The Simulation Technique

Theorem 3 Given any k-string M operating within time
f(n), there exists a (single-string) M’ operating within time
O(f(n)?) such that M(xz) = M'(x) for any input x.

e The single string of M’ implements the k strings of M.

e Represent configuration (wq,uq,ws, ug, ..., wg,ur) of M

by configuration

(q, >wiu <waus < -+ < wrpug < <)

of M'.
— < is a special delimiter.

— w, is w; with the first and last symbols “primed.”
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The Proof (continued)

e The initial configuration of M’ is

k — 1 pairs

N\

(5,5 x> <> <<).

e To simulate each move of M:

— M’ scans the string to pick up the k symbols under
the cursors.
%+ The states of M’ must include K x ¥ to

remember them.
x The transition functions of M’ must also reflect it.

— M’ then changes the string to reflect the overwriting

of symbols and cursor movements of M.
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The Proof (continued)

It is possible that some strings of M need to be
lengthened.

— The linear-time algorithm on p. 31 can be used for
each such string.

The simulation continues until M halts.
M’ erases all strings of M except the last one.

Since M halts within time f(|x|), none of its strings
ever becomes longer than f(|x|).

The length of the string of M’ at any time is O(kf(|z|)).
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string 3 | string 4

string 3 I string 4
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The Proof (concluded)

e Simulating each step of M takes, per string of M,
O(kf(|z|)) steps.
— O(f(|z|)) steps to collect information.
— O(kf(|z]|)) steps to write and, if needed, to lengthen
the string.
o M’ takes O(k*f(|x|)) steps to simulate each step of M.

e As there are f(|x|) steps of M to simulate, M’ operates
within time O (K f(] z |)?).
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Linear Speedup

Theorem 4 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) =€ef(n) +n+ 2.

e Let L be decided by a k-string TM M = (K, X, 4, s)
operating within time f(n).

e Our goal is to construct a k'-string M’ = (K', ¥/, ¢, s")
operating within the time bound f’(n) and which
simulates M.

e Set k' = max(k,2).

e We encode m = [6/¢] symbols of M in one symbol of
M' so that M’ can simulate m steps of M within 6 steps.
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The Proof (continued)

o Y/ =XUuUXm™,
e Phase one of M"':

— M’ has states corresponding to K x 3™,

— Map each block of m symbols of the input
0103 - - O to the single symbol (o103 --0,,) € X of
M’ to the second string.

— Doable because M’ has the states for remembering.

e This phase takes m[|z |/m| + 2 steps.

— The extra 2 comes from the enclosing symbols > and

| .
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Compression of Symbols; Increasing the Word Length

A [

>1000110000111001110001110uUL
v

>94049130138uuuuupuuuuuUuULLL

o m = J.

e 3-ary representation, with | | — 2.
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The Proof (continued)

e Treat the second string as the one containing the input.

— If £ > 1, use the first string as an ordinary work

string.

o M' simulates m steps of M by six or fewer steps, called

a stage.

o A stage begins with M’ in state (q, j1,J2,--- ,Jk)-
— q € K and j; < m is the position of the ¢th cursor

within the m-tuple scanned.

— If the ith cursor of M is at the /th symbol after >,
then the (i 4+ 1)st cursor of M’ will point to the
[£/m]th symbol after > and j; = ((£—1) mod m) + 1.
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The Proof (continued)

m = 3.
! =8.

[£/m] = [8/3] = 3.
ji=((8=1)mod3)+1=2.
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The Proof (continued)

e Then M’ moves all cursors to the left by one position,
then to the right twice, and then to the left once.

— This takes 4 steps.

— No cursor of M can in m moves get out of the
m-tuples scanned by M’ above.

e M' now “remembers” all symbols (of ¥') at or next to

all cursors.

— M’ needs states in K x {1,2,...,m}* x X3mF 4

mF - |X|3™*_fold increase.

e M’ has all the information needed to know the next m
moves of M!
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The Proof (concluded)

o M’ uses its ¢’ function to implement the changes in
string contents and state brought about by the next m

moves of M.

