Monte Carlo Algorithms

- The randomized bipartite perfect matching algorithm is called a Monte Carlo algorithm in the sense that
- always correct (no false positives). If the algorithm finds that a matching exists, it is
- If the algorithm answers in the negative, then it may make an error (false negatives).
- The probability that the algorithm makes a false negative is at most 0.5.
- This probability is *not* over the space of all graphs or determinants, but over the algorithm's own coin flips.
- It holds for any bipartite graph.

The Markov Inequality^a

integer values. Then for any k > 0, **Lemma 53** Let x be a random variable taking nonnegative

$$\operatorname{prob}[x \ge kE[x]] \le 1/k.$$

• Let p_i denote the probability that x = i.

$$egin{array}{lll} E[x] &=& \sum_i ip_i \ &=& \sum_{i < k E[x]} ip_i + \sum_{i \geq k E[x]} ip_i \ &\geq& k E[x] imes ext{prob}[x \geq k E[x]]. \end{array}$$

^aAndrei Andreyevich Markov (1856–1922).

An Application of Markov's Inequality

- Algorithm C runs in expected time T(n) and always gives the right answer
- bound. Consider an algorithm that runs C for time $k \times T(n)$ and rejects the input if C does not stop within the time
- By Markov's inequality, this new algorithm runs in time least 1-1/k. kT(n) and gives the correct answer with probability at
- By running this algorithm m times, we reduce the error probability to $\leq k^{-m}$.

A Random Walk Algorithm for ϕ in CNF Form

- 1: Start with an arbitrary truth assignment T;
- 2: **for** i = 1, 2, ..., r **do**
- 3: if $T \models \phi$ then
- 1: **return** " ϕ is satisfiable";
- 5: else
- of its literals are false under T. Let c be an unsatisfiable clause in ϕ under T; {All
- Pick any x of these literals at random;
- 8: Modify T to make x true;
- 9: end if
- 10: end for
- 11: **return** " ϕ is probably unsatisfiable";

3SAT and 2SAT Again

- Note that if ϕ is unsatisfiable, the algorithm will not refute it
- The random walk algorithm runs in exponential time for 3SAT
- But we will show that it works well for 2SAT.

discovered with probability at least 0.5. variables. Then a satisfying truth assignment will be $r=2n^2$ is applied to any satisfiable 2SAT problem with n **Theorem 54** Suppose that the random walk algorithm with

The Proof

- Let \hat{T} be a truth assignment such that $\hat{T} \models \phi$.
- Let t(i) denote the expected number of repetitions of the if our starting T differs from \hat{T} in i values. flipping step until a satisfying truth assignment is found
- Their Hamming distance is i.
- It can be shown that t(i) is finite.
- t(0) = 0 because it means that $T = \hat{T}$ and hence $T \models \phi$.
- If $T \neq \hat{T}$ or T is not equal to any other satisfying truth assignment, then we need to flip at least once

- We flip to pick among the 2 literals of a clause not satisfied by the present T.
- satisfies all clauses. At least one of the 2 literals is true under \hat{T} , because \hat{T}
- So we have at least 0.5 chance of moving closer to \hat{T} .
- Thus

$$t(i) \le \frac{t(i-1) + t(i+1)}{2} + 1$$

for 0 < i < n.

Inequality is used because, for example, T may differ from \hat{T} in both literals

It must also hold that

$$t(n) \le t(n-1) + 1$$

because at i = n, we can only decrease i.

As we are only interested in upper bounds, we solve

$$x(0) = 0$$

 $x(n) = x(n-1)+1$
 $x(i) = \frac{x(i-1)+x(i+1)}{2}+1, 0 < i < n$

This is one-dimensional random walk with a reflecting and an absorbing barrier.

