What This Course Is All About

Computability: What can be computed?

- There exist well-defined problems that cannot be computed.
- In fact, "most" problems cannot be computed.

Complexity: What is a computable problem's inherent complexity?

- Some computable problems require at least exponential time and/or space; they are **intractable**.
- Some practical problems require superpolynomial resources unless certain conjectures are disproved.
- Other resource limits besides time and space?

Tractability and intractability

- Polynomial in terms of the input size n defines tractability.
 - $-n, n \log n, n^2, n^{90}.$
 - Time, space, circuit size, random bits, etc.
- It results in a fruitful and practical theory of complexity.
- Few practical, tractable problems require a large degree.
- Exponential-time or superpolynomial-time algorithms are usually impractical unless correctness is sacrificed.
 - $n^{\log n}, 2^{\sqrt{n}}, 2^n, n! \sim \sqrt{2\pi n} (n/e)^n.$

Growth of Factorials

n	n!	n	n!
1	1	9	362880
2	2	10	3628800
3	6	11	39916800
4	24	12	479001600
5	120	13	6227020800
6	720	14	87178291200
7	5040	15	1307674368000
8	40320	16	20,922,789,888,000

Most Important Results: a Sampler

- An operational definition of computability.
- Decision problems in logic are undecidable.
- Decisions problems on program behavior are usually undecidable.
- Complexity classes and the existence of intractable problems.
- Complete problems for a complexity class.
- Randomization and cryptographic applications.
- Approximability.

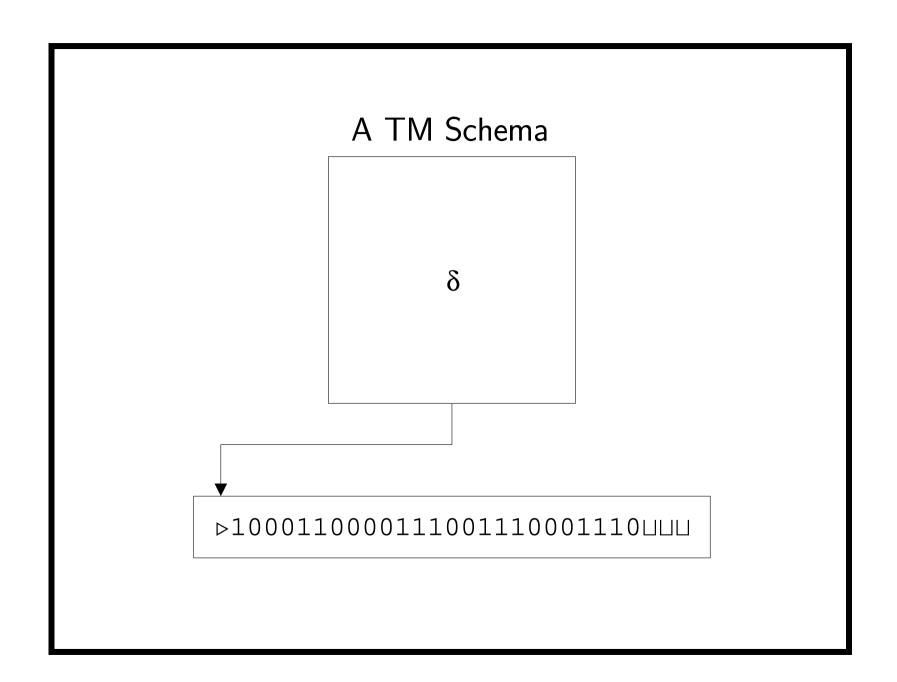
What Is Computation?

- That can be coded in an **algorithm**.
- An algorithm is a detailed step-by-step method for solving a problem.
 - The Euclidean algorithm for the greatest common divisor is an algorithm.
 - "Let s be the least upper bound of compact set A" is not an algorithm.
 - "Let s be a smallest element of a finite-sized array" can be solved by an algorithm.

