The Proof: OR

CC(X UY) is equivalent to the OR of CC(X) and CC()).

Violations occur when [X U Y| > M.

Such violations can be eliminated by using
CC(pluck(X U )))

as the approximate OR of CC(X) and CC()).

We now count the numbers of errors this approximate

OR makes on the positive and negative examples.
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The Proof: OR (continued)

o CC(pluck(X UY)) introduces a false negative if a
positive example makes either CC(X) or CC()) return
true but makes CC(pluck(X U Y)) return false.

o CC(pluck(X UY)) introduces a false positive if a
negative example makes both CC(X’) and CC()) return
false but makes CC(pluck(X U )Y)) return true.

e How many false positives and false negatives are
introduced by CC(pluck(X U )Y))?
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The Number of False Positives

Lemma 76 CC(pluck(X UY)) introduces at most

Mﬂﬁ 27P(k — 1)" false positives.

e Assume a plucking replaces the sunflower
{Z1,Zs,...,Z,} with its core Z.

e A false positive is necessarily a coloring such that:

— There is a pair of identically colored nodes in each

petal (and so both crude circuits return false).

— But the core is all different colors.

x This implies at least one node from each pair was

plucked away.

e We now count the number of such colorings.
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Proof of Lemma 76 (continued)

e Color nodes V' at random with k& — 1 colors and let R(X)
denote the event that there are repeated colors in set X.

e Now prob|R(Z1) A---NR(Z,) N ~R(Z)] is at most

EQEENL A NR(Zy V_JENV_

——UH.OU Z)|-R(Z)] < ——@SU

1=1

— First equality holds because R(Z;) are independent
given = R(Z) as Z contains their only common nodes.

— Last inequality holds as the likelihood of repetitions
in Z; decreases given no repetitions in Z C Z,.
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Proof of Lemma 76 (continued)

Consider two nodes in Z;.

The probability that they have identical color is \AWH.

Now prob[ R(Z:)] < (2) < Bl <1

= k-1
So the probability that a random coloring is a new false

positive is at most 27?7 by (6).

As there are (kK — 1)™ different colorings, each plucking

introduces at most 27P(k — 1)™ false positives.
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Proof of Lemma 76 (concluded)

XUY|<2M.
Each plucking reduces the number of sets by p — 1.

Hence at most E& - pluckings occur in pluck(X U Y).

At most MWNSH 27P(k — 1)™ false positives are introduced.
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The Number of False Negatives

Lemma 77 CC(pluck(X UY)) introduces no false negatives.

e Fach plucking replaces a set in a crude circuit by a
subset.
e This makes the test less stringent.

— For each Y € A U ), there must exist at least one
X € pluck(X UY) such that X C Y.

— Soif Y € X UY is a clique, then pluck(X U )Y) also

contains a clique in X.

e So plucking can only increase the number of accepted
graphs.
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The Proof: AND

e The approximate AND of crude circuits CC(X’) and
CC()) is

QQAUHCOWAANQ& U M\u . Ns S \ﬁvﬁ < wxg _Ns U 5_ m Nuvvv

e We now count the numbers of errors this approximate

AND makes on the positive and negative examples.
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The Proof: AND (continued)

e The approximate AND introduces a false negative if a
positive example makes both CC(X) and CC(Y) return
true but makes the approximate AND return false.

e The approximate AND introduces a false positive if a
negative example makes either CC(X) or CC()) return
false but makes the approximate AND return true.

e How many false positives and false negatives are
introduced by the approximate AND?
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The Number of False Positives

Lemma 78 The approrimate AND introduces at most
M?27P(k — 1)" false positives.

o CC{X;UY;: X, € X,Y; € Y}) introduces no false
positives.

— If X; UYj) is a clique, both X; and Y; must be
cliques, making both CC(X) and CC()) return true.

o CC{X;UY;: X, € X)Y; €V, |X;UY;| </}) introduces
no false positives because it is less stringent than above.
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Proof of Lemma 78 (concluded)
{X,UY;: X, € X,Y; €Y, |X; UY;| < £} | < M2.

