What This Course Is All About

Computability: What can be computed?

e There exist well-defined problems that cannot be

computed.
e In fact, “most” problems cannot be computed.
Complexity: What is a computable problem’s inherent
complexity?

e Some computable problems require at least

exponential time and/or space; they are intractable.

e Some practical problems require superpolynomial

resources unless certain conjectures are disproved.

e Other resource limits besides time and space?

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 14

Tractability and intractability

Polynomial in terms of the input size n defines

tractability.
— n, nlogn, n?, n°°.

— Time, space, circuit size, random bits, etc.
It results in a fruitful and practical theory of complexity.
Few practical, tractable problems require a large degree.

Exponential-time or superpolynomial-time algorithms

are usually impractical unless correctness is sacrificed.
— plogn ovn on nl ~ \/27n (n/e)”.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 15

Growth of Factorials

n! | n n!
1| 9 362880
2 | 10 3628800
6 | 11 39916800

24 | 12 479001600

13 6227020800

14 87178291200

15 1307674368000

16 20,922,789,888,000

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 16

Most Important Results: a Sampler

An operational definition of computability.
Decision problems in logic are undecidable.

Decisions problems on program behavior are usually
undecidable.

Complexity classes and the existence of intractable

problems.
Complete problems for a complexity class.
Randomization and cryptographic applications.

Approximability.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 17

What Is Computation?

e That can be coded in an algorithm.
e An algorithm is a detailed step-by-step method for
solving a problem.

— The Euclidean algorithm for the greatest common

divisor is an algorithm.

— “Let s be the least upper bound of compact set A” is
not an algorithm.

— “Let s be a smallest element of a finite-sized array”
can be solved by an algorithm.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 18

Turing Machines?®

A Turing machine (TM) is a quadruple M = (K, X%, 4, s).
K is a finite set of states.
s € K is the initial state.

Y is a finite set of symbols (disjoint from K).

— Y includes | | (blank) and > (first symbol).

0: K x¥ — (KU{h, “yes”, “no”}) x ¥ x {+,—,—} is a
transition function.

— < (left), — (right), and — (stay) signify cursor

movements.

aTuring, 1936.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 19

A TM Schema

i

>1000110000111001110001110uuu

©2002 Yuh-Dauh Lyuu, National Taiwan University

Page 20

“Physical” Interpretations

The tape: computer memory and registers.
K: instruction numbers.
s: “main()” in C.

>:: alphabet much like the ASCII code.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 21

“Physical” Interpretations (concluded)

e §: the program with the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

— Given the current state ¢ € K and the current
symbol o € X,

o(q,0) = (p, p, D)

SPecifies the next state p, the symbol p to be written
over o, and the direction D the cursor will move

afterwards.

— We require d(q,>) = (p,>, —) for convenience.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 22

The Operations of TMs

e Initially the state is s.

e The string on the tape is initialized to a >, followed by a
finitely long string = € (X — {| |})*.
x is the input of the TM.

— The input must not contain | |s!

The cursor is pointing to the first symbol, always a >.
The TM takes each step according to 9.

The cursor never falls off the left end of the string.

The cursor may overwrite | | to make the string longer
during the computation.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 23

Program Size

The program ¢ is a function from K x X to
(K U{h, “yes”, “no” }) x ¥ x {+,—,—}.

|K| x |X] lines suffice to specify such a function.

Given K and X, there are
(IK| +3) x [5] x 3)!FIX=

possible ¢’s, a constant—albeit large.

— A program must have a finite size.

Different ¢’s may define the same behavior.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 24

ANY

\\\

(K|+3) X |Z|X3
possibilities

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 25

The Halting of a TM

e A TM M may halt in three cases.
“yes”: The machine accepts its input z, and
M(x) = “yes”.

“no”: The machine rejects its input x, and

: M(x) =y, where the string consists of a >, followed
by a finite string y, whose last symbol is not | |,
followed by a string of | |s.

— 9 is called the output of the computation.

— y may be empty denoted by e.

e If M never halts on x, then write M (z) ="

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 26

Programming T Ms

e We describe a TM in pseudocode.
e Because of the simplicity of the TM, the model has the
advantage when it comes to complexity issues.

— Imagine developing a complexity theory based on
C++.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 27

Configurations

e A configuration is a complete description of the
current state of the computation.

e The specification of a configuration is sufficient for the
computation to continue as if it had not been stoppe(.

— What does your PC save before it sleeps?