Turing Machines^a

- A Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- *K* is a finite set of **states**.
- $s \in K$ is the initial state.
- Σ is a finite set of **symbols** (disjoint from K).
 - $-\Sigma$ includes \bigsqcup (blank) and \triangleright (first symbol).
- $\delta: K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}$ is a transition function.
 - $-\leftarrow$ (left), \rightarrow (right), and (stay) signify cursor movements.

^aTuring, 1936.



"Physical" Interpretations

- The tape: computer memory and registers.
- \bullet K: instruction numbers.
- s: "main()" in C.
- Σ : alphabet much like the ASCII code.

"Physical" Interpretations (concluded)

- δ : the program with the halting state (h), the accepting state ("yes"), and the rejecting state ("no").
 - Given the current state $q \in K$ and the current symbol $\sigma \in \Sigma$,

$$\delta(q,\sigma) = (p,\rho,D)$$

specifies the next state p, the symbol ρ to be written over σ , and the direction D the cursor will move afterwards.

- We require $\delta(q, \triangleright) = (p, \triangleright, \rightarrow)$ for convenience.

The Operations of TMs

- Initially the state is s.
- The string on the tape is initialized to a \triangleright , followed by a finitely long string $x \in (\Sigma \{ \bigsqcup \})^*$.
- x is the **input** of the TM.
 - The input must not contain ∐s!
- The cursor is pointing to the first symbol, always a \triangleright .
- The TM takes each step according to δ .
- The cursor never falls off the left end of the string.
- The cursor may overwrite ∐ to make the string longer during the computation.

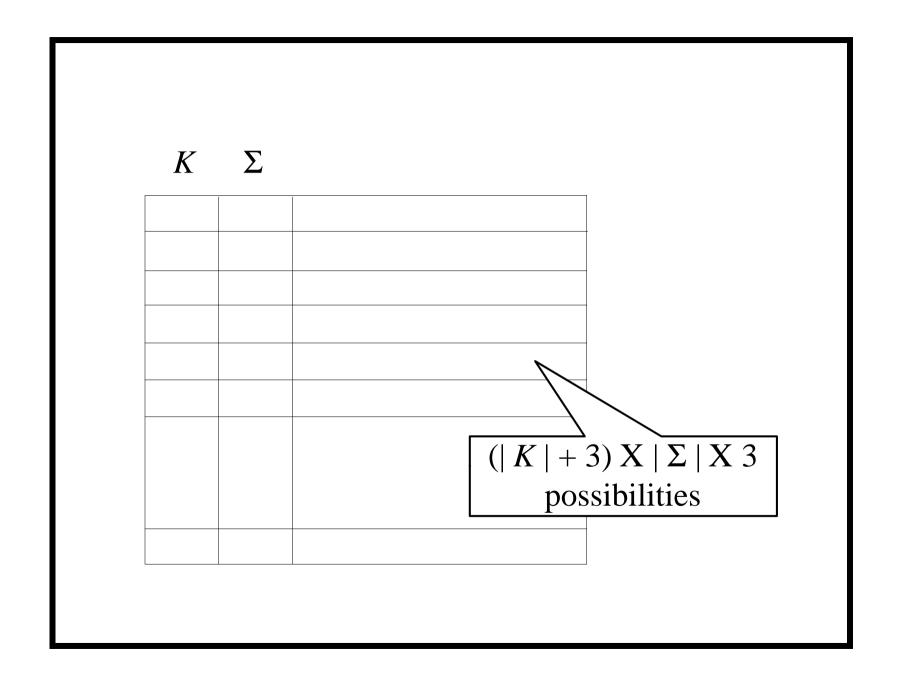
Program Size

- The program δ is a function from $K \times \Sigma$ to $(K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\}.$
- $|K| \times |\Sigma|$ lines suffice to specify such a function.
- Given K and Σ , there are

$$((|K|+3)\times |\Sigma|\times 3)^{|K|\times |\Sigma|}$$

possible δ 's, a constant—albeit large.

- A program must have a finite size.
- Different δ 's may define the same behavior.



The Halting of a TM

• A TM M may halt in three cases.

