Randomized Complexity Classes

- step. Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each
- N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:
- paths of N on x halt with "yes." If $x \in L$, then at least half of the $2^{p(|x|)}$ computation
- If $x \notin L$, then all computation paths halt with "no."
- The class of all languages with polynomial Monte Carlo TMs is denoted **RP** for randomized polynomial

Comments on RP

- Nondeterministic steps can be seen as fair coin flips.
- There are no false positive answers.

The probability of false negatives is at most 0.5.

- Any constant $0 \le \epsilon \le 1$ can replace 0.5.
- of false negatives can be reduced to $(1 \epsilon)^k$. By repeating the algorithm k times, the probability
- Now pick $k = \left\lceil -\frac{1}{\log_2 1 \epsilon} \right\rceil$.
- In fact, ϵ can be arbitrarily close to 0 as long as it is of the order 1/p(n) for some polynomial p(n).

$$-\frac{1}{\log_2 1 - \epsilon} = O(\frac{1}{\epsilon}) = O(p(n)).$$

Where RP Fits

- $P \subseteq RP \subseteq NP$.
- A polynomial-time deterministic TM is like a polynomial Monte Carlo TM except that all the coin flips are ignored
- accepting paths. A polynomial Monte Carlo TM is a polynomial-time NTM with extra demands on the number of
- Compositeness $\in RP$.
- PRIMES \in coRP.
- $RP \cup coRP$ is a "plausible" notion of efficient computation.

ZPPa (Zero Probabilistic Polynomial)

- The class **ZPP** is defined as $RP \cap coRP$.
- A language in ZPP has two Monte Carlo algorithms, one with no false positives and another with no false negatives.
- If we repeatedly run both Monte Carlo algorithms, eventually one definite answer will come (unlike RP).
- A positive answer from the one without false positives.
- A negative answer from the one without false negatives.
- The algorithm is called Las Vegas.

^aGill, 1977.

The ZPP Algorithm

- 1: {Suppose that $L \in ZPP$.}
- 2: $\{N_1 \text{ has no false positives, and } N_2 \text{ has no false} \}$ negatives.}
- 3: while true do
- 1: **if** $N_1(x) = \text{"yes"}$ **then**
- 5: return "yes";
- 6: end if
- 7: **if** $N_2(x)=$ "no" **then**
- 8: return "no";
- 9: end if
- 10: end while

ZPP (continued)

- The expected running time for it to happen is
- polynomial. The probability that a run of the 2 algorithms does not generate a definite answer is 0.5.
- Let p(n) be the running time of each run.
- The expected running time for a definite answer is

$$\sum_{i=1}^{\infty} 0.5^{i} ip(n) = 2p(n).$$

PRIMES \in ZPP (whose proof remains inaccessible).

Me Too, RP?

- 1: {Suppose that $L \in \mathbb{RP}$.}
- 2: $\{N \text{ decides } L \text{ without false positives.} \}$
- 3: while true do
- if N(x) = "yes" then
- 5: return "yes";
- 6: end if
- : {What to do here?}
- 8: end while
- You eventually get a "yes" if $x \in L$.
- But how to get a "no" when $x \notin L$?

P

- A language L is in the class **PP** if there is a polynomial-time precise NTM N such that:
- of the computations of N (i.e., $2^{p(n)-1} + 1$ or up) on For all inputs $x, x \in L$ if and only if more than half input x end up with a "yes."
- We say that N decides L by majority.
- MAJSAT: is it true that the majority of the 2^n truth assignments to ϕ 's n variables satisfy it?
- MAJSAT is PP-complete.
- PP is closed under complement.

NP vs. PP

Theorem 61 $NP \subseteq PP$.

- Suppose that $L \in NP$ is decided by an NTM N.
- Construct a new NTM N':
- -N' has one more extra state s than N.
- N' starts at s and either branches to N's program or simply accepts (after p(|x|) steps).
- Consider an input x.
- Suppose that N on x computes for p(|x|) steps and produces $2^{p(|x|)}$ computation paths.

