The Simulation Technique

Theorem 3 Given any k-string M operating within time f(n), there exists a (single-string) M' operating within time $O(f(n)^2)$ such that M(x) = M'(x) for any input x.

- The single string of M' implements the k strings of M.
- Represent configuration $(w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of M by configuration

$$(q, \triangleright w_1'u_1 \lhd w_2'u_2 \lhd \cdots \lhd w_k'u_k \lhd \lhd)$$

of M'.

- \triangleleft is a special delimiter.
- $-w'_i$ is w_i with the first and last symbols "primed."

• The initial configuration of M' is

$$(s, \triangleright \triangleright' x \triangleleft \overbrace{\triangleright' \triangleleft \cdots \triangleright' \triangleleft}^{k-1 \text{ pairs}} \triangleleft).$$

- To simulate each move of M:
 - -M' scans the string to pick up the k symbols under the cursors.
 - * The states of M' must include $K \times \Sigma^k$ to remember them.
 - * The transition functions of M' must also reflect it.
 - M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

- It is possible that some strings of M need to be lengthened.
 - The linear-time algorithm on p. 31 can be used for each such string.
- The simulation continues until M halts.
- M' erases all strings of M except the last one.
- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).
- The length of the string of M' at any time is O(kf(|x|)).

The Proof (concluded)

- Simulating each step of M takes, per string of M, O(kf(|x|)) steps.
 - -O(f(|x|)) steps to collect information.
 - O(kf(|x|)) steps to write and, if needed, to lengthen the string.
- M' takes $O(k^2 f(|x|))$ steps to simulate each step of M.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2f(|x|)^2)$.

Linear Speedup

Theorem 4 Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$, $L \in TIME(f'(n))$, where $f'(n) = \epsilon f(n) + n + 2$.

- Let L be decided by a k-string TM $M = (K, \Sigma, \delta, s)$ operating within time f(n).
- Our goal is to construct a k'-string $M' = (K', \Sigma', \delta', s')$ operating within the time bound f'(n) and which simulates M.
- Set $k' = \max(k, 2)$.
- We encode $m = \lceil 6/\epsilon \rceil$ symbols of M in one symbol of M' so that M' can simulate m steps of M within 6 steps.

- $\bullet \ \Sigma' = \Sigma \cup \Sigma^m.$
- Phase one of M':
 - M' has states corresponding to $K \times \Sigma^m$.
 - Map each block of m symbols of the input $\sigma_1 \sigma_2 \cdots \sigma_m$ to the single symbol $(\sigma_1 \sigma_2 \cdots \sigma_m) \in \Sigma'$ of M' to the second string.
 - Doable because M' has the states for remembering.
- This phase takes m[|x|/m] + 2 steps.
 - The extra 2 comes from the enclosing symbols \triangleright and | |.

Compression of Symbols; Increasing the Word Length

- m = 3.
- 3-ary representation, with $\square \to 2$.

- Treat the second string as the one containing the input.
 - If k > 1, use the first string as an ordinary work string.
- M' simulates m steps of M by six or fewer steps, called a **stage**.
- A stage begins with M' in state $(q, j_1, j_2, \ldots, j_k)$.
 - $-q \in K$ and $j_i \leq m$ is the position of the *i*th cursor within the *m*-tuple scanned.
 - If the *i*th cursor of M is at the ℓ th symbol after \triangleright , then the (i+1)st cursor of M' will point to the $\lceil \ell/m \rceil$ th symbol after \triangleright and $j_i = ((\ell-1) \mod m) + 1$.

- m = 3.
- $\ell = 8$.
- $\bullet \lceil \ell/m \rceil = \lceil 8/3 \rceil = 3.$
- $j_i = ((8-1) \mod 3) + 1 = 2$.

- Then M' moves all cursors to the left by one position, then to the right twice, and then to the left once.
 - This takes 4 steps.
 - No cursor of M can in m moves get out of the m-tuples scanned by M' above.
- M' now "remembers" all symbols (of Σ') at or next to all cursors.
 - M' needs states in $K \times \{1, 2, \dots, m\}^k \times \Sigma^{3mk}$, a $m^k \cdot |\Sigma|^{3mk}$ -fold increase.
- M' has all the information needed to know the next m moves of M!

