Prover and Verifier

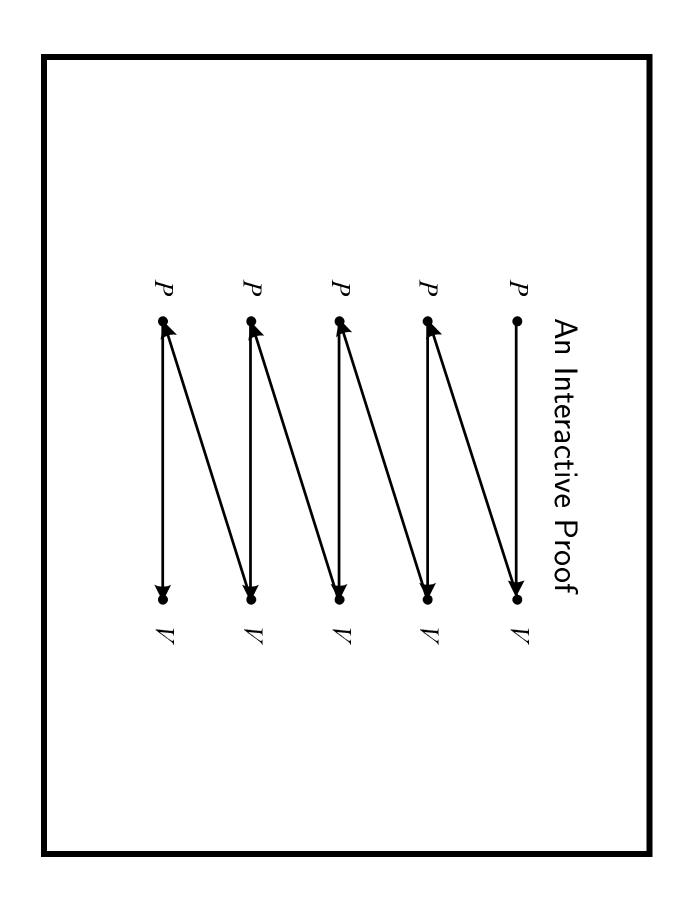
- There are two parties to a proof.
- The prover (Peggy).
- The verifier (Victor).
- Given an assertion, the prover's goal is to convince the verifier of its validity (completeness).
- The verifier's objective is to accept only correct assertions (soundness).
- The verifier usually has an easier job than the prover.

Interactive Proof Systems

- An interactive proof for a language L is a sequence of questions and answers between the two parties.
- At the end of the interaction, the verifier decides based on the knowledge he acquired in the proof process whether the claim is true or false.
- The verifier must be a probabilistic polynomial-time algorithm.
- The prover runs an exponential-time algorithm.

Interactive Proof Systems (continued)

- The system decides L if the following two conditions hold for any common input x.
- the verifier is at least $1 2^{-|x|}$. If $x \in L$, then the probability that x is accepted by
- prover is at most $2^{-|x|}$. If $x \notin L$, then the probability that x is accepted by the verifier with any prover replacing the original
- Neither the number of rounds nor the lengths of the messages can be more than a polynomial in |x|.



Pa

- proof system. IP is the class of all languages decided by an interactive
- When $x \in L$, the completeness condition can be certainty without affecting IP. modified to require that the verifier accepts with
- Similar things cannot be said of the soundness condition when $x \notin L$.

^aGoldwasser, Micali, Rackoff, 1985.

©2001 Yuh-Dauh Lyuu, National Taiwan University

The Relations of IP with Other Classes

- NP \subseteq IP.
- IP becomes NP when the verifier is deterministic.
- BPP \subseteq IP.
- IP becomes BPP when the verifier ignores the prover's messages
- IP actually coincides with PSPACE.^a

^aShamir, 1990.

Graph Nonisomorphism

- Two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are onto mapping of the nodes set V_1 to V_2 so that isomorphic if there exists a π which is a one-one and $(u,v) \in E_1$ if and only if $(\pi(u),\pi(v)) \in E_2$.
- $V_1 = V_2 = \{1, 2, \dots, n\}.$
- The task is to answer if $G_1 \not\cong G_2$.
- BPP'() Little is known about the complexity of the problem except that it is in coNP (how about NP? NP-complete?
- No known polynomial-time algorithms.

A 2-Round Algorithm

- 1: Victor selects a random $i \in \{1, 2\}$;
- 2: Victor selects a random permutation π on $\{1, 2, ..., n\}$;
- 3: Victor applies π on graph G_i to obtain graph H;
- 4: Victor sends (G_1, H) to Peggy;
- 5: if $G_1 \cong H$ then
- 6: Peggy sends j = 1 to Victor;
- 7: else
- 8: Peggy sends j = 2 to Victor;
- 9: end if
- 10: if j = i then
- 1: Victor accepts;
- 12: **else**
- 13: Victor rejects;
- 14: end if

Analysis

- Victor runs in probabilistic polynomial time
- Suppose the two graphs are no isomorphic

Peggy is able to tell which G_i is isomorphic to H.