The Proof (continued)

- Then N' has $2^{p(|x|)+1}$ computation paths.
- Half of these will always halt with "yes."
- Thus a majority of the paths of N' accept x if and only if at least one path of N accepts x.
- That is, if and only if $x \in L$.
- So N' accepts L by majority and $L \in PP$.

Theory of Large Deviations

- You have a biased coin.
- One side has probability $0.5 + \epsilon$ to appear and the other $0.5 - \epsilon$, for some $0 < \epsilon < 1$.
- But you do not know which is which.
- How to decide which side is the more likely—with high confidence?
- appeared the most times. Answer: Flip the coin many times and pick the side that
- Question: Can you quantify the confidence?

The Chernoff Bound

Theorem 62 (Chernoff, 1952) Suppose that

 x_1, x_2, \ldots, x_n are independent random variables taking the Let $X = \sum_{i=1}^{n} x_i$. Then for all $0 \le \theta \le 1$, values 1 and 0 with probabilities p and 1-p, respectively.

$$\operatorname{prob}[X \ge (1+\theta)pn] \le e^{-\theta^2 pn/3}.$$

- The probability that the deviate of a binomial exponentially with the deviation random variable from its expected value decreases
- The Chernoff bound is asymptotically optimal.

The Proof

- Let t be any positive real number.
- Then

$$\operatorname{prob}[X \ge (1+\theta)pn] = \operatorname{prob}[e^{tX} \ge e^{t(1+\theta)pn}].$$

Markov's inequality (p. 282) generalized to real-valued random variables says that

$$\operatorname{prob}\left[e^{tX} \ge kE[\,e^{tX}\,]\,\right] \le 1/k.$$

With $k = e^{t(1+\theta)pn}/E[e^{tX}]$, we have

$$\operatorname{prob}[X \ge (1+\theta)pn] \le e^{-t(1+\theta)pn} E[e^{tX}].$$

The Proof (continued)

Because $X = \sum_{i=1}^{n} x_i$ and x_i 's are independent,

$$E[e^{tX}] = (E[e^{tx_1}])^n = [1 + p(e^t - 1)]^n.$$

Substituting, we obtain

$$prob[X \ge (1+\theta)pn] \le e^{-t(1+\theta)pn}[1+p(e^t-1)]^n$$

$$\le e^{-t(1+\theta)pn}e^{pn(e^t-1)}$$

as $(1+a)^n \le e^{an}$ for all a > 0.

The Proof (continued)

With the choice of $t = \ln(1 + \theta)$, the above becomes

$$\operatorname{prob}[X \ge (1+\theta)pn] \le e^{pn[\theta - (1+\theta)\ln(1+\theta)]}.$$

The exponent expands to $-\frac{\theta^2}{2} + \frac{\theta^3}{6} - \frac{\theta^4}{12} + \cdots$ for $0 \le \theta \le 1$, which is less than

$$-\frac{\theta^2}{2} + \frac{\theta^3}{6} \le \theta^2 \left(-\frac{1}{2} + \frac{\theta}{6} \right) \le \theta^2 \left(-\frac{1}{2} + \frac{1}{6} \right) = -\frac{\theta^2}{3}.$$

Effectiveness of the Majority Rule

From $\operatorname{prob}[X \leq (1-\theta)pn] \leq e^{-\frac{\theta^2}{2}pn}$ (prove it), it follows

Corollary 63 If $p = (1/2) + \epsilon$ for some $0 \le \epsilon \le 1/2$, then

$$\operatorname{prob}\left[\sum_{i=1}^{n} x_i \le n/2\right] \le e^{-\epsilon^2 n/2}.$$

- The textbook's corollary to Lemma 11.9 seems incorrect.
- Our original problem (p. 329) hence demands $\approx 1.4k/\epsilon^2$ independent coin flips to guarantee making an error with probability at most 2^{-k} with the majority rule

BPP^a (Bounded Probabilistic Polynomial)

- The class **BPP** contains all languages for which there is a precise polynomial-time NTM N such that:
- of N on x accept, and If $x \in L$, then at least 3/4 of the computation paths
- of N on x reject. If $x \notin L$, then at least 3/4 of the computation paths
- N accepts or rejects by a *clear* majority.