• Add the equations up to obtain

$$= \frac{x(1) + x(2) + \dots + x(n)}{\frac{x(0) + x(1) + 2x(2) + \dots + 2x(n-2) + x(n-1) + x(n)}{2}}$$
$$+ n + x(n-1).$$

• Simplify to yield

$$\frac{x(1) + x(n) - x(n-1)}{2} = n.$$

• As x(n) - x(n-1) = 1, we have

$$x(1) = 2n - 1.$$

• Iteratively, we obtain

$$x(2) = 4n-4$$

•

 $x(i) = 2in - i^2$

The worst case happens when i = n, in which case

 $x(n) = n^2.$

• We therefore reach the conclusion that

$$t(i) \le x(i) \le x(n) = n^2.$$

- So the expected number of steps is at most n^2 .
- The algorithm picks a running time $2n^2$.
- This amounts to invoking the Markov inequality (p. 282) probability. with k=2, with the consequence of having 0.5

Boosting the Performance

- We can pick $r = 2mn^2$ to have an error probability of $\leq (2m)^{-1}$ by Markov's inequality.
- Alternatively, with the same running time, we can run the $r = 2n^2$ algorithm m times.
- But the error probability is reduced to $\leq 2^{-m}$!
- The gain comes from the fact that Markov's inequality random variable. does not take advantage of any specific feature of the
- The gain also comes from the fact that the two algorithms are different.

The Fermat Test

- Fermat's "little" theorem on p. 262 suggests the following primality test for any given number p:
- Pick a number a randomly from $\{1, 2, \dots, p-1\}$.
- If $a^{p-1} \neq 1 \mod p$, then declare "p is composite."
- Otherwise, declare "p is probably prime."
- Unfortunately, there are composite numbers called for all $a \in \{1, 2, \dots, p-1\}$. Carmichael numbers that will pass the Fermat test
- It is only recently that Carmichael numbers are known to be infinite in number.

Square Roots Modulo a Prime

- Equation $x^2 = a \mod p$ has at most two (distinct) roots by Lemma 50 on p. 264.
- The roots are called **square roots**.
- Numbers a with square roots and gcd(a, p) = 1 are called quadratic residues:

 $1^2 \mod p, 2^2 \mod p, \dots, (p-1)^2 \mod p.$

- $x^2 = a \mod p$ has at most two roots when p is odd.
- We shall show that a number either has two roots or has none, and testing which is true is trivial.

Euler's Test

 $a \neq 0 \mod p$. Lemma 55 (Euler) Let p be an odd prime and

- 1. If $a^{(p-1)/2} = 1 \mod p$, then $x^2 = a \mod p$ has two roots.
- 2. If $a^{(p-1)/2} \neq 1 \mod p$, then $a^{(p-1)/2} = -1 \mod p$ and $x^2 = a \mod p \ has \ no \ roots$
- Let r be a primitive root of p.
- distinct roots are r^j , $-r^j (= r^{j+(p-1)/2})$. If $a = r^{2j}$, then $a^{(p-1)/2} = r^{j(p-1)} = 1 \mod p$ and its two

Since there are (p-1)/2 such a's, and each such a has two distinct roots, we have run out of square roots.

$$- \{c : c^2 = a \bmod p\} = \{1, 2, \dots, p - 1\}.$$

- If $a = r^{2j+1}$, then it has no roots because all the square roots are taken.
- By Fermat's "little" theorem, $r^{(p-1)/2}$ is a square root of 1, so $r^{(p-1)/2} = \pm 1 \mod p$.
- But as r is a primitive root, $r^{(p-1)/2} = -1 \mod p$.
- $a^{(p-1)/2} = (r^{(p-1)/2})^{2j+1} = (-1)^{2j+1} = -1 \mod p.$

The Legendre Symbol^a and Quadratic Residuacity Test

- So $a^{(p-1)/2} \mod p = \pm 1 \text{ for } a \neq 0 \mod p$.
- For odd prime p, define the **Legendre symbol** $(a \mid p)$ as

$$(a \mid p) = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } a \text{ is a quadratic residue modulo } p \\ -1 & \text{if } a \text{ is a quadratic nonresidue modulo } p \end{cases}$$

- Euler's test implies $a^{(p-1)/2} \equiv (a \mid p) \mod p$ for any odd prime p and any integer a.
- Note that (ab|p) = (a|p)(b|p).

