The Proof: OR

- $CC(\mathcal{X} \cup \mathcal{Y})$ is equivalent to the OR of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.
- Violations occur when $|\mathcal{X} \cup \mathcal{Y}| > M$.
- Such violations can be eliminated by using

$$\mathrm{CC}(\mathrm{pluck}(\mathcal{X} \cup \mathcal{Y}))$$

as the approximate or of $CC(\mathcal{X})$ and $CC(\mathcal{Y})$.

We now count the numbers of errors this approximate OR makes on the positive and negative examples.

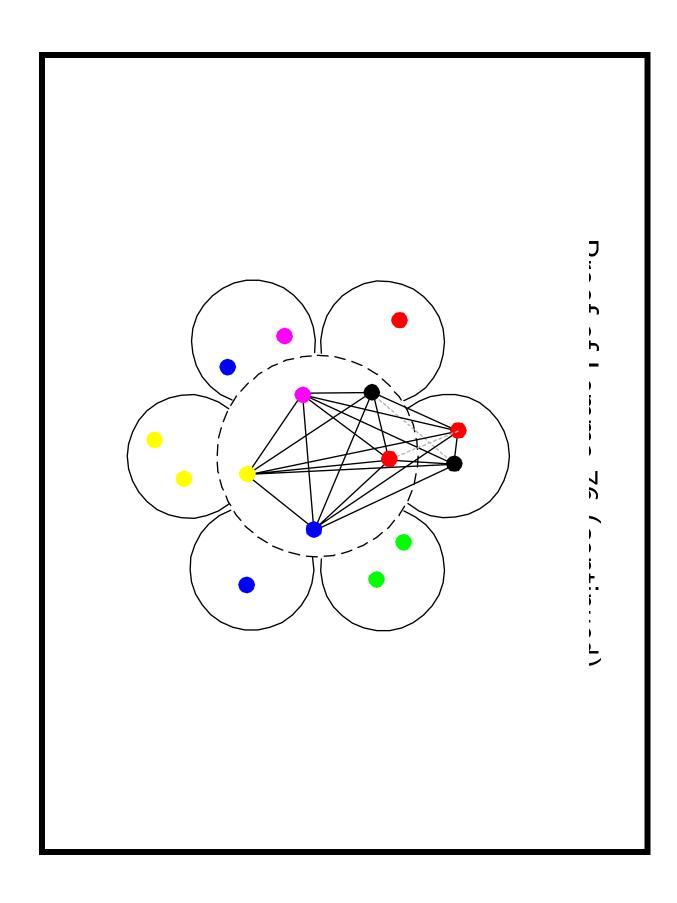
The Proof: OR (continued)

- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false negative if a true but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return false positive example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return
- $CC(pluck(\mathcal{X} \cup \mathcal{Y}))$ introduces a false positive if a false but makes $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$ return true negative example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return
- How many false positives and false negatives are introduced by $CC(\operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}))$?

The Number of False Positives

 $\frac{2M}{p-1}$ $2^{-p}(k-1)^n$ false positives. **Lemma 76** CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces at most

- Assume a plucking replaces the sunflower $\{Z_1, Z_2, \dots, Z_p\}$ with its core Z
- A false positive is *necessarily* a coloring such that:
- There is a pair of identically colored nodes in each petal (and so both crude circuits return false).
- But the core is all different colors.
- This implies at least one node from each pair was plucked away
- We now count the number of such colorings.



Proof of Lemma 76 (continued)

- Color nodes V at random with k-1 colors and let R(X)denote the event that there are repeated colors in set X.
- Now $\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) \wedge \neg R(Z)]$ is at most

$$\operatorname{prob}[R(Z_1) \wedge \cdots \wedge R(Z_p) | \neg R(Z)]$$

$$= \prod_{i=1}^{p} \operatorname{prob}[R(Z_i) | \neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]. \quad (6)$$

- First equality holds because $R(Z_i)$ are independent given $\neg R(Z)$ as Z contains their only common nodes.
- Last inequality holds as the likelihood of repetitions in Z_i decreases given no repetitions in $Z \subseteq Z_i$.