^aGill, 1977.

Magic 3/4?

- The number 3/4 bounds the probability of a right answer away from 1/2.
- Any constant strictly between 1/2 and 1 can be used without affecting the class BPP.
- In fact, any 0.5 plus inverse polynomial

$$0.5 + 1/p(n)$$

between 1/2 and 1 can be used.

The Majority Vote Algorithm

Suppose that L is decided by N by majority $(1/2) + \epsilon$.

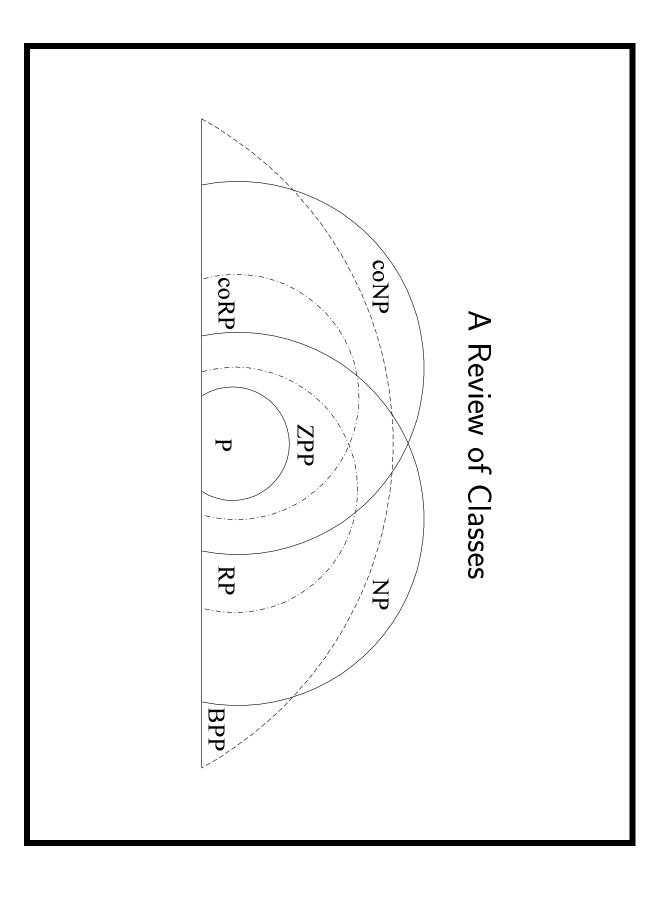
- 1: **for** i = 1, 2, ..., 2k + 1 **do**
- 2: Run N on input x;
- 3: end for
- 4: if "yes" is the majority answer then
- 5: "yes";
- 6: else
- 7: "no";
- 8: end if

Analysis

- The running time remains polynomial, being 2k + 1times N's running time.
- By Corollary 63 (p. 334), the probability of a false answer is at most $e^{-\epsilon^2 k}$.
- By taking $k = \lceil 2/\epsilon^2 \rceil$, the error probability is at most
- As with the RP case, ϵ can be any inverse polynomial, because k remains polynomial in n.