- Hence Victor always accepts
- Suppose the two graphs are isomorphic.
- No matter which i is picked by Victor, Peggy or anybody always sees identical graphs.
- Peggy or anybody with exponential power has only probability one half of guessing i correctly.
- Hence Victor accepts with probability 1/2.
- Repeat the algorithm to obtain the desired probabilities.

Zero Knowledge Proofs^a

- An interactive proof protocol (P, V) for language L has the perfect zero-knowledge property if:
- For every verifier V', there is a probabilistic algorithm Mwith expected polynomial running time.
- communication channel of (P, V') on input xM on any input $x \in L$ generates the same probability distribution as the one that can be observed on the
- the communication channel could as well be computed from Whatever a verifier can learn from the specified prover P via the verifier alone

^aGoldwasser, Micali, Rackoff, 1985.

Comments

- The verifier does not learn anything except " $x \in L$."
- For all practical purposes "whatever" can be done after indeed valid. interacting with a zero-knowledge prover can be done when just believing that the assertion he claims is
- Zero knowledge is a property of the prover.
- It is the robustness of the prover against attempts of the verifier to extract knowledge via interaction.
- The verifier may deviate arbitrarily (but in polynomial time) from the predetermined program.

Comments (continued)

- Zero-knowledge proofs yield no knowledge in the sense the statement, and yet these proofs do convince him. that they can be constructed by the verifier who believes
- The "paradox" is resolved by noting that it is not the the fact that this conversation was held "on line." text of the conversation that convinces the verifier, but
- There is no zero-knowledge requirement when $x \notin L$.
- Computational zero-knowledge proofs are based on complexity assumptions

Zero-Knowledge Proof of 3 Colorability

- 1: **for** $i = 1, 2, ..., |E|^2$ **do**
- 2 Peggy chooses a random permutation π of the 3-coloring ϕ ;
- ယ Peggy encrypts it as $\pi(\phi(1)), \pi(\phi(2)), \ldots, \pi(\phi(|V|))$ and sends it to Victor;
- 4 to Peggy for the coloring of the endpoints of e; Victor chooses at random an edge $e \in E$ and sends it
- 5: if $e = (u, v) \in E$ then
- 6: that they correspond to their encryption; Peggy reveals the coloring of u and v and "proves"
- 7: else
- 8: Peggy stops;
- 9: end if

©2001 Yuh-Dauh Lyuu, National Taiwan University

- 10: if the "proof" provided in Line 6 is not valid then
- 11: Victor rejects and stops;
- 12: end if
- 13: if $\pi(\phi(u)) = \pi(\phi(v))$ or $\pi(\phi(u)), \pi(\phi(v)) \notin \{1, 2, 3\}$
- 14: Victor rejects and stops;
- 15: end if
- 16: end for
- 17: Victor accepts;

The algorithm is due to Goldreich, Micali, Wigderson, 1986.

Analysis

- If the graph is 3-colorable and both prover and verifier follow the protocol, then the verifier always accepts.
- If the graph is not 3-colorable and the verifier follows $(1 - m^{-1})^{m^2} \le e^{-m}.$ verifier will accept with probability at most the protocol, then no matter how the prover plays, the
- Thus, the protocol is valid.
- This protocol yields no knowledge to the specified verifier, since all he gets is a sequence of random pairs.
- The proof that the protocol is indeed zero-knowledge (with respect to any verifier) is much more complex.

Tackling Intractable Problems

- Many important problems are NP-complete or worse.
- Heuristics have been developed to attack them.
- They are approximation algorithms.
- How good are the approximations?
- not "empirical" bounds. We are looking for theoretically guaranteed bounds,
- Are there problems that cannot be approximated well?

Some Definitions

- Given an optimization problem, each problem instance x has a set of **feasible solutions** F(x).
- Each feasible solution $s \in F(x)$ has a cost $c(s) \in \mathbb{Z}^+$.
- The optimum cost is $OPT(x) = \min_{s \in F(x)} c(s)$ for a minimization problem.
- It is $OPT(x) = \max_{s \in F(x)} c(s)$ for a maximization problem.