— This takes 2 steps: One for the current m-tuple and
one for one of its two neighbors.

e The total number of M’ steps is at most 6 per stage.

e The total number of M’ steps is at most

x|+ 2+6 X [%w <l|lz|+24+¢€f(|z]).
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Implications of the Speedup Theorem

State size can be traded for speed.

— mPF . |S[3™*_fold increase to gain a speedup of O(m).

If f(n) =cn with ¢ > 1, then ¢ can be made arbitrarily

close to 1.

If f(n) is superlinear, say f(n) = 14n? + 31n, then the
constant in the leading term (14 in this example) can be

made arbitrarily small.

— Arbitrary linear speedup can be achieved.

— This justifies the asymptotic big-O notation.

1-bit, 4-bit, 8-bit, 16-bit, 32-bit, 64-bit, 128-bit CPUs,

and so on.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 70



P

By the linear speedup theorem, any polynomial time
bound can be represented by its leading term n* for
some k > 1.

If L is a polynomially decidable language, it is in
TIME(n*) for some k € N.

The union of all polynomially decidable languages is
denoted by P:

P = | ] TIME(n").
k>0

Problems in P can be efficiently solved.
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Charging for Space

e We do not want to charge the space used only for input
and output.

e Let £ > 2 be an integer.

e A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.
— The input string is read-only.

— The last string, the output string, is write-only.
x That is, the cursor never moves to the left.

— The cursor of the input string does not wander oft
into the | |s.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 72



Space Complexity
Consider a k-string TM M with input z.
We may assume | | is never written over a non-| | symbol.

If M halts in configuration
(H, w1, u1,ws, U, - .. , Wk, Ug), then the space required

by M on input z is Zle | w;ug).

If M is a TM with input and output, then the space
required by M on input x is Zf:; [w;u;).

Machine M operates within space bound f(n) for
f : N — N if for any input x, the space required by M

on x is at most f(|z|).
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Space Complexity Classes

Let L be a language.
Then

L € SPACE(f(n))

if there is a TM with input and output that decides L
and operates within space bound f(n).

SPACE(f(n)) is a set of languages.
— Palindrome is in SPACE(logn): Keep 3 pointers.

As in the linear speedup theorem (Theorem 4), constant
coefficients do not matter.
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Nondeterminism?

A nondeterministic Turing machine (NTM) is a
quadruple N = (K, X, A, s).

K, >, s are as before.

ACKxYX— (KU{h,“yes”, “no”}) x ¥ x {«,—,—} is

a relation, not a function.
— For each state-symbol combination, there may be

more than one next steps—or none at all.

A configuration yields another configuration in one step
if there exists a rule in A that makes this happen.

aRabin, Scott, 1959.
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Computation Tree and Computation Path

\)
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Decidability under Nondeterminism

Let L be a language and N be an NTM.

N decides L if for any « € ¥*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”

— It is not required that the NTM halts in all
computation paths.

So if x € L, then no nondeterministic choices should lead

to a “yes” state.

Determinism is a special case of nondeterminism.
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An Example

e Let L be the set of logical conclusions of a set of axioms.

e Consider the nondeterministic algorithm:
1: b:= false;
2: while the input predicate ¢ # b do
3:  Generate a logical conclusion of b by applying
some of the axioms; {Nondeterministic choice.}
4: end while

@ .
5: yes’;

e This algorithm decides L.
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Complementing a TM's Halting States

o Let M decide L, and M’ be M after “yes” < “no”.

e If M is a (deterministic) TM, then M’ decides L

e But if M is an NTM, then M’ may not decide L.
— It is possible that both M and M’ accept x.
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A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
:fori=1,2,... ,ndo
Guess z; € {0,1}; {Nondeterministic choice.}

. end for
. {Verification:}

44 7

yes
. else

(CnO” ;

. end if

1
2
3
4
5. if ¢(z1,29,...,2,) =1 then
6
7
8
9
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The Computation Tree for Satisfiability

(13 b2 11 9 & LA {1 19 ¢ LR 11 LRI {1 LRI 11 9 & 13

N0 YeS N0 VS ¥ N0 N0 NO  YES
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Analysis

e The algorithm decides language {¢ : ¢ is satisfiable}.

