Randomized Complexity Classes

e Let N be a polynomial-time precise NTM that runs in
time p(n) and has 2 nondeterministic choices at each

step.

e N is a polynomial Monte Carlo Turing machine
for a language L if the following conditions hold:

— If z € L, then at least half of the 2P(*]) computation
paths of V on x halt with “yes.”

— If ¢ ¢ L, then all computation paths halt with “no.”
e The class of all languages with polynomial Monte Carlo

TMs is denoted RP for randomized polynomial
time.
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Comments on RP
Nondeterministic steps can be seen as fair coin flips.
There are no false positive answers.

The probability of false negatives is at most 0.5.

Any constant 0 < e < 1 can replace 0.5.
— By repeating the algorithm £k times, the probability

of false negatives can be reduced to (1 — €)*.

In fact, € can be arbitrarily close to 0 as long as it is of
the order 1/p(n) for some polynomial p(n).

- I_om+|m — QAWV = O(p(n)).

2
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Where RP Fits
e P CRP C NP.

— A polynomial-time deterministic TM is like a

polynomial Monte Carlo TM except that all the coin

flips are ignored.

— A polynomial Monte Carlo TM is a polynomial-time
NTM with extra demands on the number of

accepting paths.
e COMPOSITENESS € RP.
e PRIMES € coRP.

e RP U coRP is a “plausible” notion of efficient

computation.
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/PP? (Zero Probabilistic Polynomial)
e The class ZPP is defined as RP N coRP.

e A language in ZPP has two Monte Carlo algorithms, one

with no false positives and another with no false negatives.

e If we repeatedly run both Monte Carlo algorithms, eventually

one definite answer will come (unlike RP).

— A positive answer from the one without false positives.

— A negative answer from the one without false negatives.

e The algorithm is called Las Vegas.

a@Gill, 1977.
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The ZPP Algorithm

{Suppose that L € ZPP.}
{ N7 has no false positives, and Ny has no false

negatives. }
. while true do
if N1(z) = “yes” then
return “yes”;
end if
if No(z) = “no” then
return “no”;
end if
. end while
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ZPP (continued)

e The erpected running time for it to happen is

polynomial.

— The probability that a run of the 2 algorithms does
not generate a definite answer is 0.5.

— Let p(n) be the running time of each run.

— The expected running time for a definite answer is
thus

.MU 0.5%p(n) = 2p(n).

e PRIMES € ZPP (whose proof remains inaccessible).
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Me Too, RP?

. {Suppose that L € RP.}
. {N decides L without false positives.}

1

2

3: while true do

4: if N(x) = “yes” then
5: return “yes”;
6

7

8

end if
{What to do here?}
. end while

e You eventually get a “yes” if x € L.

e But how to get a “no” when z & L?
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PP

e A language L is in the class PP if there is a
polynomial-time precise NTM N such that:

— For all inputs z, x € L if and only if more than half

of the computations of N (i.e., 2°(™~1 + 1 or up) on

input x end up with a “yes.”

— We say that N decides L by majority.

® MAJSAT: is it true that the majority of the 2" truth
assignments to ¢’s n variables satisfy it?

e MAJSAT is PP-complete.

e PP is closed under complement.
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NP vs. PP
Theorem 61 NP C PP.
e Suppose that L € NP is decided by an NTM N.

e Construct a new NTM N':
— N’ has one more extra state s than V.

— N’ starts at s and either branches to N’s program or

simply accepts (after p(|z|) steps).
e Consider an input z.

e Suppose that N on x computes for p(|z|) steps and

produces 2PUz)) computation paths.
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The Proof (continued)

Then N’ has 2P(2D+1 computation paths.

Half of these will always halt with “yes.”

Thus a majority of the paths of N’ accept z if and only
if at least one path of N accepts .

That is, if and only if x € L.

So N’ accepts L by majority and L € PP.
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Theory of Large Deviations

You have a biased coin.

One side has probability 0.5 + € to appear and the other
0.5 — ¢, for some 0 < € < 1.

But you do not know which is which.

How to decide which side is the more likely—with high
confidence?

Answer: Flip the coin many times and pick the side that
appeared the most times.

Question: Can you quantify the confidence?
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The Chernoff Bound
Theorem 62 (Chernoff, 1952) Suppose that

x1,%9,...,Ty, are independent random variables taking the

values 1 and 0 with probabilities p and 1 — p, respectively.
Let X = MUM.@HH x;. Then for all 0 <0 <1,

prob| X > (14+0)pn| < e=0"Pn/3,

e The probability that the deviate of a binomial
random variable from its expected value decreases

exponentially with the deviation.

e The Chernoff bound is asymptotically optimal.
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The Proof

Let ¢t be any positive real number.

Then

prob[ X > (1 + 0)pn] = prob[e!X > t(1+0)rn ],

Markov’s inequality (p. 282) generalized to real-valued
random variables says that

prob [e'* > kE[e' |] < 1/k.