Proof of Lemma 76 (continued)

- Consider two nodes in Z_i .
- The probability that they have identical color is $\frac{1}{k-1}$
- Now prob $[R(Z_i)] \le \frac{\binom{|Z_i|}{2}}{k-1} \le \frac{\binom{\ell}{2}}{k-1} \le \frac{1}{2}$.
- So the probability that a random coloring is a new false positive is at most 2^{-p} by (6).
- introduces at most $2^{-p}(k-1)^n$ false positives As there are $(k-1)^n$ different colorings, each plucking

Proof of Lemma 76 (concluded)

- $|\mathcal{X} \cup \mathcal{Y}| \leq 2M$.
- Each plucking reduces the number of sets by p-1.
- Hence at most $\frac{2M}{p-1}$ pluckings occur in pluck $(\mathcal{X} \cup \mathcal{Y})$.
- At most $\frac{2M}{p-1} 2^{-p} (k-1)^n$ false positives are introduced.

The Number of False Negatives

Lemma 77 CC(pluck($\mathcal{X} \cup \mathcal{Y}$)) introduces no false negatives.

- Each plucking replaces a set in a crude circuit by a subset
- This makes the test less stringent.
- For each $Y \in \mathcal{X} \cup \mathcal{Y}$, there must exist at least one $X \in \operatorname{pluck}(\mathcal{X} \cup \mathcal{Y}) \text{ such that } X \subseteq Y.$
- So if $Y \in \mathcal{X} \cup \mathcal{Y}$ is a clique, then $\text{pluck}(\mathcal{X} \cup \mathcal{Y})$ also contains a clique in X.
- So plucking can only increase the number of accepted graphs.

The Proof: AND

The approximate AND of crude circuits $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ is

 $\mathrm{CC}(\mathrm{pluck}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\}))$

We now count the numbers of errors this approximate AND makes on the positive and negative examples

The Proof: AND (continued)

- The approximate AND introduces a false negative if a true but makes the approximate AND return false positive example makes both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return
- The approximate AND introduces a false positive if a false but makes the approximate AND return true negative example makes either $CC(\mathcal{X})$ or $CC(\mathcal{Y})$ return
- How many false positives and false negatives are introduced by the approximate AND?

The Number of False Positives

 $M^2 2^{-p} (k-1)^n$ false positives Lemma 78 The approximate AND introduces at most

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false
- If $X_i \cup Y_j$ is a clique, both X_i and Y_j must be cliques, making both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ return true
- $\operatorname{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\}) \text{ introduces}$ no false positives because it is less stringent than above.

Proof of Lemma 78 (concluded)

- $|\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \le \ell\}| \le M^2.$
- Each plucking reduces the number of sets by p-1.
- So pluck($\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\}$) involves $< M^2/(p-1)$ pluckings.
- Each plucking introduces at most $2^{-p}(k-1)^n$ false positives by the proof of Lemma 76 (p. 482).
- The desired bound is

$$[M^2/(p-1)] 2^{-p}(k-1)^n \le M^2 2^{-p}(k-1)^n.$$

The Number of False Negatives

 $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives. Lemma 79 The approximate AND introduces at most

- We follow the same three-step proof as before
- $\operatorname{CC}(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}\})$ introduces no false negatives
- Suppose both $CC(\mathcal{X})$ and $CC(\mathcal{Y})$ accept a positive example with a clique of size k.
- The clique must contain an $X_i \in \mathcal{X}$ and a $Y_j \in \mathcal{Y}$.
- As it contains $X_i \cup Y_j$, the new circuit returns true

Proof of Lemma 79 (concluded)

- $CC(\{X_i \cup Y_j : X_i \in \mathcal{X}, Y_j \in \mathcal{Y}, |X_i \cup Y_j| \leq \ell\})$ introduces $\leq M^2 \binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Deletion of set Z larger than ℓ introduces false negatives which are cliques containing Z.
- There are $\binom{n-|Z|}{k-|Z|}$ such cliques.
- $-\binom{n-|Z|}{k-|Z|} \le \binom{n-\ell-1}{k-\ell-1} \text{ as } |Z| \ge \ell.$
- There are at most M^2 such $Z_{\rm S}$.
- Plucking introduces no false negatives.