Each plucking reduces the number of sets by p — 1.

So ﬁ_COWAA_MN& U 5 . »NM c .bﬁ.ux < u\u _N@ U 5_ m mwv
involves < M?/(p — 1) pluckings.

Each plucking introduces at most 27P(k — 1)™ false
positives by the proof of Lemma 76 (p. 482).

The desired bound is

[M?/(p—1)]27P(k —1)" < M*27P(k —1)".
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The Number of False Negatives

Lemma 79 The approrimate AND introduces at most
M? ANHMHU false negatives.

e We follow the same three-step proof as before.

o CC{X;UY;: X, € XY, € Y}) introduces no false

negatives.

— Suppose both CC(X) and CC(Y) accept a positive
example with a clique of size k.

— The clique must contain an X; € X and a Y; € ).

— As it contains X; UY}, the new circuit returns true.
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Proof of Lemma 79 (concluded)

o CC{X;UY;: X, € X)Y; €V, |X;UY;| </}) introduces

< M? ANHMHU false negatives.

— Deletion of set Z larger than ¢ introduces false

negatives which are cliques containing Z.

There are Amu__w__v such cliques.

Azl_N_v < A:#Lv as |Z| > /.

k—|Z| k—l—1

There are at most M2 such Zs.

e Plucking introduces no false negatives.
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Two Summarizing Lemmas

From Lemmas 76 (p. 482) and 78 (p. 490), we have:

Lemma 80 FEach approximation step introduces at most
M?27P(k — 1)™ false positives.
From Lemmas 77 (p. 487) and 79 (p. 492), we have:

Lemma 81 FEach approximation step introduces at most

M? ANHMHU false negatives.
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The Proof (continued)

e The above two lemmas show that each approximation
step introduce “few” false positives and false negatives.

e We next show that the resulting crude circuit has “a
lot” of false positives or false negatives.
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The Final Crude Circuit

Lemma 82 FEwvery final crude circuit either is identically
false—thus wrong on all positive examples—or outputs true

on at least half of the negative examples.
e Suppose it is not identically false.

e By construction, it accepts at least those graphs that

have a clique on some set X of nodes, with | X | </,

which at nl/8 is less than k = nl/4.

The proof of Lemma 76 (p. 482) shows that at least half
of the colorings assign different colors to nodes in X.

So half of the negative examples have a clique in X and

are accepted.
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The Proof (continued)

1/4 1/8

e Recall the constants on p. 475: k=n"/*, £ =n"/°,
p=nY8logn, M = (p— 1)% < n(/37""® for large n.
e Suppose the final crude circuit is identically false.
— By Lemma 81 (p. 494), each approximation step

n—~—1

b ?L false negatives.

introduces at most M?(
— There are QU positive examples.

— The original crude circuit for CLIQUE,, ; has at least

OU > 1 n—0\" > 32\555

>§MA3|NIHV M?2 k

k—£—1

gates.
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The Proof (concluded)

e Suppose the final crude circuit is not identically false.

— Lemma 82 (p. 496) says that there are at least
(k — 1)™/2 false positives.
— By Lemma 80 (p. 494), each approximation step

introduces at most M?227P(k — 1) false positives

— The original crude circuit for CLIQUE,, ; has at least

(k=12 _2*70 (1/3)n/®

M22-p(k—1)"  MZ “
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Proving P #£ NP?

e Razborov’s theorem says that there is a monotone
language in NP that has no polynomial monotone

circuits.

e If we can prove that all monotone languages in P have
polynomial monotone circuits, then P # NP.

e But Razborov proved in 1985 that some monotone

languages in P have no polynomial monotone circuits!
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PSPACE and Games

Given a boolean expression ¢ in CNF with boolean

variables 1,22, ... ,Z,, is it true that
M_HH<&M s @3&3&0

This is called quantified satisfiability or QSAT.

This problem is like a two-person game: 4 and V are the

two players.

We ask then is there a winning strategy for 37
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QSAT Is PSPACE-Complete?