"yes": The machine accepts its input x, and M(x) = "yes".

"no": The machine rejects its input x, and M(x) = "no".

h: M(x) = y, where the string consists of a \triangleright , followed by a finite string y, whose last symbol is not \square , followed by a string of \square s.

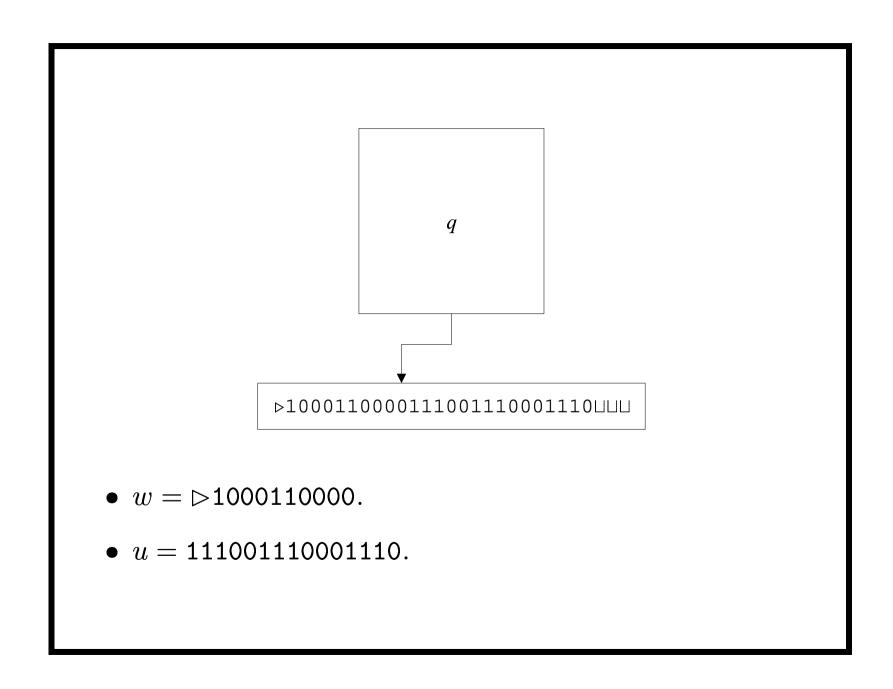
- -y is called the **output** of the computation.
- y may be empty denoted by ϵ .
- If M never halts on x, then write $M(x) = \nearrow$.

Programming TMs

- We describe a TM in pseudocode.
- Because of the simplicity of the TM, the model has the advantage when it comes to complexity issues.
 - Imagine developing a complexity theory based on C++.

Configurations

- A **configuration** is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
 - What does your PC save before it sleeps?
 - Enough for it to resume work later.
- A configuration is a triple (q, w, u):
 - $-q \in K$.
 - $-w \in \Sigma^*$ is the string to the left of the cursor (inclusive).
 - $-u \in \Sigma^*$ is the string to the right of the cursor.



Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step, denoted

$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

if a step of M from configuration (q, w, u) results in configuration (q', w', u').

