Prover and Verifier

There are two parties to a proof.
— The prover (Peggy).
— The verifier (Victor).

Given an assertion, the prover’s goal is to convince the

verifier of its validity (completeness).

The verifier’s objective is to accept only correct

assertions (soundness).

The verifier usually has an easier job than the prover.
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Interactive Proof Systems

An interactive proof for a language L is a sequence of

questions and answers between the two parties.

At the end of the interaction, the verifier decides based
on the knowledge he acquired in the proof process
whether the claim is true or false.

The verifier must be a probabilistic polynomial-time
algorithm.

The prover runs an exponential-time algorithm.

©2001 Yuh-Dauh Lyuu, National Taiwan University Page 383



Interactive Proof Systems (continued)

e The system decides L if the following two conditions

hold for any common input x.

— If x € L, then the probability that = is accepted by

the verifier is at least 1 — 2121,

— If z ¢ L, then the probability that x is accepted by
the verifier with any prover replacing the original

prover is at most 27171

e Neither the number of rounds nor the lengths of the

messages can be more than a polynomial in |z |.

©2001 Yuh-Dauh Lyuu, National Taiwan University Page 384



An Interactive Proof
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P

e IP is the class of all languages decided by an interactive

proof system.

e When z € L, the completeness condition can be
modified to require that the verifier accepts with
certainty without affecting IP.

e Similar things cannot be said of the soundness condition
when x ¢ L.

aGoldwasser, Micali, Rackoff, 1985.
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The Relations of IP with Other Classes
e NP C IP.

— IP becomes NP when the verifier is deterministic.

e BPP C IP.

— IP becomes BPP when the verifier ignores the

prover’s messages.

e IP actually coincides with PSPACE.?

aShamir, 1990.
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Graph Nonisomorphism

Two NHQUTm QH — a\fmwv and Qw — C\w“ mwv are
isomorphic if there exists a m which is a one-one and

onto mapping of the nodes set V; to V5 so that
(u,v) € F1 if and only if (w(u),w(v)) € Fs.

<H = <M — Aﬁu_.vMu u\;“v.
The task is to answer if G 2% Go.

Little is known about the complexity of the problem
except that it is in coNP (how about NP? NP-complete?
BPP?).

No known polynomial-time algorithms.
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A 2-Round Algorithm

Victor selects a random ¢ € {1,2 };
Victor selects a random permutation 7 on { 1,2, .
Victor applies 7w on graph G; to obtain graph H;
Victor sends (G1, H) to Peggy;
if G1 = H then
Peggy sends 5 = 1 to Victor;
else
Peggy sends 57 = 2 to Victor;
end if
if 7 =14 then

1:
2:
3:
4:
5%
6:
7
8:
9:

—_ =
_ O

Victor accepts;

else

—_
w N

Victor rejects;
end if

[
e
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Analysis

e Victor runs in probabilistic polynomial time.

e Suppose the two graphs are no isomorphic.
— Peggy is able to tell which G; is isomorphic to H.

— Hence Victor always accepts.

e Suppose the two graphs are isomorphic.

— No matter which ¢ is picked by Victor, Peggy or anybody
always sees identical graphs.

— Peggy or anybody with exponential power has only

probability one half of guessing ¢ correctly.

— Hence Victor accepts with probability 1/2.

e Repeat the algorithm to obtain the desired probabilities.
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Zero Knowledge Proofs®

e An interactive proof protocol (P, V) for language L has the
perfect zero-knowledge property if:

— For every verifier V', there is a probabilistic algorithm M

with expected polynomial running time.

— M on any input x € L generates the same probability
distribution as the one that can be observed on the

communication channel of (P,V') on input z.

e Whatever a verifier can learn from the specified prover P via
the communication channel could as well be computed from

the verifier alone.

aGoldwasser, Micali, Rackoff, 1985.
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Comments
e The verifier does not learn anything except “x € L.”

e For all practical purposes “whatever” can be done after
interacting with a zero-knowledge prover can be done
when just believing that the assertion he claims is

indeed valid.
e Zero knowledge is a property of the prover.

— It is the robustness of the prover against attempts of
the verifier to extract knowledge via interaction.

— The verifier may deviate arbitrarily (but in

polynomial time) from the predetermined program.
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Comments (continued)

Zero-knowledge proofs yield no knowledge in the sense
that they can be constructed by the verifier who believes
the statement, and yet these proofs do convince him.

The “paradox” is resolved by noting that it is not the
text of the conversation that convinces the verifier, but
the fact that this conversation was held “on line.”

There is no zero-knowledge requirement when = ¢ L.

Computational zero-knowledge proofs are based on

complexity assumptions.
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Zero-Knowledge Proof of 3 Colorability
1: fori=1,2,...,|E|? do
2:  Peggy chooses a random permutation 7 of the

3-coloring ¢;
Peggy encrypts it as 7(¢(1)), 7(¢(2)), ..., w(4(|V]))
and sends it to Victor;
Victor chooses at random an edge e € E and sends it
to Peggy for the coloring of the endpoints of e;
if e = (u,v) € E then
Peggy reveals the coloring of 4 and v and “proves”
that they correspond to their encryption;
else
Peggy stops;
end if
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if the “proot” provided in Line 6 is not valid then

Victor rejects and stops;

end if
if m(¢(u)) =m(P(v)) or m(P(w)), m(d(v)) € {1,2,3}
then

14: Victor rejects and stops;

15: end if

16: end for

17: Victor accepts;

The algorithm is due to Goldreich, Micali, Wigderson, 1986.
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Analysis

If the graph is 3-colorable and both prover and verifier
follow the protocol, then the verifier always accepts.