^a Andrien-Marie Legendre (1752–1833).

Gauss's Lemma

(p-1)/2Lemma 56 (Gauss) Let p and q be two odd primes. $R = \{iq \bmod p : 1 \le i \le (p-1)/2\}$ that are greater than $(q|p) = (-1)^m$, where m is the number of residues in

- All residues in R are distinct.
- If $iq = jq \mod p$, then p|(j-i) or p|q.
- No two elements of R add up to p.

- If
$$iq + jq = 0 \mod p$$
, then $p|(i+j)$ or $p|q$.

Consider the set R' of residues that result from R if we replace each of the m elements $a \in R$ where

$$a > (p-1)/2$$
 by $p-a$.

- All residues in R' are now at most (p-1)/2.
- In fact, $R' = \{1, 2, \dots, (p-1)/2\}.$
- Otherwise, two elements of R would add up to p.
- Alternatively, $R' = \{\pm iq : 1 \le i \le (p-1)/2\}$, where exactly m of the elements have the minus sign.
- Taking the product of all elements in the two representations of R', we have $[(p-1)/2]! = (-1)^m q^{(p-1)/2} [(p-1)/2]! \mod p.$
- Because gcd([(p-1)/2]!, p) = 1, the lemma follows.

Legendre's Law of Quadratic Reciprocity

- Let p and q be two odd primes.
- Then their Legendre symbols are identical unless both numbers are 3 mod 4.

Lemma 57 (Gauss) $(p|q)(q|p) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}$

- Sum the elements of R' in the previous proof in mod 2
- On one hand, this is just

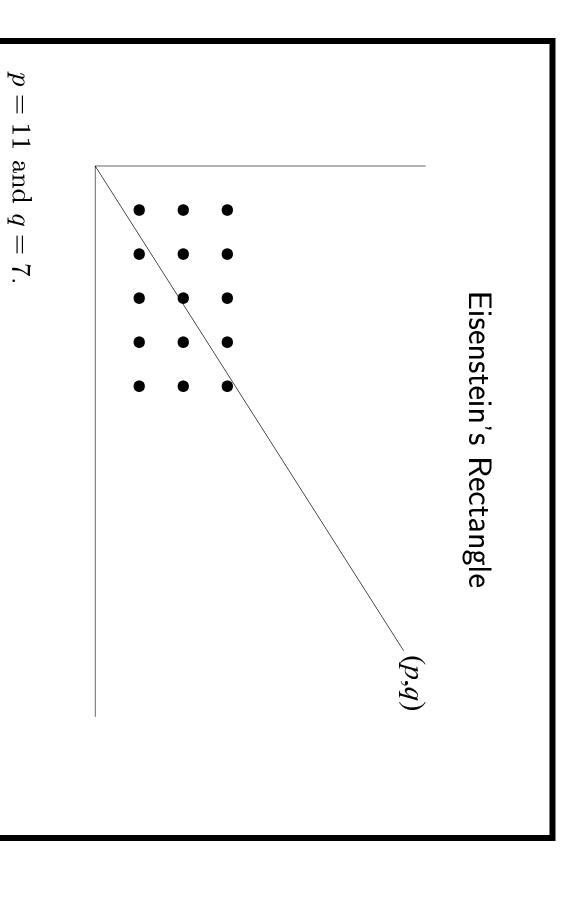
$$\sum_{i=1}^{(p-1)/2} i = \frac{(p-1)(p+1)}{8} \mod 2.$$

• On the other hand, the sum equals

$$q\sum_{i=1}^{(p-1)/2}i-p\sum_{i=1}^{(p-1)/2}\lfloor\frac{iq}{p}\rfloor+mp \bmod 2.$$