We prove the result without imposing the CNF
condition on ¢.

It is not hard to show that QsAT € PSPACE.

Let L be a language decided by a polynomial-space TM
M.

There are at most 27" configurations for some integer k

given input z with |z | = n.

Each configuration of M on input x can be coded as a
bit vector of length n* for some k.

aStockmeyer, Meyer, 1973.
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The Proof (continued)

e We need to write down a quantified boolean expression
U, for expressing with free variables in set

AUB ={a1,... ,apk,b1,... b, }.
e U, is true for some assignment to its free variables if and
only if:

— The true assignment for a;’s and b;’s encodes two

configurations a and b.

— There is a path from a to b in the configuration
graph of length at most 2°.
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The Proof (continued)
o “ € L”is VU, (A, B), where:

— A is the truth assignment encoding the initial

configuration.

— B is the truth assignment encoding the accepting
configuration.

e For i =0, Wy(A, B) states that either a; = b; for all ¢ or
configuration B follows from A in one step.

e This can be done in polynomial space.
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The Proof (concluded)

Inductively, suppose ¥;(A, B) is available.

ﬂH\ILA\r mv = M_NTH\SA\r Nv A ﬂH\sANv mz leads to
exponentially large expressions.

We need a way to use only one copy of ¥;.

Here is how:

U,.1(A, B) = 32YXVY
((X=AAY =2)V(X=ZAY =B)] = ¥;(X,Y)}
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IP and PSPACE
e Shamir in 1990 proved that IP equals PSPACE.

e We will use a similar idea to prove that coNP C IP.
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Interactive Proof for Boolean Unsatisfiability

A 3sAT formula is a conjunction of disjunctions of at
most three literals.

We shall present an interactive proof for boolean

unsatisfiability.

In other words, given an unsatisfiable 3SAT formula
¢(x1,T2,...,%,), there is an interactive proof for the
fact that it is unsatisfiable.

Therefore, coNP C IP.
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Arithmetization of Boolean Formulas

e The idea is to arithmetize the boolean formula.
T — positive integer
F—0
T; — T
z; > 1—x;
V — 4+

N\ — X

@A&H“ku SR ubuiv — @A&Huuﬁwg s ubw\;v
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The Arithmetic Version

e A boolean formula is transformed into a multivariate

polynomial ®.

e It is easy to verify that ¢ is unsatisfiable if and only if

WU WU MU ®(r1,22,... ,2,) =0.

x1=0,1 22=0,1 x,=0,1
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Choosing the Field

Suppose ¢ has m clauses of length three each.
Then & < 3™.

Because there are at most 2" truth assignments,

WU WU MU ®(r1,T2,...,Tn) < 2"3™.

xz1=0,1 z5=0,1 rn,=0,1

By choosing a prime ¢ > 2"3™ and working modulo this

prime, proving unsatisfiability reduces to proving that

MU MU MU ®(z1,z2,... ,2n) = 0 mod gq.

r1=0,1 z5=0,1 rn=0,1

Working under a finite field allows us to uniformly select a

random element in the field.
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Binding the Prover

The prover has to find a sequence of polynomials that

satisfy a number of restrictions.

The restrictions are imposed by the verifier: After
receiving a polynomial from the prover, the verifier sets a

new restriction for the next polynomial in the sequence.

These restrictions guarantee that if ¢ is unsatisfiable,

such a sequence can always be found.