Two Summarizing Lemmas

From Lemmas 76 (p. 482) and 78 (p. 490), we have:

 $M^2 2^{-p} (k-1)^n$ false positives. Lemma 80 Each approximation step introduces at most

From Lemmas 77 (p. 487) and 79 (p. 492), we have:

 $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives. Lemma 81 Each approximation step introduces at most

The Proof (continued)

- step introduce "few" false positives and false negatives The above two lemmas show that each approximation
- lot" of false positives or false negatives. We next show that the resulting crude circuit has "a

The Final Crude Circuit

false—thus wrong on all positive examples—or outputs true on at least half of the negative examples. Lemma 82 Every final crude circuit either is identically

- Suppose it is not identically false.
- By construction, it accepts at least those graphs that which at $n^{1/8}$ is less than $k = n^{1/4}$. have a clique on some set X of nodes, with $|X| \leq \ell$,
- The proof of Lemma 76 (p. 482) shows that at least half of the colorings assign different colors to nodes in X
- So half of the negative examples have a clique in X and are accepted.

The Proof (continued)

- Recall the constants on p. 475: $k = n^{1/4}$, $\ell = n^{1/8}$. $p = n^{1/8} \log n$, $M = (p-1)^{\ell} \ell! < n^{(1/3)n^{1/8}}$ for large n.
- Suppose the final crude circuit is identically false.
- By Lemma 81 (p. 494), each approximation step introduces at most $M^2\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- There are $\binom{n}{k}$ positive examples.
- The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{\binom{n}{k}}{M^2 \binom{n-\ell-1}{k-\ell-1}} \ge \frac{1}{M^2} \left(\frac{n-\ell}{k}\right)^{\ell} \ge n^{(1/12)n^{1/8}}$$

gates.

The Proof (concluded)

- Suppose the final crude circuit is not identically false
- Lemma 82 (p. 496) says that there are at least $(k-1)^n/2$ false positives.
- By Lemma 80 (p. 494), each approximation step introduces at most $M^2 2^{-p} (k-1)^n$ false positives
- The original crude circuit for $CLIQUE_{n,k}$ has at least

$$\frac{(k-1)^n/2}{M^2 2^{-p} (k-1)^n} = \frac{2^{p-1}}{M^2} \ge n^{(1/3)n^{1/8}}$$

gates.

Proving $P \neq NP$?

- Razborov's theorem says that there is a monotone circuits. language in NP that has no polynomial monotone
- polynomial monotone circuits, then $P \neq NP$ If we can prove that all monotone languages in P have
- But Razborov proved in 1985 that some monotone languages in P have no polynomial monotone circuits!

PSPACE and Games

- Given a boolean expression ϕ in CNF with boolean $\exists x_1 \forall x_2 \cdots Q_n x_n \phi?$ variables x_1, x_2, \ldots, x_n , is it true that
- This is called quantified satisfiability or QSAT.
- This problem is like a two-person game: \exists and \forall are the two players.
- We ask then is there a winning strategy for \exists ?

QSAT Is PSPACE-Complete^a

- We prove the result without imposing the CNF condition on ϕ .
- It is not hard to show that $QSAT \in PSPACE$.
- Let L be a language decided by a polynomial-space TM
- There are at most 2^{n^k} configurations for some integer kgiven input x with |x| = n.
- Each configuration of M on input x can be coded as a bit vector of length n^k for some k.

^aStockmeyer, Meyer, 1973.

The Proof (continued)

- $A \cup B = \{a_1, \dots, a_{n^k}, b_1, \dots, b_{n^k}\}.$ Ψ_i for expressing with free variables in set We need to write down a quantified boolean expression
- Ψ_i is true for some assignment to its free variables if and
- The true assignment for a_i 's and b_i 's encodes two configurations a and b.
- graph of length at most 2^i There is a path from a to b in the configuration

The Proof (continued)

- " $x \in L$ " is $\Psi_{n^k}(A, B)$, where:
- A is the truth assignment encoding the initial configuration.
- configuration. B is the truth assignment encoding the accepting
- For i = 0, $\Psi_0(A, B)$ states that either $a_i = b_i$ for all i or configuration B follows from A in one step.
- This can be done in polynomial space.