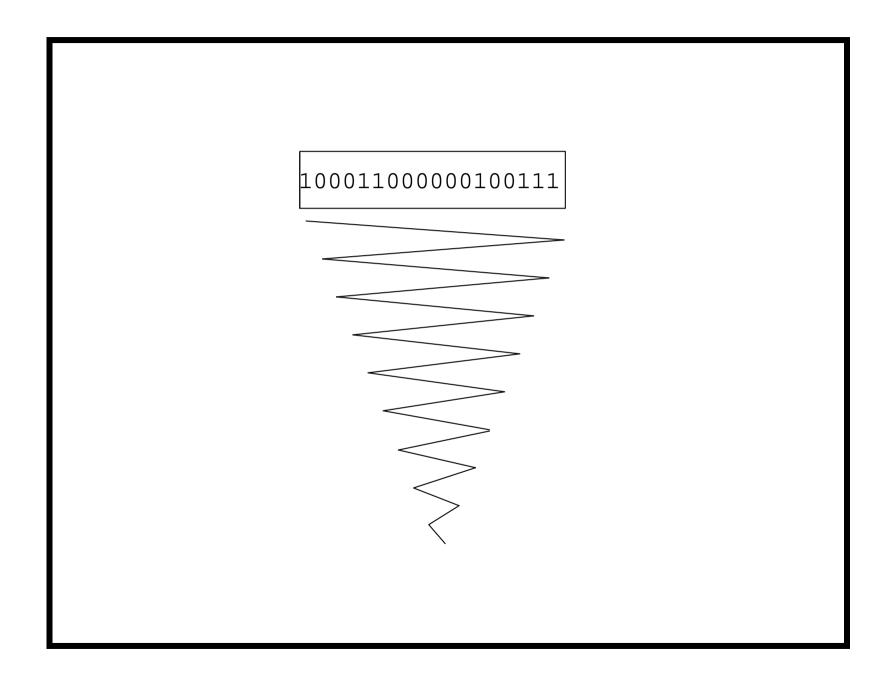
- That configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps is denoted by $(q, w, u) \xrightarrow{M^k} (q', w', u')$.
- That configuration (q, w, u) yields configuration (q', w', u') is denoted by $(q, w, u) \xrightarrow{M^*} (q', w', u')$.

Inserting a Symbol

- We want to compute f(x) = ax.
 - The TM moves the last symbol of x to the right by one position.
 - It then moves the next to last symbol to the right,
 and so on.
 - The TM finally writes a in the first position.
- The total number of steps is O(n), where n is the length of x.

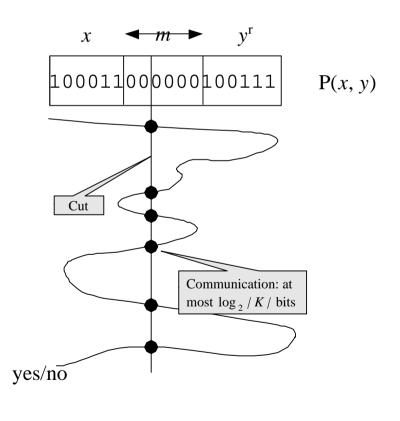
Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes: "yes" for palindromes and "no" for nonpalindromes.
 - It matches the first character with the last character, the second character with the next to last character, etc.
 - This program takes $O(n^2)$ steps.