However, if ¢ is not unsatisfiable, any prover has only a
small probability of finding such a sequence (the
probability is taken over the verifier’s coin tosses).
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The Algorithm

Peggy and Victor both arithmetize ¢ to obtain ®;
Peggy picks a prime ¢ > 2"3™ and sends it to Victor;
Victor rejects and stops if ¢ is not a prime;

Victor sets vg to 0;

for:=1,2,... ,ndo

Peggy calculates P; (z) =

MUHS.._.HHOL C MUHSHOL @Aﬁf coe 3y Ti—15 2, Li41y .- v&.svm

Peggy sends P; (z) to Victor;
Victor rejects and stops if P;"(0) + P;"(1) # v;—1 mod q or

P;"(z)’s degree exceeds m; {P;"(z) has at most m clauses.}

Victor uniformly picks r; € Z,; and calculates v; = P;"(r;);
Victor sends r; to Peggy;
end for

: Victor accepts iff ®(r1,72,... ,70) = vp, mod g;
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Remarks

e The following invariant is maintained by the algorithm:

ws*AOV + ws*AHV = P HA\QIHV mod qg. Aﬂv

Sl

e The computation of vy, vs, ..., v, must rely on Peggy
because Victor does not have the computing power to

carry out the exponential-time calculations.

e But ®(ry,rs,...,r,) in Step 12 can be computed
without relying on Peggy’s polynomials.
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Completeness
e Suppose ¢ is unsatisfiable.

e Fori>1,

P (0) + P7(1)

MU MU d(rq, .

z;=0,1 z,=0,1

P} HASLV

Sl

Vi—1 mod qg.
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Completeness (concluded)

e In particular at ¢ = 1, because ¢ is unsatisfiable, we have

PrO)+Pr(l)= > -+ > @(1,...,24) =vo =0 mod q.

x1=0,1 xn,=0,1
o Finally, v, = Pl (r,) = ®(r1,72,... ,Tn).

e Because all the tests by Victor will pass, Victor will
accept ¢.
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Soundness
Suppose ¢ is not unsatisfiable.

An honest prover following the protocol will fail after
sending Py (z).

We will show that if the prover is dishonest in one round

(by sending a polynomial other than P}(z)), then with

high probability she must be dishonest in the next round

as well.

In the last round, her dishonesty is revealed.
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Soundness (continued)

e Let P;(z) represent the polynomial sent by the prover in
place of P (z).

e v; is calculated with P;(z).

e In order to deceive the verifier in the next round, round
i 4+ 1, the prover must use rq,72,...,7r; to find a P;y1(2)
of degree at most m such that

Pi+1(0) + Pi+1(1) = v; mod ¢
(see Step 8 of the algorithm on p. 511).

e And so on to the end, except that the prover has no
control over Step 12.
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A Key Claim
Theorem 83 If P*(0) + P/ (1) # v;—1 mod g, then either

the verifier rejects in the ith round, or P;(r;) # v; mod g

with probability at least 1 — (m/q), where the probability is
taken over the verifier’s choices of r;.
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The Proof of Theorem 83 (continued)

e If the prover sends a P;(z) which equals P*(z), then
P;(0) + P;(1) = P;"(0) + P (1) # vi—1 mod g,
and the verifier rejects immediately.

e Suppose that the prover sends a P;(z) different from
Pr(z).

o If P;(z) does not pass the verifier’s test
P;(r;) = v; mod ¢, then the verifier rejects.

©2001 Yuh-Dauh Lyuu, National Taiwan University Page 518



The Proof of Theorem 83 (concluded)

e Assume P;(z) passes the test P;(r;) = v; mod gq.

e Because P;(z) and P/(z) are of degree at most m, there
are at most m choices of r; € Z, such that

P*(r;) = P;(r;) = v; mod q.
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Soundness (continued)

Suppose the verifier does not reject in any of the n

rounds and exits the loop.

As ¢ is not unsatisfiable,
P (0) + Py (1) # v mod q.

By Theorem 83 (p. 517) and the fact that the verifier
does not reject, we have Py (r1) # v1 mod g with

probability at least 1 — (m/q).
Now by (7),

Py (r1) = Py(0) + Py (1) # vy mod q.
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Soundness (concluded)

Iterating on this procedure, we eventually arrive at
P> (ry) # vy, mod g
with probability at least (1 —m/q)™.

As P (ry) = ®(r1,72,... ,75), the verifier’s last test fails
and he rejects.

Altogether, the verifier fails with probability at least
(1—m/q)" >1—(nm/q) >2/3

because g > 2"3™.
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Example
A&H V i) V &wv A A&H V T V I_&wv.
The above is satisfied by assigning true to z;.