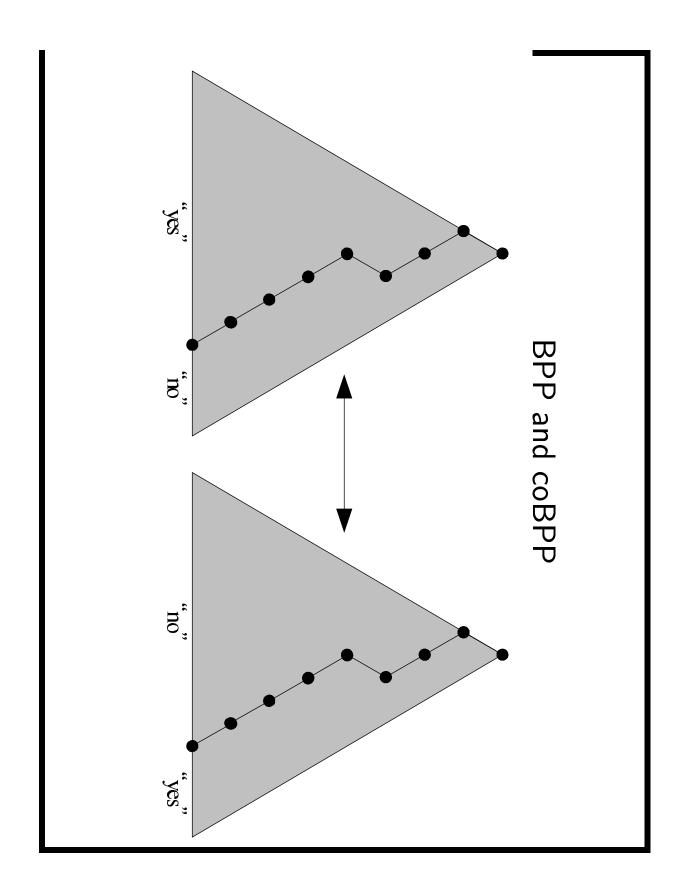
Aspects of BPP

- BPP is the most comprehensive yet plausible notion of efficient computation.
- If a problem is in BPP, we take it to mean that the problem can be solved efficiently.
- $(RP \cup coRP) \subseteq (NP \cup coNP) \text{ and } (RP \cup coRP) \subseteq BPP$
- Whether BPP \subseteq (NP \cup coNP) is unknown.



coBPP

- The definition of BPP is symmetric: acceptance by clear majority and rejection by clear majority.
- by reversing the answer. An algorithm for $L \in \mathsf{BPP}$ becomes one for $\bar{L} \in \mathsf{coBPP}$
- Hence BPP = coBPP.
- This approach does not work for RP (it did not work for NP either).



Circuit Complexity

- Circuit complexity is based on boolean circuits instead of Turing machines.
- A boolean circuit with n inputs computes a boolean function of n variables.
- By identify true with 1 and false with 0, a boolean circuit with n inputs accepts certain strings in $\{0,1\}^n$.
- To relate circuits with arbitrary languages, we need one circuit for each possible input length n.

Formal Definitions

- The **size** of a circuit is the number of *gates* in it.
- A family of circuits is an infinite sequence boolean inputs. $C = (C_0, C_1, \dots)$ of boolean circuits, where C_n has n
- $L \subseteq \{0,1\}^*$ has **polynomial circuits** if there is a family of circuits C such that:
- The size of C_n is at most p(n) for some fixed polynomial p.
- For input $x \in \{0,1\}^*$, $C_{|x|}$ outputs 1 if and only if $x \in L$.

The Circuit Complexity of P

Proposition 64 All languages in P have polynomial

- Let $L \in \mathbb{P}$ be decided by a TM in time p(n).
- The construction in the proof of Theorem 25 (p. 169) gates that accepts $L \cap \{0, 1\}^n$. gives, for any input of size n, a circuit with $O(p(n)^2)$
- The size of the circuit depends only on L and the length of the input
- The size of the circuit is polynomial in n.

Languages That Polynomial Circuits Accept

- It is untrue that polynomial circuits accept only languages in
- There are undecidable languages that have polynomial
- Let $L \subseteq \{0,1\}^*$ be an undecidable language.
- Let $U = \{1^n : \text{the binary expansion of } n \text{ is in } L\}.$
- U must be undecidable.
- $U \cap \{1\}^n$ can be accepted by C_n that is trivially false if $1^n \notin U$ and trivially true if $1^n \in U$.
- The family of circuits (C_0, C_1, \dots) is polynomial in size.

A Patch

- Despite their simplicity,
- Circuits are *not* a realistic model of computation.
- Polynomial circuits are not a plausible notion of efficient computation.
- What gives?
- The effective and efficient constructibility of C_0, C_1, \dots

Uniformity

- A family $(C_0, C_1, ...)$ of circuits is **uniform** if there is a $\log n$ -space bounded TM which on input 1^n outputs C_n . Circuits now cannot accept undecidable languages.
- A language has uniformly polynomial circuits if decides it. there is a uniform family of polynomial circuits that