Monte Carlo Algorithms

e The randomized bipartite perfect matching algorithm is
called a Monte Carlo algorithm in the sense that

— If the algorithm finds that a matching exists, it is

always correct (no false positives).
— If the algorithm answers in the negative, then it may

make an error (false negatives).

e The probability that the algorithm makes a false

negative is at most 0.5.

e This probability is not over the space of all graphs or
determinants, but over the algorithm’s own coin flips.

— It holds for any bipartite graph.
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The Markov Inequality®

Lemma 53 Let x be a random variable taking nonnegative

integer values. Then for any k > 0,
problxz > kE[z]] < 1/k.

e Let p; denote the probability that x = .

)

> e 3

i<kE[z] i>kE[x
kE|x]| x prob|z > wmﬂ&:

2 Andrei Andreyevich Markov (1856-1922).
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An Application of Markov's Inequality

Algorithm C' runs in expected time T'(n) and always

gives the right answer.

Consider an algorithm that runs C' for time k x T'(n)
and rejects the input if C' does not stop within the time

bound.

By Markov’s inequality, this new algorithm runs in time
kT (n) and gives the correct answer with probability at

least 1 — 1/k.

By running this algorithm m times, we reduce the error
probability to < k™.
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A Random Walk Algorithm for ¢ in CNF Form

. Start with an arbitrary truth assignment T;
. fort=1,2,... ,r do
if T = ¢ then
return “¢ is satisfiable”;
else
Let ¢ be an unsatisfiable clause in ¢ under 7'; {All

of its literals are false under 7.}

Pick any x of these literals at random;
Modity T to make x true;
end if
. end for
. return “¢ is probably unsatisfiable”;
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3SAT and 2SAT Again

e Note that if ¢ is unsatisfiable, the algorithm will not
refute it.

e The random walk algorithm runs in exponential time for
3SAT.

e But we will show that it works well for 2SAT.

Theorem 54 Suppose that the random walk algorithm with
r = 2n? is applied to any satisfiable 2SAT problem with n
variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.
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The Proof
Let T be a truth assignment such that 7 = ¢.

Let t(i) denote the expected number of repetitions of the

flipping step until a satistfying truth assignment is found

if our starting 7" differs from 7' in 7 values.

— Their Hamming distance is 1.
It can be shown that #(¢) is finite.
t(0) = 0 because it means that T'= T and hence T = ¢.

If T # T or T is not equal to any other satisfying truth
assignment, then we need to flip at least once.
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The Proof (continued)

We flip to pick among the 2 literals of a clause not
satisfied by the present T

At least one of the 2 literals is true under myu because T
satisfies all clauses.

So we have at least 0.5 chance of moving closer to T.

Thus

ti—1) +t(i+1)

t(i) < 5

+1

for 0 < 7 < n.

Inequality is used because, for example, T' may differ
from 7' in both literals.
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The Proof (continued)

e It must also hold that
ttn) <t(n—1)+1
because at © = n, we can only decrease 1.

e As we are only interested in upper bounds, we solve

r(n—1)+1
(i —1)+z(i+1)
2

+1, 0<i<n

e This is one-dimensional random walk with a reflecting

and an absorbing barrier.
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The Proof (continued)
e Add the equations up to obtain

z(1) +2(2) +--- + z(n)
z(0)+z(1)+2z(2)+ - +2z(n—2)+z(n—1) + z(n)
2

+n 4+ x(n —1).

e Simplify to yield

z(l) +z(n) —z(n —1)
2

= Nn.

e Asz(n) —xz(n—1) =1, we have

z(1l) =2n — 1.
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The Proof (continued)

e Iteratively, we obtain

2in — 42

e The worst case happens when ¢ = n, in which case

z(n) =n”.
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The Proof (continued)

We therefore reach the conclusion that
t(i) < z(i) < z(n) = n.

So the expected number of steps is at most n?.
The algorithm picks a running time 2n?2.

This amounts to invoking the Markov inequality (p. 282)
with k& = 2, with the consequence of having 0.5

probability.
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Boosting the Performance

We can pick r = 2mn? to have an error probability of
< (2m)~! by Markov’s inequality.

Alternatively, with the same running time, we can run

the » = 2n? algorithm m times.
But the error probability is reduced to < 27™!

The gain comes from the fact that Markov’s inequality
does not take advantage of any specific feature of the

random variable.

The gain also comes from the fact that the two
algorithms are different.
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The Fermat Test

e Fermat’s “little” theorem on p. 262 suggests the
following primality test for any given number p:

— Pick a number a randomly from {1,2,... ,p —1}.

— If a?~! # 1 mod p, then declare “p is composite.”

— Otherwise, declare “p is probably prime.”

e Unfortunately, there are composite numbers called
Carmichael numbers that will pass the Fermat test

for all a € {1,2,... ,p—1}.

e It is only recently that Carmichael numbers are known

to be infinite in number.
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Square Roots Modulo a Prime

e Equation 2?2 = a mod p has at most two (distinct) roots

by Lemma 50 on p. 264.
— The roots are called square roots.