— Emnough for it to resume work later.

e A configuration is a triple (¢, w, u):
—q € K.
— w € X* is the string to the left of the cursor

(inclusive).

— u € X¥ is the string to the right of the cursor.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 28

A

>1000110000111001110001110u1U

o w =>1000110000.

e u =111001110001110.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 29

Yielding
Fix a TM M.

Configuration (g, w,u) yields configuration (¢, w’,u") in one
step, denoted

q7w7u % ql’w,7ul Y
()

if a step of M from configuration (g, w,u) results in

configuration (¢',w’,u’).

That configuration (g, w,u) yields configuration (¢',w’, ') in

k
k € N steps is denoted by (g, w, u) M (¢, w',u").

ES

denoted by (¢, w, u) M, (¢ ,w',u").

That configuration (g, w,u) yields configuration (¢, w’,u’) is
/

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 30

Inserting a Symbol

e We want to compute f(x) = ax.

— The TM moves the last symbol of x to the right by

one position.

— It then moves the next to last symbol to the right,

and so on.

— The TM finally writes a in the first position.

e The total number of steps is O(n), where n is the length

of x.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 31

Palindromes

e A string is a palindrome if it reads the same forwards
and backwards (e.g., 001100).

e A TM program can be written to recognize palindromes:

“yes” for palindromes and “no” for nonpalindromes.

— It matches the first character with the last character,
the second character with the next to last character,
etc.

— This program takes O(n?) steps.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 32

100011000000100111

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 33

A Matching Lower Bound for Palindrome

Theorem 1 Palindrome on single-string TMs takes Q(n?)

steps in the worst case.

X <+——mM—> yr

100011 100111

\

Communication: at
most log, | K| bits

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 34

The Proof: Communications

Our input is more restricted; hence any lower bound

holds for the original problem.

Each communication between the two halves across the

cut is a state from K, hence of size O(1).

C(z,z): the sequence of communications for palindrome

problem P(z,z) across the cut.

C(z,z) # C(y,y) when x # y.
— Otherwise, C(z,z) = C(y,y) = C(x,y), and P(z,y)
has the same answer as P(x, x)!

C(z,) is distinct for each x.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 35

The Proof: Cut and Paste

X' y y X

I S

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 36

The Proof: Amount of Communications
e Assume |z |=|y|=m =n/3.

e We first seek a lower bound on the total number of

communications:

Y. |Czx).

xe{0,1}™

e Define

k= (m+1)log g2 —log g m—1+log g (|K|-1).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 37

The Proof: Amount of Communications (continued)
e There are < | K |* distinct C(z, z)s with | C(z,z) | = i.

e Hence there are at most

K . K&+1_1 Kli‘,—l—l 2m—|—1
Z‘K|Z:| | §| | _
- K| -1 S|K|=1_ m

distinct C(x, x)s with |C(z,z) | < k.
e The rest must have |C(z,z)| > k.

e Because C(z,) is distinct for each = (p. 35), there are

at least 2" — 27::1 of them with |C(z,z)| > k.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 38

The Proof: Amount of Communications (concluded)

e Thus

Y. ICa)| > > |Clz, @) |

ze{0,1}m z€{0,1}™,| C(z,z) [>~

2m—|—1
2m —
(- 50)

e As k = O(m), the total number of communications is

> |C(z,x)| = Q(m2™). (1)

x€{0,1}™

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 39

The Proof (continued)

We now lower-bound the number of communication points.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 40

The Proof (continued)

C;(z,z) denotes the sequence of communications for

x,x) given the cut.

(
T'(n): the worst-case running time for z of length n.
(

T(n) >332, | Ci(z,z) |.
As T'(n) is the worst-case time bound,

o™T(n) > Y Y |Ci(z,2)

x€{0,1}™ =1

Z Z | Ci(z, x) |.

1=1 ze{0,1}™

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 41

The Proof (concluded)

e By the pigeonhole principle?, there exists an 0 < * < m,

S 1G] < 2,

m
xe{0,1}™

e Eq. (1) on p. 39 says that

S |Ci(aa)]

x€{0,1}™

2Dirichlet (1805-1859).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 42

Comments on Lower-Bound Proofs

e They are usually difficult.
— Often worthy of a Ph.D. degree.

e A lower bound that matches a known upper bound

(given by an efficient algorithm) shows that the
algorithm is optimal.

— The simple O(n?) algorithm for palindrome is

optimal.

e This is rare and model dependent.