Approximation Algorithms

- Let algorithm M on x returns a feasible solution.
- for all x, M is an ϵ -approximation algorithm, where $\epsilon > 0$, if

$$\frac{|c(M(x)) - \text{OPT}(x)|}{\max(\text{opt}(x), c(M(x)))} \le \epsilon.$$

For a minization problem,

$$\frac{c(M(x)) - \min_{s \in F(x)} c(s)}{c(M(x))} \le \epsilon.$$

For a maximization problem,

$$\frac{\max_{s \in F(x)} c(s) - c(M(x))}{\max_{s \in F(x)} c(s)} \le \epsilon.$$

Lower and Upper Bounds

For a minization problem,

$$c(M(x)) \le \frac{\min_{s \in F(x)} c(s)}{1 - \epsilon}.$$

For a maximization problem,

$$(1-\epsilon) \times \max_{s \in F(x)} c(s) \le c(M(x)).$$

Comments

- \bullet ϵ takes values between 0 and 1.
- For maximization problems, an ϵ -approximation algorithm returns solutions that are never smaller than $1-\epsilon$ times the optimum.
- For minimization problems, an ϵ -approximation algorithm returns solutions that are never more than $\frac{1}{1-\epsilon}$ times the optimum
- For each NP-complete optimization problem, we shall be is a polynomial-time ϵ -approximation algorithm interested in determining the smallest ϵ for which there
- Sometimes, ϵ has no minimum value.

Approximation Thresholds

- The approximation threshold is the greatest lower e-approximation algorithm. bound of all $\epsilon > 0$ such that there is a polynomial-time
- The approximation threshold of an optimization problem desired degree) and 1 (no approximation is possible). can be anywhere between 0 (approximation to any
- If P = NP, then all optimization problems in NP have approximation threshold 0.

NODE COVER

- NODE COVER seeks the smallest $C \subseteq V$ in graph its endpoints is in C. G = (V, E) such that for each edge in E, at least one of
- A heuristic to obtain a good node cover is to iteratively move a node with the highest degree to the cover.
- This turns out to produce $c(M(x))/\text{OPT}(x) = \Theta(\log n)$.
- It is not an ϵ -approximation algorithm for any $\epsilon < 1$.

©2001 Yuh-Dauh Lyuu, National Taiwan University

A 0.5-Approximation Algorithm

- 1: $C := \emptyset$;
- 2: while $G \neq \emptyset$ do
- Delete any edge [u, v] from G;
- Add u and v to C;
- 6: return C; 5: end while

The Analysis

- C contains |C|/2 edges.
- No two edges of C share a node.
- Any node cover must contain at least one node from each of these edges.
- This means that $OPT(G) \ge |C|/2$.
- So

$$\frac{|C| - \mathrm{opt}(G)}{|C|} \le 1/2.$$

Maximum Satisfiability

- Given a set of clauses, MAXSAT seeks the truth assignment that satisfies the most.
- MAX2SAT is already NP-complete (p. 197).
- Consider the more general k-MAXGSAT.
- Given a set of boolean expressions $\Phi = \{\phi_1, \phi_2, \dots, \phi_m\}$ in n variables
- Each ϕ_i is a general expression involving k variables.
- k-MAXGSAT seeks the truth assignment that satisfies the most expressions.

A Probabilistic Interpretation of an Algorithm

- 2^k truth assignments. Each ϕ_i involves k variables and is satisfied by t_i of the
- probability $p(\phi_i) = t_i/2^k$. A random truth assignment $\in \{0,1\}^n$ satisfies ϕ_i with
- Hence a random truth assignment satisfies an expected number $p(\Phi) = \sum_{i=1}^{m} p(\phi_i)$

of expressions ϕ_i .

The Search Procedure

Clearly

$$p(\Phi) = \frac{1}{2} \{ p(\Phi[x_1 = \mathtt{true}]) + p(\Phi[x_1 = \mathtt{false}]) \}.$$

- Select the $t \in \{ \text{true}, \text{false} \}$ such that $p(\Phi[x_1 = t])$ is the larger one.
- Note that $p(\Phi[x_1 = t]) \ge p(\Phi)$.
- Repeat with expression $\Phi[x_1 = t]$ until all variables have been given truth values and all ϕ_i are either true or false.
- At least $p(\Phi)$ expressions are satisfied because our expectation never decreased in the search process

Approximation Threshold

- The optimum is at most the number of satisfiable ϕ_i —i.e., those with $p(\phi_i) > 0$.
- Hence the ratio of algorithm's output vs. the optimum is

$$\leq \frac{p(\Phi)}{\sum_{p(\phi_i)>0} 1} = \frac{\sum_i p(\phi_i)}{\sum_{p(\phi_i)>0} 1} \leq \min_{p(\phi_i)>0} p(\phi_i).$$

- The heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - \min_{p(\phi_i) > 0} p(\phi_i)$.
- Because $p(\phi_i) \geq 2^{-k}$, the heuristic is a polynomial-time ϵ -approximation algorithm with $\epsilon = 1 - 2^{-k}$.

Back to MAXSAT

- In MAXSAT, the ϕ_i 's are clauses.
- Hence $p(\phi_i) \geq 1/2$.
- The heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 1/2$.
- If the clauses have at least distinct k distinct literals, then $p(\phi_i) \ge 1 - 2^{-k}$.
- The heuristic becomes a polynomial-time ϵ -approximation algorithm with $\epsilon = 2^{-k}$.