The arithmetized formula is

@A&f&wg&wv = A&H + X9 |_|M~uwv X qu + AH — &wv + AH — Hw:

Indeed, >, _012 0,012 zs—01 P(@1,T2,23) = 16 # 0.

We have n = 3 and m = 2.

A prime ¢ that satisfies ¢ > 23 x 3% = 72 is 73.
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Example (continued)

e The table below is an execution of the algorithm in Z-3

when the prover follows the protocol.
@ Pr(z) Pr0)+ Pr(1) =wv1?7 1 vy
0 0
1 422 +8z+2 16 no

e Victor therefore rejects ¢ early when ¢ = 1.
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Example (continued)

e Suppose Peggy does not follow the protocol.

e In order to deceive Victor, she comes up with fake
polynomials P;(z)’s from beginning to end.

e The table below is an execution of the algorithm.

i P;(2) P;(0)+ FP;(1) =wvi—1? 14

822 + 11z + 27 10
1022 + 9z + 21 4
22 +22+434 r3
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Example (concluded)

e Now, Victor checks if the ® satisfies

AHVAHOumT ﬁwv = wwAﬁwv mod 73.

e It can be verified that the only choices of
rg € {0,1,...,72} that can mislead Victor are 10 and
12.

e The probability of that happening is only 2/73.
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Example

A&H V &wv A\ AHH V J&wv A\ AI_&H V va A\ AI_HH V Juﬁwv.
The above is unsatisfiable.
The arithmetized formula is

@AHTHMV = A&HnT&wv X A&H+H|&wv X Awl&H |_|&wv X Awl&H

Because ®(x1,x2) = 0 for any boolean assignment
{0,112 to (x1,x2), certainly

M M @A&Hg&.wv = 0.

1 ”OL. HMHO“H

With n = 2 and m = 4, a prime ¢ that satisfies
g>2%x3*=4x81=3241is 331.
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Example (concluded)

e The table below is an execution of the algorithm in Z331.

T&*ANV W&*on._uﬁ&*ﬁv =v;_1"7 "4

z(z 4+ 1)(1 — 2)(2 — 2) yes 10
+(z+1)z(2 — 2)(1 — 2)

(10+ 2) X (11 — 2)
X(—9 4+ 2) X (—8 — 2)

e Victor calculates ®(10,5) = 46 mod 331.

e As it equals v9 = 46, Victor accepts ¢ as unsatisfiable.
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Objections to the Soundness Proof??

e Based on the steps required of a cheating prover on
p. 516, why must we go through so many rounds (in
fact, n rounds)?

e Why not just go directly to round n:

— The verifier sends r1,7rs,... ,7r,—1 to the prover.
— The prover returns with a (claimed) P} (z).

— The verifier accepts if and only if
®(ri,72,... ,Tn-1,Tn) = P} (r,) mod g for a random
Tn € Zg.

aContributed by Mr. Chen and Ms. Hong in the lecture on January
2, 2002.
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Objections to the Soundness Proof? (continued)

e Let us analyze the proposed compressed version when ¢
is satisfiable.

e To succeed in foiling the verifier, the prover must find a
polynomial P,(z) of degree m such that
®(r1,r9,... ,7n_1,2) = Pp(2z) mod q.

e But this she is able to do: Just give the verifier
polynomial ®(ry,r9,... ,7,_1,2)!

e What happened?

©2001 Yuh-Dauh Lyuu, National Taiwan University Page 529



Objections to the Soundness Proof? (concluded)

e You need the intermediate rounds to “tie” the prover up

with a chain of claims.

e In the original algorithm on p. 511, for example, P,(z) is
bound by the equality P,(0) + P,(1) = v,—1 mod ¢ in
Step 8.

e That v,,_1 is in turn derived by an earlier polynomial
P,,_1(z), which is in turn bound by
P, 1(0)+ P,_1(1) = v,_2 mod ¢, and so on.
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Finas
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