MAX CUT Revisited

e The NP-complete MAX CUT seeks to partition the nodes
of graph G = (V, E) into (S,V — §) so that there are as

many edges as possible between S and V — S (p. 216).

e Local search is a heuristic that starts from any feasible
solution and performs a “local” improvement until no

improvements are possible.
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A 0.5-Approximation Algorithm for MAX CUT
. 5 = Sw

: while dv € V whose switching sides results in a larger

cut do
S :=SU{v};
. end while
. return S;
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The Analysis

\ Optimal cut

Heuristic cut \
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Analysis (continued)

Partition V = V3 U V5 U V3 U V4, where our algorithm
returns (V3 U Vs, V3 U V,) and the optimum cut is
(V1 U V3, Vo U Vy).

Let e;; be the number of edges between V; and V.

Because no migration of nodes can improve the
algorithm’s cut, for each node in V7, its edges to V3 U V5
are outnumbered by those to V3 U V.

Considering all nodes in V; together, we have
2e11 + e12 < e13 + e14, which implies

e12 < €13 + €14.
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Analysis (continued)

e Similarly,

€12 €23 + €24
€34 €23 + €13

€34 €14 + €24

e Adding all four inequalities, dividing both sides by 2,
and adding the inequality

e14 + €23 < e14 + €23 + €13 + €24, we obtain
e12 + €34 + €14 + €23 < 2(e13 + €14 + €23 + €24).

e The above says our solution is at least half the optimum.
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Unapproximability of TSp

e Algorithms with an approximation threshold less than 1
have been exhibited for NODE COVER, MAXSAT, and
MAX CUT.

e The situation is maximally pessimistic for TsSp: It

cannot be approximated unless P = NP.

Theorem 68 The approximation threshold of TSP s 1

unless P = NP, when it becomes 0.
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The Proof

e Suppose that there is a polynomial-time
e-approximation algorithm for TSP for some € < 1.

e We shall construct a polynomial-time algorithm for the
NP-complete HAMILTONIAN CYCLE.

e Given any graph G = (V, E), construct a TSP with |V|

cities with distances

1, if[i,jleF
V]

1—¢’

&s. j = .
otherwise

e Run the alleged approximation algorithm on this TSP

instance.
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The Proof (continued)

Suppose that a tour of cost |V| is returned.

— This tour must be a Hamiltonian cycle.
V]

Suppose that a tour with at least one edge of length —

is returned.

The total length of this tour is > H_|_m

Because the algorithm is e-approximate, the optimum
is at least 1 — € times the returned tour’s length.

The optimum tour has a cost exceeding | V' |.

Hence G has no Hamiltonian cycles.
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KNAPSACK Has an Approximation Threshold of Zero

Theorem 69 For any €, there is a polynomial-time
e-approxrimation algorithm for KNAPSACK.

e We have n weights wq, ws, ... ,w,, a weight limit W,

and n values vy, vs, ... ,v,.

e We must find an S C {1,2,...,n} such that
D icsWi W and ) .o v; is the largest possible.

o Let

V = max{vi,v2,... ,Un}.
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The Proof (continued)

For 0 <i<nand 0 <wv <nV, define W(i,v) to be the
minimum weight attainable by selecting some among the
¢ first items, so that their value is exactly v.

Start with W (0,v) = oo for all v.
Then W (i 4+ 1,v) = min{W (¢,v), W(i,v — v;41) + w;z1}.

Finally, pick the largest v such that W (n,v) < W.

The running time is O(n?V'), not exactly polynomial

time.

Next idea: Limit the number of precision bits.
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The Proof (continued)
e Given the instance x = (w1, ... ,wn, W,v1,... ,0,), we
define the approximate instance

/ / /
T = (Wi, Wo, W01, .0, 0y),

1 ob | Vi
v =2 5]

e Solving z’ takes time O(n2V/2%).

e The solution S’ is close to the optimum solution S:

dDowi> D> vp> > vp> ) (v —2°) > vy —n2.

1€ S’ €S €S 1€S
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The Proof (continued)

M\S N M\S|3\M@.

€S’ 1€S8

e Because V is a lower bound on the value of the optimum
solution (without loss of generality, w; < W), the

relative deviation from the optimum is at most

e =n2/V.

e By truncating the last b = [log -] bits of the values,

the algorithm becomes e-approximate with running time

O(n?V/b) = O(n®/¢), a polynomial.
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A Loose End

o If V is small, say n, then € = 2° and cannot be less than

one however b € N is picked.

e The remedy is to use the truncation idea only when, say,
V > n2.

— The dynamic-programming algorithm runs in time

O(n?V) = O(n*) when V < n?.
e Now,

b= [log Qg > [logne] >0
n

for suitably large n.
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Sunflowers

o FixpeZt and ¥ € ZT.

e A sunflower is a family of p sets {Py, Ps,...,P,},

called petals, each of cardinality at most /.

e All pairs of sets in the family must have the same
intersection (called the core of the sunflower).
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A Sample Sunflower

{{1,2,3,5},{1,2,6,9},{0,1,2,11},
{1,2,12,13},{1,2,8,10},{1,2,4,7}}
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The Erdos-Rado Lemma

Lemma 70 Let Z be a family of more than M = (p — 1)*4!
nonempty sets, each of cardinality £ or less. Then Z must

contain a sunflower.

e Induction on /.

e For / =1, p different singletons form a sunflower (with

an empty core).
e Suppose £ > 1.

e Consider a maximal subset D C Z of disjoint sets.