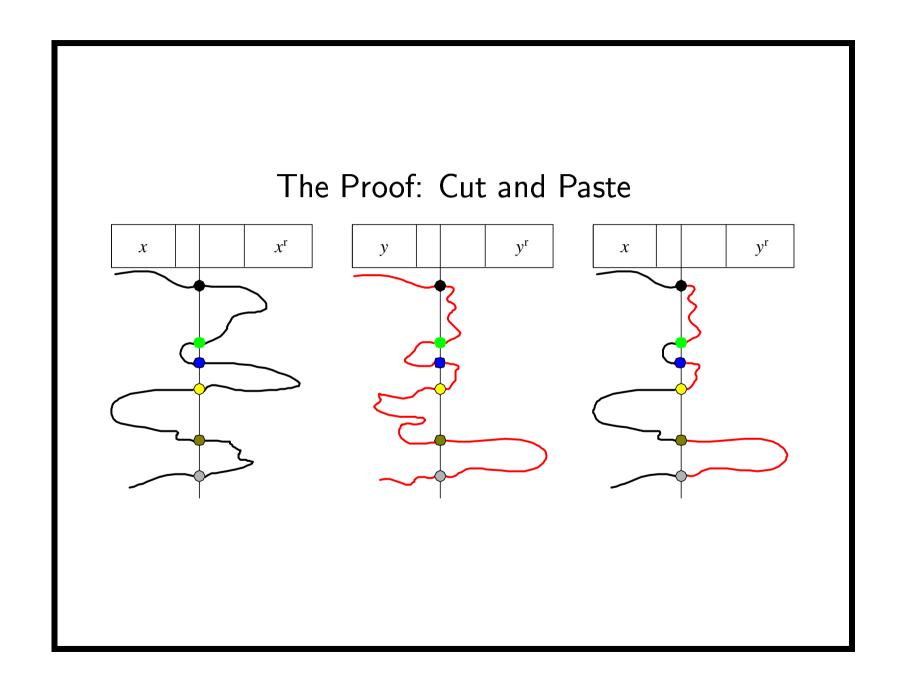
A Matching Lower Bound for Palindrome

Theorem 1 Palindrome on single-string TMs takes $\Omega(n^2)$ steps in the worst case.



The Proof: Communications

- Our input is more restricted; hence any lower bound holds for the original problem.
- Each communication between the two halves across the cut is a state from K, hence of size O(1).
- C(x,x): the sequence of communications for palindrome problem P(x,x) across the cut.
- $C(x,x) \neq C(y,y)$ when $x \neq y$.
 - Otherwise, C(x,x) = C(y,y) = C(x,y), and P(x,y) has the same answer as P(x,x)!
- C(x,x) is distinct for each x.



The Proof: Amount of Communications

- Assume |x| = |y| = m = n/3.
- We first seek a lower bound on the total number of communications:

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)|.$$

• Define

$$\kappa \equiv (m+1) \log_{|K|} 2 - \log_{|K|} m - 1 + \log_{|K|} (|K| - 1).$$

The Proof: Amount of Communications (continued)

- There are $\leq |K|^i$ distinct C(x,x)s with |C(x,x)| = i.
- Hence there are at most

$$\sum_{i=0}^{\kappa} |K|^{i} = \frac{|K|^{\kappa+1} - 1}{|K| - 1} \le \frac{|K|^{\kappa+1}}{|K| - 1} = \frac{2^{m+1}}{m}$$

distinct C(x, x)s with $|C(x, x)| \le \kappa$.

- The rest must have $|C(x,x)| > \kappa$.
- Because C(x,x) is distinct for each x (p. 35), there are at least $2^m \frac{2^{m+1}}{m}$ of them with $|C(x,x)| > \kappa$.

The Proof: Amount of Communications (concluded)

• Thus

$$\sum_{x \in \{0,1\}^m} |\operatorname{C}(x,x)| \geq \sum_{x \in \{0,1\}^m, |\operatorname{C}(x,x)| > \kappa} |\operatorname{C}(x,x)|$$

$$> \kappa \left(2^m - \frac{2^{m+1}}{m}\right)$$

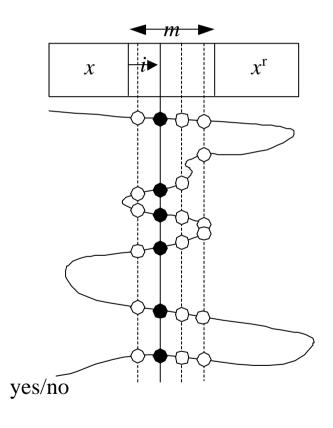
$$= \kappa 2^m \frac{m-2}{m}.$$

• As $\kappa = \Theta(m)$, the total number of communications is

$$\sum_{x \in \{0,1\}^m} |C(x,x)| = \Omega(m2^m). \tag{1}$$

The Proof (continued)

We now lower-bound the number of communication points.



The Proof (continued)

- $C_i(x,x)$ denotes the sequence of communications for P(x,x) given the cut.
- T(n): the worst-case running time for x of length n.
- $T(n) \geq \sum_{i=1}^{m} |C_i(x,x)|$.
- As T(n) is the worst-case time bound,

$$2^{m}T(n) \geq \sum_{x \in \{0,1\}^{m}} \sum_{i=1}^{m} |C_{i}(x,x)|$$

$$= \sum_{i=1}^{m} \sum_{x \in \{0,1\}^{m}} |C_{i}(x,x)|.$$

The Proof (concluded)

• By the pigeonhole principle^a, there exists an $0 \le i^* \le m$,

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| \le \frac{2^m T(n)}{m}.$$

• Eq. (1) on p. 39 says that

$$\sum_{x \in \{0,1\}^m} |C_{i^*}(x,x)| = \Omega(m2^m).$$

• Hence

$$T(n) = \Omega(m^2) = \Omega(n^2).$$

^aDirichlet (1805–1859).