The Proof (concluded)

- M' uses its δ' function to implement the changes in string contents and state brought about by the next m moves of M.
 - This takes 2 steps: One for the current m-tuple and one for one of its two neighbors.
- The total number of M' steps is at most 6 per stage.
- The total number of M' steps is at most

$$|x| + 2 + 6 \times \left\lceil \frac{f(|x|)}{m} \right\rceil \le |x| + 2 + \epsilon f(|x|).$$

Implications of the Speedup Theorem

- State size can be traded for speed.
 - $-m^k \cdot |\Sigma|^{3mk}$ -fold increase to gain a speedup of O(m).
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say $f(n) = 14n^2 + 31n$, then the constant in the leading term (14 in this example) can be made arbitrarily small.
 - Arbitrary linear speedup can be achieved.
 - This justifies the asymptotic big-O notation.
- 1-bit, 4-bit, 8-bit, 16-bit, 32-bit, 64-bit, 128-bit CPUs, and so on.

P

- By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for some $k \geq 1$.
- If L is a polynomially decidable language, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.
- The union of all polynomially decidable languages is denoted by P:

$$P = \bigcup_{k>0} \text{TIME}(n^k).$$

• Problems in P can be efficiently solved.

Charging for Space

- We do not want to charge the space used only for input and output.
- Let k > 2 be an integer.
- A k-string Turing machine with input and output is a k-string TM that satisfies the following conditions.
 - The input string is read-only.
 - The last string, the output string, is write-only.
 - * That is, the cursor never moves to the left.
 - The cursor of the input string does not wander off into the □s.

Space Complexity

- Consider a k-string TM M with input x.
- We may assume \square is never written over a non- \square symbol.
- If M halts in configuration $(H, w_1, u_1, w_2, u_2, \ldots, w_k, u_k)$, then the space required by M on input x is $\sum_{i=1}^{k} |w_i u_i|$.
- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
- Machine M operates within space bound f(n) for $f: \mathbb{N} \to \mathbb{N}$ if for any input x, the space required by M on x is at most f(|x|).

Space Complexity Classes

- Let L be a language.
- Then

$$L \in SPACE(f(n))$$

if there is a TM with input and output that decides L and operates within space bound f(n).

- SPACE(f(n)) is a set of languages.
 - Palindrome is in SPACE($\log n$): Keep 3 pointers.
- As in the linear speedup theorem (Theorem 4), constant coefficients do not matter.

Nondeterminism^a

- A nondeterministic Turing machine (NTM) is a quadruple $N = (K, \Sigma, \Delta, s)$.
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a relation, not a function.
 - For each state-symbol combination, there may be more than one next steps—or none at all.
- A configuration yields another configuration in one step if there exists a rule in Δ that makes this happen.

^aRabin, Scott, 1959.

Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
 - It is not required that the NTM halts in all computation paths.
- So if $x \notin L$, then no nondeterministic choices should lead to a "yes" state.
- Determinism is a special case of nondeterminism.

An Example

- \bullet Let L be the set of logical conclusions of a set of axioms.
- Consider the nondeterministic algorithm:

```
1: b := false;
```

2: while the input predicate $\phi \neq b$ do

3: Generate a logical conclusion of b by applying some of the axioms; {Nondeterministic choice.}

4: end while

5: "yes";

• This algorithm decides L.

Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is a (deterministic) TM, then M' decides \bar{L} .
- But if M is an NTM, then M' may not decide \bar{L} .
 - It is possible that both M and M' accept x.

A Nondeterministic Algorithm for Satisfiability

 ϕ is a boolean formula with n variables.

```
1: for i = 1, 2, \ldots, n do
```

- 2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choice.}
- 3: end for
- 4: {Verification:}
- 5: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then**
- 6: "yes";
- 7: else
- 8: "no";
- 9: end if

Analysis

- The algorithm decides language $\{\phi : \phi \text{ is satisfiable}\}$.
 - The computation tree is a complete binary tree of depth n.
 - Every computation path corresponds to a particular truth assignment out of 2^n .
 - $-\phi$ is satisfiable if and only if there is a computation path (truth assignment) that results in "yes."
- General paradigm: Guess a "proof" and then verify it.

The Traveling Salesman Problem

- We are given n cities $1, 2, \ldots, n$ and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ for convenience.
- The **traveling salesman problem** (TSP) asks for the total distance of the shortest tour of the cities.
- The decision version TSP (D) asks if there is a tour with a total distance at most B, where B is an input.
- Both problems are extremely important but hard.

A Nondeterministic Algorithm for TSP (D)

```
1: for i = 1, 2, \ldots, n do
      Guess x_i \in \{1, 2, \ldots, n\}; {The ith city.}
 3: end for
 4: x_{n+1} := x_1;
 5: {Verification stage:}
6: if x_1, x_2, \ldots, x_n are distinct and \sum_{i=1}^n d_{x_i, x_{i+1}} \leq B then
    "yes";
 8: else
    "no";
10: end if
(The degree of nondeterminism is n.)
```

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
 - -N decides L, and
 - for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMs within time f(n).
- NTIME(f(n)) is a complexity class.