— Searching, sorting, palindrome, matrix-vector

multiplication, etc.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 43

Decidability and Recursive Languages

Let L C (X —{| |})* be a language, i.e., a set of strings
of symbols with a finite length.

— For example, {0,01,10,210,1010,... }.

Let M be a TM such that for any string x:
— If x € L, then M (x) = “yes.”
— If ¢ ¢ L, then M (x) = “no.”

We say M decides L.

If L is decided by some TM, then L is called recursive.

— Palindromes over {0, 1}* are recursive.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 44

Acceptability and Recursively Enumerable Languages

o Let L C (X —{||})* be a language.

e Let M be a TM such that for any string x:
— If z € L, then M(x) = “yes.”
— If z ¢ L, then M (x) ="

We say M acceptg J,.

If L is accepted by some TM, then L is called a
recursively enumerable language.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 45

Recursive and Recursively Enumerable Languages

Proposition 2 If L is recursive, then it is recursively

enumerable.

e Let TM M decides L.

e M’ is identical to M except that when M is about to
halt with a “no” state, M’ goes into an infinite loop.

— M’ is constructed by modifying M’s program.

o M' accepts L.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 46

Turing-Computable Functions

Let f: (X —{|[})* — =*.

— Optimization problems, root finding problems, etc.
Let M be a TM with alphabet X..

M computes f if for any string z € (X — {| |}D)*,

We call f a recursive function if such an M exists.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 47

Church’s Thesis or the Church-Turing Thesis

What is computable is Turing-computable; TMs are
algorithms (Kleene 1953).

Many other computation models have been proposed.

— Recursive function (Godel), A calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
extensions of the Turing machine (more strings,

two-dimensional strings, and so on), etc.
All have been proved to be equivalent.

No “intuitively computable” problems have been shown
to be Turing-uncomputable (yet).

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 48

Extended Church’s Thesis

e All “reasonably succinct encodings” of problems are

polynomaally related.

— Representations of a graph as an adjacency matrix
and as a linked list are both succinct.

— The unary representation of numbers is not succinct.

— The binary representation of numbers is succinct.
x 1001 vs. 111111111.

e All numbers will be binary from now on.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 49

Turing Machines with Multiple Strings

A k-string Turing machine (TM) is a quadruple
M= (K,%,0,s).

K, >, s are as before.

§: K x¥F — (KU{h, “yes”, “no” }) x (X x {+,—,—}*.
All strings start with a [>.

The first string contains the input.

Decidability and acceptability are the same as before.

When TMs compute functions, the output is on the last
(kth) string.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 50

A 2-String TM

'

>1000110000111001110001110uuIL

v

>111110000uuuLLUUULULLLUU UL

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 51

Palindromes Reuvisited

e A 2-string TM can decide palindromes in O(n) steps.

— It copies the input to the second string.

The cursor of the first string is positioned at the first
symbol of the input.

The cursor of the second string is positioned at the
last symbol of the input.

The two cursors are then moved in opposite
directions until the ends are reached.

The machine accepts if and only if the symbols under
the two cursors are identical at all steps.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 52

i

>ababbaabbaabbaabbabaliul

v
>ababbaabbaabbaabbabauul

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 53

Configurations and Yielding

e The concept of configuration and yielding is the same as
before except that a configuration is a (2k + 1)-triple

(Q7w17u17w27u27 S ,’lUk,’U,k),
where w;u; 1s the ith string and the ith cursor is reading
the last symbol of w;.
— Note that > is each w;’s first symbol.

e The k-string TM’s initial configuration is

2k
(8,|>,£l3,|>,€,|>,€,... 7[>7€>°

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 54

Time Complexity

The multistring TM is the basis of our notion of the
time expended by TM computations.

If for a k-string TM M and input x, the TM halts after
t steps, then the time required by M on input z is ¢.

If M(x) =", then the time required by M on x is co.

Machine M operates within time f(n) for f : N — N
if for any input string x, the time required by M on z is
at most f(|x|).

— | x| is the length of string z.

— Function f(n) is a time bound for M.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 55

Time Complexity Classes?

Suppose language L C (X — {| |})* is decided by a
multistring TM operating in time f(n).

We say L € TIME(f(n)).

TIME(f(n)) is the set of languages decided by TMs
with multiple strings operating within time bound f(n).

TIME(f(n)) is called a complexity class.
— Palindrome is in TIME(f(n)), where f(n)

aHartmanis, Stearns, 1965, Hartmanis, Lewis, Stearns, 1965.

©2002 Yuh-Dauh Lyuu, National Taiwan University Page 56