— Numbers a with square roots and gcd(a,p) = 1 are
called quadratic residues:
12 mod p,22 mod p, ..., (p — 1)? mod p.

— 22 = g mod p has at most two roots when p is odd.

e We shall show that a number either has two roots or has

none, and testing which is true is trivial.
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Euler's Test

Lemma 55 (Euler) Let p be an odd prime and
a # 0 mod p.

1. If a®=V/2 = 1 mod p, then %2 = a mod p has two roots.

2. If aP=1/2 &£ 1 mod p, then aP~1/2 = —1 mod p and

z? = a mod p has no roots.

e Let r be a primitive root of p.

o If a =% then aP~1/2 = pi(P—1) = 1 mod p and its two

distinct roots are 17, —ri(= rit(P—=1/2),
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The Proof (continued)

Since there are (p — 1)/2 such a’s, and each such a has

two distinct roots, we have run out of square roots.
— {c:c* =amod p} ={1,2,... ,p—1}.

If a = 72771, then it has no roots because all the square

roots are taken.

By Fermat’s “little” theorem, r(P~1)/2 is a square root of
1, so r®~1/2 = +1 mod p.

But as r is a primitive root, r?~1/2 = —1 mod p.

a®=1/2 = (p(p—1)/2)2541 — (_1)2+1 = _1 mod p.
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The Legendre Symbol® and Quadratic Residuacity Test
e So aP~1/2 mod p = =+1 for a # 0 mod p.

e For odd prime p, define the Legendre symbol (a |p) as

(0 ifpla

(a|p) =9 1 if ais a quadratic residue modulo p

| —1 if a is a quadratic nonresidue modulo p

e Euler’s test implies a(P~1)/2 = (4| p) mod p for any odd

prime p and any integer a.

e Note that (ab|p) = (a|p)(b|p).

2 Andrien-Marie Legendre (1752-1833).
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Gauss's Lemma

Lemma 56 (Gauss) Let p and q be two odd primes. Then
(qlp) = (—1)™, where m is the number of residues in
R={igmodp:1<i<(p—1)/2} that are greater than
(p—1)/2.

e All residues in R are distinct.

— If ig = jq mod p, then p|(j — 7) or pl|q.

e No two elements of R add up to p.

— If ig + j¢ = 0 mod p, then p|(i + j) or plq.

e Consider the set R’ of residues that result from R if we

replace each of the m elements a € R where
a>(p—1)/2 by p—a.
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The Proof (continued)

All residues in R’ are now at most (p — 1)/2.
In fact, R' = {1,2,...,(p—1)/2}.
— Otherwise, two elements of R would add up to p.

Alternatively, R’ = {+iq:1 <1 < (p—1)/2}, where
exactly m of the elements have the minus sign.

Taking the product of all elements in the two

representations of R, we have
[(p—1)/2]! = (=1)™qP~1/2[(p — 1)/2]! mod p.

Because ged([(p — 1)/2]!, p) = 1, the lemma follows.
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Legendre's Law of Quadratic Reciprocity

e Let p and ¢ be two odd primes.

e Then their Legendre symbols are identical unless both

numbers are 3 mod 4.
Lemma 57 (Gauss) (plq)(¢q|p) = (—1)
e Sum the elements of R’ in the previous proof in mod2.

e On one hand, this is just

P2 p-Dp+1)

8

mod 2.
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The Proof (continued)

e On the other hand, the sum equals

(p—1)/2 (p—1)/2

. 1q
q MU i—p MU ~W;+3§Boaw.
i=1 i=1

— Signs are irrelevant under mod?2.

e After ignoring odd Bz_ﬂwzmwm and noting that the first
term above equals 377172

(p—1)/2

MU ER; mod 2.
i-1 P
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The Proof (continued)

m = MUQ b/2 EB; is the number of positive integral

points in the % X % rectangle that are under the line

between (0,0) and the point (p,q).
From Gauss’s lemma on p. 298, (g|p) is (—1)™.
Repeat the proof with p and ¢ reversed.

We obtain (p|q) is —1 raised to the number of positive
1 g—1

integral points in the 5= x 5= rectangle that are above

the line between (0,0) and the point (p, q).

So (plq)(¢q|p) is —1 raised to the total number of integral

. . p—1 qg—1 . ‘o P—1 g—1
points in the =5~ X “5= rectangle, which is = 5 -
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Eisenstein’s Rectangle

p=11and ¢ = 7.
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The Jacobi Symbol?

The Legendre symbol only works for an odd prime

modulus.

The Jacobi symbol (a|m) extends it to cases where m

1s not prime.
Let m = p1p2 - - - pr. be the prime factorization of m.

When m is odd and is greater than one, then

(alm) = : | pi)-

e Define (a|1) = 1.

aCarl Jacobi (1804-1851).