The Proof (concluded)

- Inductively, suppose $\Psi_i(A, B)$ is available.
- $\Psi_{i+1}(A,B) \equiv \exists Z[\Psi_i(A,Z) \land \Psi_i(Z,B)] \text{ leads to}$ exponentially large expressions.
- We need a way to use only one copy of Ψ_i .
- Here is how:

$$\Psi_{i+1}(A,B) \equiv \exists Z \forall X \forall Y$$

$$\{ [(X = A \land Y = Z) \lor (X = Z \land Y = B)] \Rightarrow \Psi_i(X,Y) \}.$$

Interactive Proof for Boolean Unsatisfiability

- A 3sat formula is a conjunction of disjunctions of at most three literals.
- We shall present an interactive proof for boolean unsatisfiability.
- In other words, given an unsatisfiable 3saT formula $\phi(x_1, x_2, \ldots, x_n)$, there is an interactive proof for the fact that it is unsatisfiable
- Therefore, $coNP \subseteq IP$.

©2001 Yuh-Dauh Lyuu, National Taiwan University

Arithmetization of Boolean Formulas

The idea is to arithmetize the boolean formula.

- T \rightarrow positive integer

$$- F \rightarrow 0$$

$$-x_i \rightarrow x_i$$

$$\bar{x_i}
ightarrow 1 - x_i$$

$$\leftarrow$$
 $+$

$$\stackrel{-}{\rightarrow}\times$$

$$-\phi(x_1,x_2,\ldots,x_n)\to\Phi(x_1,x_2,\ldots,x_n)$$

Page 507

The Arithmetic Version

- A boolean formula is transformed into a multivariate polynomial Φ .
- It is easy to verify that ϕ is unsatisfiable if and only if

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) = 0.$$

Choosing the Field

- Suppose ϕ has m clauses of length three each.
- Then $\Phi \leq 3^m$.
- Because there are at most 2^n truth assignments,

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) \le 2^n 3^m.$$

By choosing a prime $q > 2^n 3^m$ and working modulo this prime, proving unsatisfiability reduces to proving that

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1, x_2, \dots, x_n) = 0 \bmod q.$$

random element in the field. Working under a finite field allows us to uniformly select a

Binding the Prover

- The prover has to find a sequence of polynomials that satisfy a number of restrictions
- The restrictions are imposed by the verifier: After receiving a polynomial from the prover, the verifier sets a new restriction for the next polynomial in the sequence
- These restrictions guarantee that if ϕ is unsatisfiable, such a sequence can always be found
- However, if ϕ is not unsatisfiable, any prover has only a probability is taken over the verifier's coin tosses). small probability of finding such a sequence (the

The Algorithm

- 1: Peggy and Victor both arithmetize ϕ to obtain Φ ;
- 2: Peggy picks a prime $q > 2^n 3^m$ and sends it to Victor;
- 3: Victor rejects and stops if q is not a prime;
- 4: Victor sets v_0 to 0;
- 5: **for** i = 1, 2, ..., n **do**
- 6: Peggy calculates $P_i^*(z) =$
- Peggy sends $P_i^*(z)$ to Victor; $\sum_{x_{i+1}=0,1}\cdots\sum_{x_n=0,1}\Phi(r_1,\ldots,r_{i-1},z,x_{i+1},\ldots,x_n);$
- ∞ $P_i^*(z)$'s degree exceeds m; $\{P_i^*(z) \text{ has at most } m \text{ clauses.}\}$ Victor rejects and stops if $P_i^*(0) + P_i^*(1) \neq v_{i-1} \mod q$ or
- Victor uniformly picks $r_i \in Z_q$ and calculates $v_i = P_i^*(r_i)$;
- 10: Victor sends r_i to Peggy;
- 11: end for
- 12: Victor accepts iff $\Phi(r_1, r_2, \dots, r_n) = v_n \mod q$;

Remarks

The following invariant is maintained by the algorithm:

$$P_i^*(0) + P_i^*(1) = P_{i-1}^*(r_{i-1}) \bmod q. \tag{7}$$

- The computation of v_1, v_2, \ldots, v_n must rely on Peggy carry out the exponential-time calculations. because Victor does not have the computing power to
- But $\Phi(r_1, r_2, \ldots, r_n)$ in Step 12 can be computed without relying on Peggy's polynomials

Completeness

- Suppose ϕ is unsatisfiable.
- For $i \geq 1$,

$$P_i^*(0) + P_i^*(1)$$

$$= \sum_{x_i=0,1} \dots \sum_{x_n=0,1} \Phi(r_1, \dots, r_{i-1}, x_i, \dots, x_n)$$

$$= P_{i-1}^*(r_{i-1})$$

$$= v_{i-1} \mod q.$$

Completeness (concluded)

In particular at i=1, because ϕ is unsatisfiable, we have

$$P_1^*(0) + P_1^*(1) = \sum_{x_1=0,1} \cdots \sum_{x_n=0,1} \Phi(x_1,\dots,x_n) = v_0 = 0 \mod q.$$

- Finally, $v_n = P_n^*(r_n) = \Phi(r_1, r_2, \dots, r_n)$.
- Because all the tests by Victor will pass, Victor will accept ϕ .