Comments on Lower-Bound Proofs

- They are usually difficult.
 - Often worthy of a Ph.D. degree.
- A lower bound that matches a known upper bound (given by an efficient algorithm) shows that the algorithm is optimal.
 - The simple $O(n^2)$ algorithm for palindrome is optimal.
- This is rare and model dependent.
 - Searching, sorting, palindrome, matrix-vector multiplication, etc.

Decidability and Recursive Languages

- Let $L \subseteq (\Sigma \{ \coprod \})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.
 - For example, $\{0, 01, 10, 210, 1010, \dots\}$.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then M(x) = "no."
- We say M decides L.
- If L is decided by some TM, then L is called **recursive**.
 - Palindromes over $\{0,1\}^*$ are recursive.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \{ \coprod \})^*$ be a language.
- Let M be a TM such that for any string x:
 - If $x \in L$, then M(x) = "yes."
 - If $x \notin L$, then $M(x) = \nearrow$.
- We say M accepts L.
- If L is accepted by some TM, then L is called a recursively enumerable language.

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively enumerable.

- Let TM M decides L.
- M' is identical to M except that when M is about to halt with a "no" state, M' goes into an infinite loop.
 - -M' is constructed by modifying M's program.
- M' accepts L.

Turing-Computable Functions

- Let $f:(\Sigma \{ \sqcup \})^* \to \Sigma^*$.
 - Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ .
- M computes f if for any string $x \in (\Sigma \{ \bigcup \})^*$, M(x) = f(x).
- We call f a **recursive function** if such an M exists.

Church's Thesis or the Church-Turing Thesis

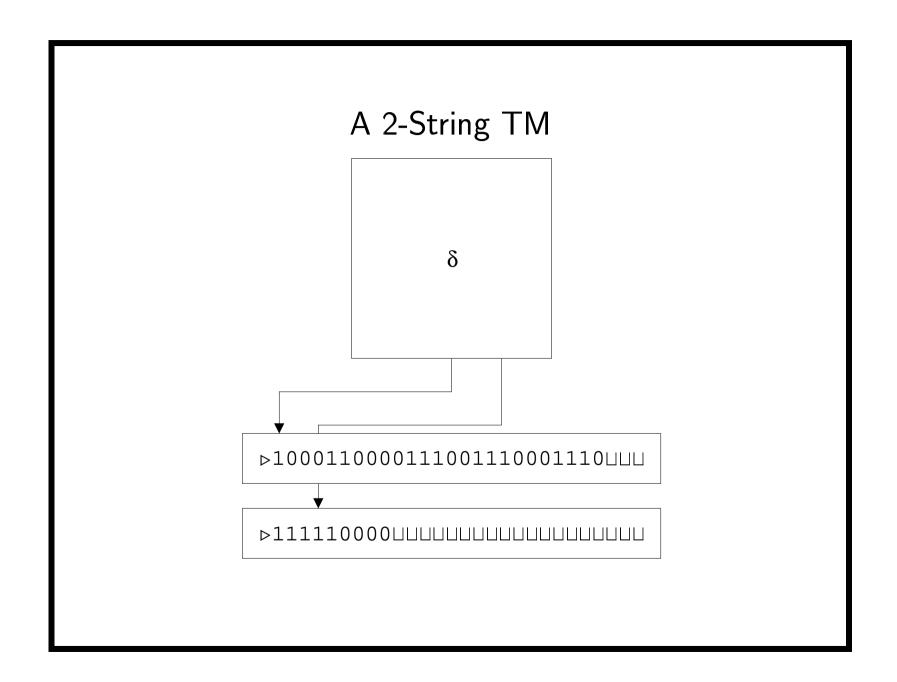
- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
 - Recursive function (Gödel), λ calculus (Church), formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon), extensions of the Turing machine (more strings, two-dimensional strings, and so on), etc.
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown to be Turing-uncomputable (yet).