— The computation tree is a complete binary tree of
depth n.

— Every computation path corresponds to a particular
truth assignment out of 2".

— ¢ is satisfiable if and only if there is a computation
path (truth assignment) that results in “yes.”

e General paradigm: Guess a “proof” and then verity it.
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The Traveling Salesman Problem

We are given n cities 1,2,... ,n and integer distances
d;; between any two cities ¢ and j.

Assume d;; = d;; for convenience.

The traveling salesman problem (TsP) asks for the

total distance of the shortest tour of the cities.

The decision version TSP (D) asks if there is a tour with
a total distance at most B, where B is an input.

Both problems are extremely important but hard.
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A Nondeterministic Algorithm for TSP (D)
for:=1,2,... ,ndo
Guess z; € {1,2,... ,n}; {The ith city.}
end for
Trt1 1= T1;
{Verification stage:}

if z1,x2,...,2, are distinct and )7, de;,2,., < B then

44 7

yes
else

“nO” ;

end if

1:
2:
3:
4:
5:
6:
7
8:
9:

[
<

(The degree of nondeterminism is n.)
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Time Complexity under Nondeterminism

e Nondeterministic machine N decides L in time f(n),
where f : N — N, if

— N decides L, and

— for any z € ¥*, N does not have a computation path
longer than f(|z|).

e We charge only the “depth” of the computation tree.
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Time Complexity Classes under Nondeterminism

e NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

e NTIME(f(n)) is a complexity class.
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NP

NP = | | NTIME(n").
k>0

Clearly P C NP.

Think of NP as efficiently verifiable problems.
— Boolean satisfiability (SAT).

— TSP (D).

— Hamiltonian path.

— Graph colorability.

The most important open problem in theoretical
computer science is whether P = NP.
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Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N
in time f(n). Then it is decided by a 3-string deterministic
TM M in time O(cf(™), where ¢ > 1 is some constant
depending on N.

e On input x, M goes down every computation path of N
using depth-first search (M does not know f(n)).

e If some path leads to “yes,” then M enters the “yes”
state.

e If none of the paths leads to “yes,” then M enters the
“no” state.
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NTIME vs. TIME
Corollary 6 NTIME(f(n))) C U,., TIME(c/ (™).

e Does converting an NTM into a TM require exploring
all the computation paths of the NTM as done in
Theorem 57

e That is the six-million-dollar question.
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A Nondeterministic Algorithm for Graph Reachability

= 1;

1

2: for:=2,3,... ,ndo

3 Guess y € {2,3,...,n}; {The next node.}
4: if (z,y) € G then

5: if y =n then
6
7
8
9

44

yes”; {Node n is reached from node 1.}
else
T = y;
end if
10: else
11: “no”;
end if
: end for

. “no” :
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Space Analysis

Variables i, x, and y each require O(logn) bits.

Testing if (x,y) € G is accomplished by consulting the
input string with counters of O(logn) bit long.

Hence
REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

It is also known that REACHABILITY € P (p. 159).
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Infinite Sets

e A set is countable if it is finite or if it can be put in

one-one correspondence with the set of natural numbers.

Set of integers Z.

Set of positive integers Z™ .

Set of odd integers.

Set of rational numbers
(1/1,1/2,2/1,1/3,2/2,3/1,1/4,2/3,3/2,4/1,...).

— Set of squared integers.
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Rational Numbers Are Countable

1A 4 S
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Cardinality

Let A denote a set.

Then 24 denotes its power set, that is {B : B C A}.
— If |A| = k, then |24| = 2F.

For any set C, define |C| as C’s cardinality (size).

Two sets are said to have the same cardinality (written
as |A| = |B| or A ~ B) if there exists a one-to-one

correspondence between their elements.
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Cardinality (concluded)

|A| < |B| if there is a one-to-one correspondence

between A and one of B’s subsets.
4] < |B|if |A| < |B| but |A] # |B|.
If A C B, then |A| < |Bj|.