— Every set in Z — D intersects some set in D.
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©2001

The Proof of the Erdés-Rado Lemma (continued)

e Suppose that D contains at least p sets.

— D constitutes a sunflower with an empty core.

e Suppose that D contains fewer than p sets.
Let D be the union of all sets in D.
|ID| < (p—1)¢ and D intersects every set in Z.
There is a d € D that intersects more than
@KK = (p— 1)1 —1)! sets in Z.
Consider Z2' ={Z — {d} : Z € Z}.
Z' has more than M’ = (p — 1)*71(£ — 1)! sets.
M’ is just M with ¢ decreased by one.
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The Proof of the Erdés-Rado Lemma (continued)

e (continued)

— Z’ contains a sunflower by induction, say
{P1,Ps,...,Pp}.

— Now,
{PrU{d},PU{d},... ,P,U{d}}

is a sunflower in Z.
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Comments on the Erdos-Rado Lemma

A family of more than M sets must contain a sunflower.

Plucking a sunflower entails replacing the sets in the

sunflower by its core.

By repeatedly finding a sunflower and plucking it, we
can reduce a family with more than M sets to a family
with at most M sets.

If Z is a family of sets, the above result is denoted by
pluck(Z2).
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Exponential Circuit Complexity for NP-Complete Problems

n

e Almost all boolean functions require 5~ gates to

compute (generalized Theorem 9 on p. 110).

e Progress of using circuit complexity to prove exponential
lower bounds for NP-complete problems has been slow.

e We shall prove exponential lower bounds for
NP-complete problems using monotone circuits.
— Monotone circuits are circuits without — gates.

e Note that this does not settle the P vs. NP problem or

any of the conjectures on p. 350.
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The Power of Monotone Circuits

Monotone circuits can only compute monotone boolean

functions.

They are powerful enough to solve a P-complete
problem, MONOTONE CIRCUIT VALUE (p. 176).

There are NP-complete problems that are not
monotone; hence they cannot be computed by monotone

circuits whatever the sizes.

There are NP-complete problems that are monotone;
hence they can be computed by monotone circuits.

— HAMILTONIAN PATH and CLIQUE.
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CLIQUE, g

CLIQUE,, ; is the boolean function deciding whether a
graph G = (V, E) with n nodes has a clique of size k.

The input gates are the @ entries of the adjacency

matrix of (.

— The gate g;; is set to true if the associated
undirected edge {i,j } exists.

CLIQUE,, ; is a monotone function.

Thus it can be computed by a monotone circuit.
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Crude Circuits

e One possible circuit for CLIQUE,, ; does the following.

1. For each S C V with |S| = k, there is a subcircuit
with O(k?) A-gates testing whether S forms a clique.

. We then take an OR of the outcomes of all the Amv
subsets 51,55, . .. 9%3.

k

e This is a monotone circuit with O(k?(})) gates, which is

exponentially large unless k£ or n — k is a constant.
e A crude circuit CC(Xq, Xo,...,X,,) tests if any of
X,; CV forms a clique.

— The above-mentioned circuit is CC(Sy, S, .

©2001 Yuh-Dauh Lyuu, National Taiwan University Page 447



Razborov's Theorem

Theorem 71 (Razborov, 1985) There is a constant c

such that for large enough n, all monotone circuits for
CLIQUE,, ; with k = nl/4 have size at least n"

1/8
e We shall approximate any monotone circuit for
CLIQUE, ; by a restricted kind of crude circuit.

e The approximation will proceed in steps: one step for
each gate of the monotone circuit.

e Each step introduces few errors (false positives and false
negatives).

e But the resulting crude circuit has exponentially many

EIrrors.
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Proof of Razborov's Theorem
Fix k = nl/4.
Fix ¢ = nl/8,

p will be fixed later to be n'/®logn.

Fix M = (p — 1)%! (recall the Erdés-Rado Lemma on
p. 440).

Note that
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Proof of Razborov's Theorem (continued)

e Each crude circuit used in the approximation process is
of the form CC(X1, Xo, ..., X,), where:

- X; CV.
— [ X <4
—m < M.
e We shall show how to approximate any circuit for
CLIQUE, ; by such a crude circuit, inductively.
e The induction basis is straightforward:

— Input gate g;; is the crude circuit CC({¢,j}).
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Proof of Razborov's Theorem (continued)

e Any monotone circuit can be considered the OR or AND

of two subcircuits.

e We shall show how to build approximators of the overall
circuit from the approximators of the two subcircuits.
— We are given two crude circuits CC(X) and CC(Y).

X and ) are two families of at most M sets of nodes,

each set containing at most £ nodes.

We construct the approximate OR and the
approximate AND of these circuits.

Then show both approximations introduce few errors.
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Proof of Razborov's Theorem (continued)

e Error analysis will be applied to only positive

examples and negative examples.

e A positive example is a graph that has @ edges

connecting k nodes in all possible ways.

— There are ANV such graphs and they all should elicit a
true output from CLIQUE, .

e A negative example: Color the nodes with £ — 1
different colors and join by an edge any two nodes that
are colored differently.

— There are (kK — 1)" such graphs and they all should
elicit a false output from CLIQUE,, .

Y
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