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are polynomially related.
 - Representations of a graph as an adjacency matrix and as a linked list are both succinct.
 - The *unary* representation of numbers is not succinct.
 - The binary representation of numbers is succinct.
 - * 1001 vs. 111111111.
- All numbers will be binary from now on.

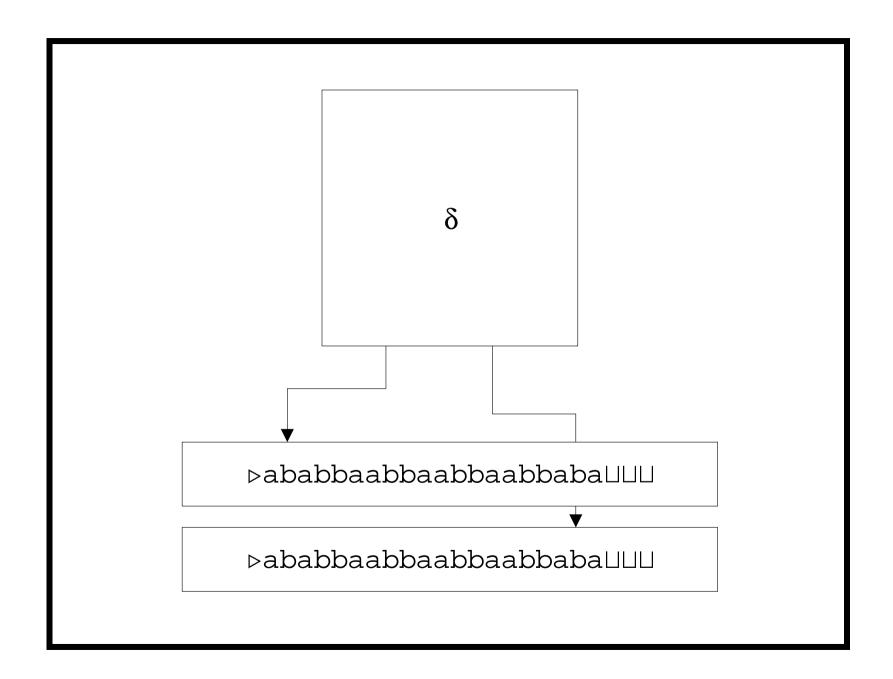
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s)$.
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before.
- When TMs compute functions, the output is on the last (kth) string.



Palindromes Revisited

- A 2-string TM can decide palindromes in O(n) steps.
 - It copies the input to the second string.
 - The cursor of the first string is positioned at the first symbol of the input.
 - The cursor of the second string is positioned at the last symbol of the input.
 - The two cursors are then moved in opposite directions until the ends are reached.
 - The machine accepts if and only if the symbols under the two cursors are identical at all steps.



Configurations and Yielding

• The concept of configuration and yielding is the same as before except that a configuration is a (2k + 1)-triple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),$$

where $w_i u_i$ is the *i*th string and the *i*th cursor is reading the last symbol of w_i .

- Note that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

$$(s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \dots, \triangleright, \epsilon).$$

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations.
- If for a k-string TM M and input x, the TM halts after t steps, then the **time required by** M **on input** x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .
- Machine M operates within time f(n) for $f: \mathbb{N} \to \mathbb{N}$ if for any input string x, the time required by M on x is at most f(|x|).
 - |x| is the length of string x.
 - Function f(n) is a **time bound** for M.

Time Complexity Classes^a

- Suppose language $L \subseteq (\Sigma \{ \coprod \})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is called a **complexity class**.
 - Palindrome is in TIME(f(n)), where f(n) = O(n).

^aHartmanis, Stearns, 1965, Hartmanis, Lewis, Stearns, 1965.