NP

• Define

$$NP = \bigcup_{k>0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently *verifiable* problems.
 - Boolean satisfiability (SAT).
 - TSP (D).
 - Hamiltonian path.
 - Graph colorability.
- The most important open problem in theoretical computer science is whether P = NP.

Simulating Nondeterministic TMs

Theorem 5 Suppose language L is decided by an NTM N in time f(n). Then it is decided by a 3-string deterministic $TM\ M$ in time $O(c^{f(n)})$, where c > 1 is some constant depending on N.

- On input x, M goes down every computation path of N using depth-first search (M does not know f(n)).
- If some path leads to "yes," then M enters the "yes" state.
- If none of the paths leads to "yes," then M enters the "no" state.

NTIME vs. TIME

Corollary 6 NTIME $(f(n)) \subseteq \bigcup_{c>1} \text{TIME}(c^{f(n)})$.

- Does converting an NTM into a TM require exploring all the computation paths of the NTM as done in Theorem 5?
- That is the six-million-dollar question.

A Nondeterministic Algorithm for Graph Reachability

```
1: x := 1;
2: for i = 2, 3, \ldots, n do
     Guess y \in \{2, 3, \dots, n\}; {The next node.}
   if (x,y) \in G then
    if y = n then
       "yes"; {Node n is reached from node 1.}
      else
7:
      x := y;
       end if
9:
    else
10:
        "no";
11:
     end if
13: end for
14: "no";
```

Space Analysis

- Variables $i, x, and y each require <math>O(\log n)$ bits.
- Testing if $(x, y) \in G$ is accomplished by consulting the input string with counters of $O(\log n)$ bit long.
- Hence

REACHABILITY $\in NSPACE(\log n)$.

- REACHABILITY with more than one terminal node also has the same complexity.
- It is also known that REACHABILITY $\in P$ (p. 159).

Infinite Sets

- A set is **countable** if it is finite or if it can be put in one-one correspondence with the set of natural numbers.
 - Set of integers \mathbb{Z} .
 - Set of positive integers \mathbb{Z}^+ .
 - Set of odd integers.
 - Set of rational numbers (1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, ...).
 - Set of squared integers.

Cardinality

- \bullet Let A denote a set.
- Then 2^A denotes its **power set**, that is $\{B : B \subseteq A\}$. - If |A| = k, then $|2^A| = 2^k$.
- For any set C, define |C| as C's **cardinality** (size).
- Two sets are said to have the same cardinality (written as |A| = |B| or $A \sim B$) if there exists a one-to-one correspondence between their elements.

Cardinality (concluded)

- $|A| \leq |B|$ if there is a one-to-one correspondence between A and one of B's subsets.
- |A| < |B| if $|A| \le |B|$ but $|A| \ne |B|$.
- If $A \subseteq B$, then $|A| \le |B|$.
- But if $A \subseteq B$, then |A| < |B|?

Cardinality and Infinite Sets

- If A and B are infinite sets, it is possible that $A \subsetneq B$ yet |A| = |B|.
 - The set of integers *properly* contains the set of odd integers.
 - But the set of integers has the same cardinality as the set of odd integers.
- A lot of "paradoxes."

Hilbert's^a Paradox of the Grand Hotel

- For a hotel with a finite number of rooms with all the rooms occupied, a new guest will be turned away.
- Now let us imagine a hotel with an infinite number of rooms, and all the rooms are occupied.
- A new guest comes and asks for a room.
- "But of course!" exclaims the proprietor, and he moves the person previously occupying Room 1 into Room 2, the person from Room 2 into Room 3, and so on
- The new customer occupies Room 1.

^aDavid Hilbert (1862–1943).

Hilbert's Paradox of the Grand Hotel (concluded)

- Let us imagine now a hotel with an infinite number of rooms, all taken up, and an infinite number of new guests who come in and ask for rooms.
- "Certainly, gentlemen," says the proprietor, "just wait a minute."
- He moves the occupant Room 1 into Room 2, the occupant of Room 2 into Room 4, and so on.
- Now all odd-numbered rooms become free and the infinity of new guests can be accommodated in them.
- "There are many rooms in my Father's house, and I am going to prepare a place for you." (John 14:3)

Galileo's^a Paradox (1638)

- The squares of the positive integers can be placed in one-to-one correspondence with all the positive integers.
- This is contrary to the axiom of Euclid that the whole is greater than any of its proper parts.
- Resolution of paradoxes: Which notion results in better mathematics.

