

