But if A C B, then |A| < |B|?
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
A = |B.
— The set of integers properly contains the set of odd
integers.
— But the set of integers has the same cardinality as

the set of odd integers.

e A lot of “paradoxes.”
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Hilbert's* Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now let us imagine a hotel with an infinite number of

rooms, and all the rooms are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,
the person from Room 2 into Room 3, and so on ....

e The new customer occupies Room 1.

aDavid Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (concluded)

Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new

guests who come in and ask for rooms.

Y

“Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

He moves the occupant Room 1 into Room 2, the

occupant of Room 2 into Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

“There are many rooms in my Father’s house, and I am
going to prepare a place for you.” (John 14:3)
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Galileo's* Paradox (1638)

The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid that the whole is

greater than any of its proper parts.

Resolution of paradoxes: Which notion results in better

mathematics.

2Galileo (1564-1642).
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Cantor's® Theorem

Theorem 7 The set of all subsets of N (2V) is infinite and

not countable.

e Suppose it is countable with f : N — 2% being a

bijection.
e Consider theset B={ke N:k ¢ f(k)} CN.

e Suppose B = f(n) for some n.

2Georg Cantor (1845-1918).
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The Proof (concluded)

If n € f(n), then n € B, but then n ¢ B by B’s
definition.

If n¢ f(n), then n ¢ B, but then n € B by B’s
definition.

Hence B # f(n) for any n.

f is not a bijection, a contradiction.
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A Corollary of Cantor's Theorem

Corollary 8 For any set T, finite or infinite,

T <[2"].

o |T| < |2%] as f(z) = {z} maps T into a subset of 27

e The strict inequality uses the same argument as
Cantor’s theorem.
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A Second Corollary of Cantor’'s Theorem

Corollary 9 The set of all functions on N s not countable.

e Every function f: N — {0,1} determines a set
{n:f(n)=1} CN.

e And vice versa.

e So the set of functions from N to {0,1} has cardinality
2.

e Corollary 8 (p. 102) then implies the claim.
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Existence of Uncomputable Problems

Every program is a sequence of Os and 1s.
Every program corresponds to some integer.
The set of programs is countable.

A function is a mapping from integers to integers by
Corollary 9 (p. 103).

The set of functions is not countable.

So there must exist functions for which there are no

programs.
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Universal Turing Machine®

e A universal Turing machine U interprets the input
as the description of a TM M concatenated with the

description of an input to that machine, x.

— Both M and x are over the alphabet of U.

e U simulates M on z so that
UM;x)= M(x).

e U is like a modern computer, which executes any valid
machine code, or a Java Virtual machine, which
executes any valid bytecode.

aTuring, 1936.
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The Halting Problem

e Undecidable problems are problems that have no

algorithms or languages that are not recursive.
e We knew undecidable problems exist (p. 104).

e We now define a concrete undecidable problem, the

halting problem:
H = {M;z: M(z) £},

— Does M halt on input x?
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H |s Recursively Enumerable

Use the universal TM U to simulate M on z.
When M is about to halt, U enters a “yes” state.

This TM accepts H.

Membership of x in any recursively enumerative
language accepted by M can be answered by asking
(CM; T 6 H?77
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H |Is Not Recursive

e Suppose there is a TM My that decides H.

e Consider the program D(M) that calls My:
: if Mg (M; M) = “yes” then
/" {Writing an infinite loop is easy, right?}

44 7

: yes”;
: end if

1
2
3: else
4
5

e Consider D(D):
— D(D)=/= My(D;D) = “yes” = D;D € H =
D) # 4, a contradiction.
) = “yes” = Myx(D;D) = “no” = D;D ¢ H =
D) =", a contradiction.
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Comments

e Two levels of interpretations of M:
— A sequence of 0s and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.

— Concepts are familiar to computer scientists (but not

philosophers or mathematicians).

— Supply a C compiler to a C compiler, a Lisp
interpreter to a Lisp interpreter, a Java compiler to a
Java compiler, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899): Let T be the set of all sets.
e Then 27" C T, but we know 27| > |T|!

Russell’s® Paradox (1901): Consider S = {A: A ¢ A}.
o If S5, then § & S by definition.
o If SZ S5, then § € § also by definition.

Eubulides: The Cretan says, “All Cretans are liars.”

Sharon Stone in The Specialist: “I'm not a woman you

can trust.”
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