^aGalileo (1564–1642).

Cantor's Theorem

Theorem 7 The set of all subsets of N (2^N) is infinite and not countable.

- Suppose it is countable with $f: N \to 2^N$ being a bijection.
- Consider the set $B = \{k \in N : k \notin f(k)\} \subseteq N$.
- Suppose B = f(n) for some n.

^aGeorg Cantor (1845–1918).

The Proof (concluded)

- If $n \in f(n)$, then $n \in B$, but then $n \notin B$ by B's definition.
- If $n \notin f(n)$, then $n \notin B$, but then $n \in B$ by B's definition.
- Hence $B \neq f(n)$ for any n.
- f is not a bijection, a contradiction.

A Corollary of Cantor's Theorem

Corollary 8 For any set T, finite or infinite,

$$|T| < |2^T|.$$

- $|T| \le |2^T|$ as $f(x) = \{x\}$ maps T into a subset of 2^T .
- The strict inequality uses the same argument as Cantor's theorem.

A Second Corollary of Cantor's Theorem

Corollary 9 The set of all functions on \mathbb{N} is not countable.

• Every function $f: \mathbb{N} \to \{0,1\}$ determines a set

$${n: f(n) = 1} \subseteq \mathbb{N}.$$

- And vice versa.
- So the set of functions from \mathbb{N} to $\{0,1\}$ has cardinality $|2^{\mathbb{N}}|$.
- Corollary 8 (p. 102) then implies the claim.

Existence of Uncomputable Problems

- Every program is a sequence of 0s and 1s.
- Every program corresponds to some integer.
- The set of programs is countable.
- A function is a mapping from integers to integers by Corollary 9 (p. 103).
- The set of functions is not countable.
- So there must exist functions for which there are no programs.

Universal Turing Machine^a

- A universal Turing machine U interprets the input as the description of a TM M concatenated with the description of an input to that machine, x.
 - Both M and x are over the alphabet of U.
- U simulates M on x so that

$$U(M;x) = M(x).$$

• *U* is like a modern computer, which executes any valid machine code, or a Java Virtual machine, which executes any valid bytecode.

^aTuring, 1936.

The Halting Problem

- Undecidable problems are problems that have no algorithms or languages that are not recursive.
- We knew undecidable problems exist (p. 104).
- We now define a concrete undecidable problem, the halting problem:

$$H = \{M; x : M(x) \neq \nearrow\}.$$

- Does M halt on input x?

H Is Recursively Enumerable

- Use the universal TM U to simulate M on x.
- When M is about to halt, U enters a "yes" state.
- This TM accepts H.
- Membership of x in any recursively enumerative language accepted by M can be answered by asking " $M; x \in H$?"

H Is Not Recursive

- Suppose there is a TM M_H that decides H.
- Consider the program D(M) that calls M_H :
 - 1: **if** $M_H(M; M) = \text{"yes"}$ **then**
 - 2: \nearrow ; {Writing an infinite loop is easy, right?}
 - 3: **else**
 - 4: "yes";
 - 5: end if
- Consider D(D):
 - $-D(D) = \nearrow \Rightarrow M_H(D; D) = \text{"yes"} \Rightarrow D; D \in H \Rightarrow D(D) \neq \nearrow$, a contradiction.
 - $-D(D) = \text{"yes"} \Rightarrow M_H(D; D) = \text{"no"} \Rightarrow D; D \notin H \Rightarrow D(D) = \nearrow$, a contradiction.

Comments

- Two levels of interpretations of M:
 - A sequence of 0s and 1s (data).
 - An encoding of instructions (programs).
- There are no paradoxes.
 - Concepts are familiar to computer scientists (but not philosophers or mathematicians).
 - Supply a C compiler to a C compiler, a Lisp interpreter to a Lisp interpreter, a Java compiler to a Java compiler, etc.

Self-Loop Paradoxes

Cantor's Paradox (1899): Let T be the set of all sets.

• Then $2^T \subseteq T$, but we know $|2^T| > |T|!$

Russell's^a Paradox (1901): Consider $S = \{A : A \notin A\}$.

- If $S \in S$, then $S \not\in S$ by definition.
- If $S \not\in S$, then $S \in S$ also by definition.

Eubulides: The Cretan says, "All Cretans are liars."

Sharon Stone in *The Specialist*: "I'm not a woman you can trust."