With k = et(1+9rn /B[ !X | we have

prob[ X > (1 +0)pn] < e tAHOPrptX
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The Proof (continued)

e Because X =) ", z; and z;’s are independent,
E[e™] = (B[ ])" = [1+p(e' —1)]™.
e Substituting, we obtain

prob[ X > (1 +0)pn] < e "I [14p(e’ —1)]"

< mluﬁl_'mvﬁzmﬁzﬁmulc

as (14+a)™ < e for all a > 0.
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The Proof (continued)

e With the choice of ¢ = In(1 + 6), the above becomes
prob[ X > (1 + 0)pn] < ePr10~-(1+0)In(1+0)]

03 04

e The exponent expands to IW + = — .- for

6 12 T
0 <6 <1, which is less than

1 0 (1 1
_ 4+ ) < 4=
(3+5) = (-3+s
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Effectiveness of the Majority Rule

From prob[ X < (1 —0)pn] < e~ 5P (prove it), it follows
that:

Corollary 63 If p = (1/2) + € for some 0 < e < 1/2, then

n
prob Ma@ <n/2| < g€ /2,
i=1

e The textbook’s corollary to Lemma 11.9 seems incorrect.

e Our original problem (p. 329) hence demands ~ 1.4k/e”
independent coin flips to guarantee making an error
with probability at most 2% with the majority rule.
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BPP? (Bounded Probabilistic Polynomial)

e The class BPP contains all languages for which there is
a precise polynomial-time NTM N such that:

— If z € L, then at least 3/4 of the computation paths
of N on z accept, and

— If x € L, then at least 3/4 of the computation paths
of N on x reject.

e N accepts or rejects by a clear majority.

aGill, 1977.
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Magic 3/47

e The number 3/4 bounds the probability of a right

answer away from 1/2.

e Any constant strictly between 1/2 and 1 can be used

without affecting the class BPP.

e In fact, any 0.5 plus inverse polynomial

0.5+ 1/p(n)

between 1/2 and 1 can be used.
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The Majority Vote Algorithm

Suppose that L is decided by N by majority (1/2) + e.
1: for:=1,2,....,2k+ 1 do
Run N on input z;
. end for
. if “yes” is the majority answer then

44 7

yes
. else

2503 m

: end if
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Analysis

The running time remains polynomial, being 2k + 1

times N’s running time.

By Corollary 63 (p. 334), the probability of a false

. _ 2
answer is at most e € k.

By taking k = [ 2/€? ], the error probability is at most
1 /4,

As with the RP case, € can be any inverse polynomial,
because k remains polynomial in n.
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Aspects of BPP

e BPP is the most comprehensive yet plausible notion of

efficient computation.

— If a problem is in BPP, we take it to mean that the
problem can be solved efficiently.

e (RPUcoRP) C (NP UcoNP) and (RP U coRP) C BPP.
e Whether BPP C (NP U coNP) is unknown.
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A Review of Classes
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coBPP

The definition of BPP is symmetric: acceptance by clear

majority and rejection by clear majority.

An algorithm for L € BPP becomes one for L € coBPP

by reversing the answer.
Hence BPP = coBPP.

This approach does not work for RP (it did not work for
NP either).
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BPP and coBPP

342



Circuit Complexity

Circuit complexity is based on boolean circuits instead

of Turing machines.

A boolean circuit with n inputs computes a boolean

function of n variables.

By identify true with 1 and false with 0, a boolean
circuit with n inputs accepts certain strings in { 0,1 }™.

To relate circuits with arbitrary languages, we need one
circuit for each possible input length n.
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Formal Definitions
e The size of a circuit is the number of gates in it.

e A family of circuits is an infinite sequence
C = (Cy,(C4,...) of boolean circuits, where C,, has n

boolean inputs.
e [ C {0,1}* has polynomial circuits if there is a family
of circuits C such that:

— The size of C,, is at most p(n) for some fixed

polynomial p.

— For input z € {0,1}*, C|;| outputs 1 if and only if
x € L.
x C), accepts LN {0,1}".
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The Circuit Complexity of P

Proposition 64 All languages in P have polynomial

crreuits.

Let L € P be decided by a TM in time p(n).

The construction in the proof of Theorem 25 (p. 169)
gives, for any input of size n, a circuit with O(p(n)?)
gates that accepts L N {0,1}".

The size of the circuit depends only on L and the length
of the input.

The size of the circuit is polynomial in n.
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Languages That Polynomial Circuits Accept

e It is untrue that polynomial circuits accept only languages in
P.

e There are undecidable languages that have polynomial
circuits.
Let L C {0,1}" be an undecidable language.
Let U = {1™ : the binary expansion of n is in L}.
U must be undecidable.

U N {1}" can be accepted by C,, that is trivially false if
1™ € U and trivially true if 1™ € U.

The family of circuits (Co, C1,...) is polynomial in size.
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A Patch

e Despite their simplicity,
— Circuits are not a realistic model of computation.

— Polynomial circuits are not a plausible notion of
efficient computation.

e What gives?

e The effective and efficient constructibility of Cy, C1, .
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Uniformity

o A family (Cy, Ch,...) of circuits is uniform if there is a
log n-space bounded TM which on input 1™ outputs C,.

— Circuits now cannot accept undecidable languages.
e A language has uniformly polynomial circuits if

there is a uniform family of polynomial circuits that
decides it.
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