©2001 Yuh-Dauh Lyuu, National Taiwan University

Soundness

- Suppose ϕ is not unsatisfiable.
- sending $P_1^*(z)$. An honest prover following the protocol will fail after
- We will show that if the prover is dishonest in one round as well high probability she must be dishonest in the next round (by sending a polynomial other than $P_i^*(z)$), then with
- In the last round, her dishonesty is revealed.

Soundness (continued)

- place of $P_i^*(z)$. Let $P_i(z)$ represent the polynomial sent by the prover in
- v_i is calculated with $P_i(z)$.
- i+1, the prover must use r_1, r_2, \ldots, r_i to find a $P_{i+1}(z)$ In order to deceive the verifier in the next round, round of degree at most m such that

$$P_{i+1}(0) + P_{i+1}(1) = v_i \bmod q$$

(see Step 8 of the algorithm on p. 511).

And so on to the end, except that the prover has no control over Step 12.

A Key Claim

taken over the verifier's choices of r_i . with probability at least 1-(m/q), where the probability is the verifier rejects in the ith round, or $P_i^*(r_i) \neq v_i \mod q$ **Theorem 83** If $P_i^*(0) + P_i^*(1) \neq v_{i-1} \mod q$, then either

The Proof of Theorem 83 (continued)

If the prover sends a $P_i(z)$ which equals $P_i^*(z)$, then

$$P_i(0) + P_i(1) = P_i^*(0) + P_i^*(1) \neq v_{i-1} \mod q,$$

and the verifier rejects immediately.

- $P_i^*(z)$. Suppose that the prover sends a $P_i(z)$ different from
- If $P_i(z)$ does not pass the verifier's test $P_i(r_i) = v_i \mod q$, then the verifier rejects.

The Proof of Theorem 83 (concluded)

- Assume $P_i(z)$ passes the test $P_i(r_i) = v_i \mod q$.
- Because $P_i(z)$ and $P_i^*(z)$ are of degree at most m, there are at most m choices of $r_i \in Z_q$ such that

$$P_i^*(r_i) = P_i(r_i) = v_i \bmod q.$$

Soundness (continued)

- Suppose the verifier does not reject in any of the nrounds and exits the loop.
- As ϕ is not unsatisfiable,

$$P_1^*(0) + P_1^*(1) \neq v_0 \mod q.$$

- By Theorem 83 (p. 517) and the fact that the verifier probability at least 1 - (m/q). does not reject, we have $P_1^*(r_1) \neq v_1 \mod q$ with
- Now by (7),

$$P_1^*(r_1) = P_2^*(0) + P_2^*(1) \neq v_1 \mod q.$$

Soundness (concluded)

Iterating on this procedure, we eventually arrive at

$$P_n^*(r_n) \neq v_n \bmod q$$

with probability at least $(1 - m/q)^n$.

- and he rejects. As $P_n^*(r_n) = \Phi(r_1, r_2, \dots, r_n)$, the verifier's last test fails
- Altogether, the verifier fails with probability at least

$$(1 - m/q)^n > 1 - (nm/q) > 2/3$$

because $q > 2^n 3^m$.

Example

- $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$.
- The above is satisfied by assigning true to x_1 .
- The arithmetized formula is

$$\Phi(x_1, x_2, x_3) = (x_1 + x_2 + x_3) \times [x_1 + (1 - x_2) + (1 - x_3)].$$

- Indeed, $\sum_{x_1=0,1} \sum_{x_2=0,1} \sum_{x_3=0,1} \Phi(x_1, x_2, x_3) = 16 \neq 0$.
- We have n=3 and m=2.
- A prime q that satisfies $q > 2^3 \times 3^2 = 72$ is 73.

©2001 Yuh-Dauh Lyuu, National Taiwan University

WHEH t=1.

Example (continued)

The table below is an execution of the algorithm in \mathbb{Z}_{73} when the prover follows the protocol.