- Signs are irrelevant under mod2.
- After ignoring odd multipliers and noting that the first term above equals $\sum_{i=1}^{(p-1)/2} i$: $m = \sum_{i=1}^{(p-1)/2} \lfloor \frac{iq}{p} \rfloor \mod 2.$

- $m = \sum_{i=1}^{(p-1)/2} \lfloor \frac{iq}{p} \rfloor$ is the number of positive integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle that are under the line between (0,0) and the point (p,q).
- From Gauss's lemma on p. 298, (q|p) is $(-1)^m$.
- Repeat the proof with p and q reversed.
- the line between (0,0) and the point (p,q). We obtain (p|q) is -1 raised to the number of positive integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle that are above
- So (p|q)(q|p) is -1 raised to the total number of integral points in the $\frac{p-1}{2} \times \frac{q-1}{2}$ rectangle, which is $\frac{p-1}{2} \cdot \frac{q-1}{2}$.



The Jacobi Symbol $^{ m a}$

- The Legendre symbol only works for an odd prime modulus.
- The **Jacobi symbol** $(a \mid m)$ extends it to cases where mis not prime.
- Let $m = p_1 p_2 \cdots p_k$ be the prime factorization of m.
- When m is odd and is greater than one, then $(a|m) = \prod_{i=1} (a \mid p_i).$
- ^aCarl Jacobi (1804–1851).

Define (a | 1) = 1.

Properties of the Jacobi Symbol

arguments for which it is defined. The Jacobi symbol has the following properties, for

- 1. (ab | m) = (a | m)(b | m).
- 2. $(a \mid m_1 m_2) = (a \mid m_1)(a \mid m_2)$.
- 3. If $a \equiv b \mod m$, then (a | m) = (b | m).
- 4. $(-1 \mid m) = (-1)^{(m-1)/2}$.
- 5. $(2 \mid m) = (-1)^{(m^2 1)/8}$.
- 6. If a and m are both odd, then $(a \mid m)(m \mid a) = (-1)^{(a-1)(m-1)/4}.$

Calculation of (2200|999)

factorization. Similar to the Euclidean algorithm and does not require

$$(202|999) = (-1)^{(999^2-1)/8} (101|999)$$

$$= (-1)^{124750} (101|999) = (101|999)$$

$$= (-1)^{(100)(998)/4} (999|101) = (-1)^{24950} (999|101)$$

$$= (999|101) = (90|101) = (-1)^{(101^2-1)/8} (45|101)$$

$$= (-1)^{1275} (45|101) = -(45|101)$$

$$= -(-1)^{(44)(100)/4} (101|45) = -(101|45) = -(11|45)$$

$$= -(-1)^{(10)(44)/4} (45|11) = -(45|11)$$

$$= -(1|11) = -(11|1) = -1.$$

The Jacobi Symbol and Primality Test $^{ m a}$

 $M \in \Phi(N)$, then N is prime. (Assume N is odd.) **Lemma 58** If $(M|N) = M^{(N-1)/2} \mod N$ for all

- First assume that $N = rp^a$, where p is an odd prime. gcd(r, p) = 1, r > 1 (not necessarily prime), and a is odd.
- We shall derive a contradiction.
- By the assumption,

$$M^{(N-1)/2} = \pm 1 \mod N \text{ for all } M \in \Phi(N).$$
 (3)

Suppose $M^{(N-1)/2} = -1 \mod N$ for some $M \in \Phi(N)$.

is incorrect when he was a senior ^aClement Hsiao pointed out that the textbook's proof in Lemma 11.8

• Then there is a unique M' such that

$$M' = 1 \bmod r$$
$$M' = M \bmod p^a$$

by the Chinese remainder theorem.