304



Properties of the Jacobi Symbol

The Jacobi symbol has the following properties, for

arguments for which it is defined.
(ab|m) = (a|m)(b|m).
(a|mimz) = (a|mq)(a|ms).
If a = b mod m, then (a|m) = (b|m).
(1 |m) = (~1)m=D/2
(2]m) = (~1)(m =D/,

If a and m are both odd, then
(alm)(m|a) = (—1)leDim=1/4,
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Calculation of (2200[999)

Similar to the Euclidean algorithm and does not require

factorization.

(202(999) = (—1)%9°~1/8(101|999)
(—1)"**7°(101]999) = (101]999)
(—1)(100998)/4(999|101) = (—1)?*5°(999|101)
(

(-1

999(101) = (90]101) = (—1)M°T*~D/8(45/101)
—1)"*7°(45|101) = —(45|101)
—(—1)“D100/4101]45) = —(101]45) = —(11/45)
—(=1)10OUENM(45111) = —(45]11)

—(1]11) = —(11]1) = —1.
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The Jacobi Symbol and Primality Test?

Lemma 58 If (M|N) = MWN=1/2 mod N for all
M € ®(N), then N is prime. (Assume N is odd.)

e First assume that N = rp®, where p is an odd prime,
ged(r,p) = 1, r > 1 (not necessarily prime), and a is odd.

e We shall derive a contradiction.

e By the assumption,

MW=1/2 — +1mod N for all M € ®(N).  (3)

e Suppose MV=1)/2 — _1 mod N for some M € &(N).

a(Clement Hsiao pointed out that the textbook’s proof in Lemma 11.8

is incorrect when he was a senior.
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The Proof (continued)

e Then there is a unique M’ such that

M’ 1 mod r
M’ M mod p*

by the Chinese remainder theorem.
o As ged(1,7) = ged(M,p*) =1, we have M’ € &(N).
e Now

i\ﬁ/\lc\w
i\ﬁ/\lc\w
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The Proof (continued)
e But M/ Y/2 # +1 mod N.

— Otherwise,

1y V=12 1y V=12

mod r = mod p“.

e This contradicts Eq. (3).

e Hence

MWN=1/2 = 1 mod N for all M € ®(N).

309



The Proof (continued)

e By the Chinese remainder theorem again, there is a
unique M’ € {0,1,... ,rp — 1} such that

M’ 1 mod r
M’ z mod p

where z is one of the quadratic nonresidues modulo p.

o As gcd(l,r) =ged(z,p) =1, M' € ®(rp) and so
M' € o(

N).
o (M'|N)=(M'|r)(M'|p*) = (M'lr)(M'|p)* =
(1|7)(z|p) = —1, contradiction Eq. (4).
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The Proof (continued)

e Second, assume N = p1ps - - - pr, Where p; are distinct

odd primes.
o Let r € ®(py1) such that (r|p;) = —1.
e By the Chinese remainder theorem, there is an

M € ®(N) such that

M r mod p1
M Il modp;, 2<:<k
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The Proof (continued)

e By the hypothesis,

k
MWN=D2 = (M|N)=]][(M|p;) = —1mod N.
=1

e Hence

MW=1/2 = _1 mod 2.

e But because M = 1 mod po,
MW-1)/2 _ 1 mod D2,

a contradiction again.
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The Number of Witnesses to Compositeness

Theorem 59 If N is an odd composite, then
(M|N) # MWN=1/2mod N for at least half of M € ®(N).

e By Lemma 58 there is at least one a € ®(/N) such that

(a|N) #a™—1/2 mod N.

o Let B=1{b1,ba,...,bx} C ®(N) be the set of all distinct
residues such that (b;|N) = @MZLVB mod N.

o Let aB ={ab; mod N :i=1,2,...  k}
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The Proof (continued)

e |aB|=k.
— ab; = ab; mod N implies N|a(b; — b;), which is
impossible because gcd(a, N) =1 and N > |b; — b,]|.

e aB N B = ( because
(abs) N D72 = gD TII2 oL (] N (bs| N) = (abi| V).

e Combining the above two results, we know
1B|/¢(N) < 0.5.
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A Polynomial-Time Randomized Algorithm for
Primality (or Compositeness)®
. Pick M € {2,3,... ,N — 1} randomly;
. if gcd(M, N) > 1 then
return “N is a composite”;

H
w
w
4: else

5. if (M|N) # MW -Y/2 mod N then
6

7

8

return “/N is a composite”;
else
return “N is probably a prime”;
9: end if
10: end if

a@Solovay, Strassen, 1977.
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Analysis

e The algorithm certainly runs in polynomial time.

e There are no false positives (for COMPOSITENESS).
— When the algorithm says the number is a composite,
it is always correct.
e The probability of a false negative is at most one half.

— When the algorithm says the number is a prime, it

may err.
— If the input is a composite, then the probability that

the algorithm errs is one half.

e The probability of error can be reduced but not

eliminated.
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