1	0	i
$4z^2 + 8z + 2$		$P_i^*(z)$
16		$P_i^*(0) + P_i^*(1)$
no		$= v_{i-1}?$
		r_i
	0	v_i

Victor therefore rejects ϕ early when i=1.

Example (continued)

- Suppose Peggy does not follow the protocol.
- In order to deceive Victor, she comes up with fake polynomials $P_i(z)$'s from beginning to end.
- The table below is an execution of the algorithm.

1 1	r_{2}	yes	71	$z^2 + 2z + 34$	ယ
71		yes	61	$10z^2 + 9z + 21$	2
0 61	10	yes	0	$8z^2 + 11z + 27$	\vdash
0					0
v_i	$\begin{bmatrix} ? & r \end{bmatrix}$	$=v_{i-1}$? r_i	$P_i(0) + P_i(1)$	$P_i(z)$	i

Example (concluded)

• Now, Victor checks if the Φ satisfies

$$\Phi(10, 4, r_3) = P_3(r_3) \bmod 73.$$

- It can be verified that the only choices of $r_3 \in \{0, 1, \dots, 72\}$ that can mislead Victor are 10 and
- The probability of that happening is only 2/73.

Example

- $(x_1 \vee x_2) \wedge (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2) \wedge (\neg x_1 \vee \neg x_2).$
- The above is unsatisfiable.
- The arithmetized formula is

$$\Phi(x_1, x_2) = (x_1 + x_2) \times (x_1 + 1 - x_2) \times (1 - x_1 + x_2) \times (2 - x_1 - x_2).$$

Because $\Phi(x_1, x_2) = 0$ for any boolean assignment $\{0,1\}^2$ to (x_1,x_2) , certainly

$$\sum_{x_1=0,1} \sum_{x_2=0,1} \Phi(x_1, x_2) = 0.$$

With n=2 and m=4, a prime q that satisfies $q > 2^2 \times 3^4 = 4 \times 81 = 324$ is 331

Example (concluded)

The table below is an execution of the algorithm in Z_{331} .

2		1	0	i
$(10+z) \times (11-z) \ \times (-9+z) \times (-8-z)$	+(z+1)z(2-z)(1-z)	z(z+1)(1-z)(2-z)		$P_{\boldsymbol{i}}^{\boldsymbol{*}}(z)$
283		0		$P_{i}^{*}(0) + P_{i}^{*}(1)$
$\mathbf{y}\mathbf{e}\mathbf{s}$		\mathbf{yes}		$=v_{i-1}$?
យ		10		r_i
46		283	0	v_i

- Victor calculates $\Phi(10, 5) \equiv 46 \mod 331$.
- As it equals $v_2 = 46$, Victor accepts ϕ as unsatisfiable.

Objections to the Soundness Proof?^a

- Based on the steps required of a cheating prover on fact, n rounds)? p. 516, why must we go through so many rounds (in
- Why not just go directly to round n:
- The verifier sends $r_1, r_2, \ldots, r_{n-1}$ to the prover.
- The prover returns with a (claimed) $P_n^*(z)$.
- The verifier accepts if and only if $\Phi(r_1, r_2, \dots, r_{n-1}, r_n) = P_n^*(r_n) \mod q \text{ for a random}$

^{2, 2002.} ^aContributed by Mr. Chen and Ms. Hong in the lecture on January

Objections to the Soundness Proof? (continued)

- Let us analyze the proposed compressed version when ϕ is satisfiable.
- To succeed in foiling the verifier, the prover must find a polynomial $P_n(z)$ of degree m such that $\Phi(r_1, r_2, \dots, r_{n-1}, z) = P_n(z) \mod q.$
- But this she is able to do: Just give the verifier polynomial $\Phi(r_1, r_2, \dots, r_{n-1}, z)!$
- What happened?

Objections to the Soundness Proof? (concluded)

- You need the intermediate rounds to "tie" the prover up with a chain of claims
- In the original algorithm on p. 511, for example, $P_n(z)$ is Step 8 bound by the equality $P_n(0) + P_n(1) = v_{n-1} \mod q$ in
- That v_{n-1} is in turn derived by an earlier polynomial $P_{n-1}(0) + P_{n-1}(1) = v_{n-2} \mod q$, and so on. $P_{n-1}(z)$, which is in turn bound by