If the graph is not 3-colorable and the verifier follows
the protocol, then no matter how the prover plays, the
verifier will accept with probability at most

(1—m )™ <e ™

Thus, the protocol is valid.

This protocol yields no knowledge to the specified
verifier, since all he gets is a sequence of random pairs.

The proof that the protocol is indeed zero-knowledge

(with respect to any verifier) is much more complex.
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Tackling Intractable Problems

Many important problems are NP-complete or worse.
Heuristics have been developed to attack them.
They are approximation algorithms.

How good are the approximations?

— We are looking for theoretically guaranteed bounds,

not “empirical” bounds.

Are there problems that cannot be approximated well?
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Some Definitions

Given an optimization problem, each problem
instance = has a set of feasible solutions F'(x).

Each feasible solution s € F'(x) has a cost ¢(s) € Z™.

The optimum cost is OPT(z) = minge p(,) c(s) for a

minimization problem.

It is OPT(z) = maXscp(5) ¢(s) for a maximization

problem.
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Approximation Algorithms

e Let algorithm M on z returns a feasible solution.

e M is an e-approximation algorithm, where € > 0, if
for all x,

o(M(z)) — oPT(a)
max(opt(z), c(M(z)))

< e.

— For a minization problem,

(M (z)) — minye pa) ()
(M (x)) =€

— For a maximization problem,

MaXsec F(x) QAMV - QAiA&vv < e

MmaXse F(x) QAMV N
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Lower and Upper Bounds

e For a minization problem,

Bwﬁmmﬁﬁnv QAMV
1 —¢€ .

c(M(z))

e For a maximization problem,

(1 —e€) x Mmb%mmv c(s) < c(M(x)).
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Comments
e takes values between 0 and 1.

For maximization problems, an e-approximation
algorithm returns solutions that are never smaller than

1 — € times the optimum.

For minimization problems, an e-approximation

algorithm returns solutions that are never more than

1

— times the optimum.

For each NP-complete optimization problem, we shall be

interested in determining the smallest € for which there

is a polynomial-time e-approximation algorithm.

Sometimes, € has no minimum value.
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Approximation Thresholds

e The approximation threshold is the greatest lower
bound of all € > 0 such that there is a polynomial-time

e-approximation algorithm.

e The approximation threshold of an optimization problem
can be anywhere between 0 (approximation to any
desired degree) and 1 (no approximation is possible).

e If P = NP, then all optimization problems in NP have
approximation threshold 0.
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NODE COVER

NODE COVER seeks the smallest C' C V' in graph
G = (V, E) such that for each edge in F, at least one of

its endpoints is in C.

A heuristic to obtain a good node cover is to iteratively
move a node with the highest degree to the cover.

This turns out to produce ¢(M (x))/oPT(z) = O(logn).

It is not an e-approximation algorithm for any € < 1.
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A 0.5-Approximation Algorithm

. C = Sw

. while G # 0 do
Delete any edge |[u,v] from G;
Add v and v to C;

: end while

: return C/;
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The Analysis
C' contains |C|/2 edges.

No two edges of C share a node.

Any node cover must contain at least one node from

each of these edges.
This means that opT(G) > |C|/2.

So

C| — oPT(G)
C]

<1/2.
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Maximum Satisfiability

e Given a set of clauses, MAXSAT seeks the truth

assignment that satisfies the most.
e MAX2SAT is already NP-complete (p. 197).

e Consider the more general k-MAXGSAT.

— Given a set of boolean expressions
¢ = {¢1,Pa,...,0m} in n variables.

— Each ¢; is a general expression involving k£ variables.

— k-MAXGSAT seeks the truth assignment that satisfies

the most expressions.
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A Probabilistic Interpretation of an Algorithm

e Each ¢; involves k variables and is satisfied by ¢; of the
2% truth assignments.

e A random truth assignment € {0, 1}" satisfies ¢; with
UH.OU@UZ;% @A%@v — ?\Mw

e Hence a random truth assignment satisfies an expected

number

m

p(®) =) pl¢:)

1=1

of expressions ¢;.
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The Search Procedure

Clearly

p(®) = Wgﬁﬁ — true]) + p(®|z; = false]) ).

Select the t € {true,false} such that p(®|x;
the larger one.

Note that p(®[z, = t]) > p(P).

Repeat with expression ®[x; = t| until all variables have

been given truth values and all ¢; are either true or false.

At least p(®) expressions are satisfied because our

expectation never decreased in the search process.
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Approximation Threshold

The optimum is at most the number of satisfiable
¢;—i.e., those with p(¢;) > 0.

Hence the ratio of algorithm’s output vs. the optimum is

o p(®)  _ 2.p(4)

- < min p(¢;).
MUE@:V@ 1 MUE?.VVO 1 p(¢i)>0

The heuristic is a polynomial-time e-approximation

algorithm with € = 1 — min,4,)>0 p(¢:).

Because p(¢;) > 27%, the heuristic is a polynomial-time
e-approximation algorithm with e =1 — 27,
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Back to MAXSAT
In MAXSAT, the ¢;’s are clauses.
Hence p(¢;) > 1/2.

The heuristic becomes a polynomial-time
e-approximation algorithm with € = 1/2.

If the clauses have at least distinct k£ distinct literals,
then p(¢;) > 1 —27F.

The heuristic becomes a polynomial-time

e-approximation algorithm with € = 27F.
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