- As $gcd(1, r) = gcd(M, p^a) = 1$, we have $M' \in \Phi(N)$.
- Now

$$M'^{(N-1)/2} = 1 \mod r$$

 $M'^{(N-1)/2} = -1 \mod p^a$

• But $M'^{(N-1)/2} \neq \pm 1 \mod N$.

- Otherwise,

$$M'^{(N-1)/2} \mod r = M'^{(N-1)/2} \mod p^a$$
.

- This contradicts Eq. (3).
- Hence

$$M^{(N-1)/2} = 1 \mod N \text{ for all } M \in \Phi(N).$$
 (4)

By the Chinese remainder theorem again, there is a unique $M' \in \{0, 1, \dots, rp-1\}$ such that

$$M' = 1 \mod r$$

 $M' = z \mod p$

where z is one of the quadratic nonresidues modulo p.

- As gcd(1, r) = gcd(z, p) = 1, $M' \in \Phi(rp)$ and so $M' \in \Phi(N)$.
- $(M'|N) = (M'|r)(M'|p^a) = (M'|r)(M'|p)^a =$ (1|r)(z|p) = -1, contradiction Eq. (4).

- Second, assume $N = p_1 p_2 \cdots p_k$, where p_i are distinct odd primes.
- Let $r \in \Phi(p_1)$ such that $(r | p_1) = -1$.
- By the Chinese remainder theorem, there is an $M \in \Phi(N)$ such that

$$M = r \mod p_1$$

 $M = 1 \mod p_i, \quad 2 \le i \le k$

• By the hypothesis,

$$M^{(N-1)/2} = (M \mid N) = \prod_{i=1}^{\kappa} (M \mid p_i) = -1 \mod N.$$

Hence

$$M^{(N-1)/2} = -1 \bmod p_2.$$

But because $M = 1 \mod p_2$,

$$M^{(N-1)/2} = 1 \bmod p_2,$$

a contradiction again.

The Number of Witnesses to Compositeness

 $(M|N) \neq M^{(N-1)/2} \mod N \text{ for at least half of } M \in \Phi(N).$ **Theorem 59** If N is an odd composite, then

- By Lemma 58 there is at least one $a \in \Phi(N)$ such that $(a|N) \neq a^{(N-1)/2} \bmod N.$
- Let $B = \{b_1, b_2, \dots, b_k\} \subseteq \Phi(N)$ be the set of all distinct residues such that $(b_i|N) = b_i^{(N-1)/2} \mod N$.
- Let $aB = \{ab_i \mod N : i = 1, 2, \dots, k\}$

- $\bullet |aB| = k.$
- $ab_i = ab_j \mod N \text{ implies } N|a(b_i b_j), \text{ which is}$ impossible because gcd(a, N) = 1 and $N > |b_i - b_j|$.
- $aB \cap B = \emptyset$ because

$$(ab_i)^{(N-1)/2} = a^{(N-1)/2}b_i^{(N-1)/2} \neq (a|N)(b_i|N) = (ab_i|N).$$

Combining the above two results, we know

$$|B|/\phi(N) \le 0.5.$$

A Polynomial-Time Randomized Algorithm for Primality (or Compositeness)^a

- 1: Pick $M \in \{2, 3, ..., N-1\}$ randomly;
- 2: if gcd(M, N) > 1 then
- 3: **return** "N is a composite";
- 4: else
- 5: **if** $(M|N) \neq M^{(N-1)/2} \mod N$ **then**
- \mathbf{f} : **return** "N is a composite";
- 7: else
- 8: **return** "N is probably a prime";
- 9: end if
- 10: end if

^aSolovay, Strassen, 1977.

Analysis

- The algorithm certainly runs in polynomial time.
- There are no false positives (for COMPOSITENESS).
- When the algorithm says the number is a composite, it is always correct
- The probability of a false negative is at most one half.
- When the algorithm says the number is a prime, it may err.
- the algorithm errs is one half. If the input is a composite, then the probability that
- The probability of error can be reduced but not eliminated.