MIN CUT and MAX CUT

A cut in an undirected graph G = (V, E) is a partition
of the nodes into two nonempty sets S and V — S.

The size of a cut (S,V — 5) is the number of edges
between S and V — §.

MIN CUT is in P.

MAX CUT asks if there is a cut of size at least K.
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MAX CUT Is NP-Complete?

e We will reduce NAESAT to MAX CUT.

e Given an instance ¢ of 3SAT with m clauses, we shall
construct a graph G = (V, E) and a goal K such that
there is a cut of size at least K if and only if ¢ is
NAE-satisfiable.

e Our graph will have multiple edges between two nodes.

— Each such edge contributes one to the cut if its nodes
are separated.

a(Garey, Johnson, Stockmeyer, 1976.
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Reduction from NAESAT to MAX CUT
Suppose ¢’s m clauses are C1,Cs, ... ,Ch,.
The boolean variables are 1,2, ... ,x,.
GG has 2n nodes: x1,x2,... ,Zp, L1, L2, ... , Lp,.
Each clause of 3 distinct literals makes a triangle in G.

For each clause with two identical literals, there are two

parallel edges between the two distinct literals.

No need to consider clauses with one literal (why?).

For each variable z;, add n; copies of the edge [x;, —x;],

where n; is the number of occurrences of x; and —x; in ¢.
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A Sample Construction

X

1

X - X

3 3

(x1 Vo V) A(xyV—x3V x3)A(—xyVzeVxs).
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The Proof
Set K = bm.

Suppose that there is a cut (S,V — S) of size bm or

more.

A clause (a triangle or two parallel edges) contributes at

most 2 to a cut no matter how you split it.

Suppose that both x; and —x; are on the same side of
the cut.

Then they together contribute at most 2n; edges to the
cut as they appear in at most n; different clauses.
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The Proof (continued)

e Changing the side of a literal contributing at most n; to

the cut does not decrease the size of the cut.

e Hence we assume variables are separated from their

negations.

e The total number of edges in the cut that join opposite

literals is ) ., n; = 3m.

— The total number of literals is 3m.

220



The Proof (continued)

The remaining 2m edges in the cut must come from the
m triangles or parallel edges that correspond to the

clauses.
As each can contribute at most 2 to the cut, all are split.

A split clause means at least one of its literals is true
and at least one false.

The other direction is left as an exercise.
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MAX BISECTION

MAX CUT becomes MAX BISECTION if we require that
S| =1V -5

It has many applications, especially in VLSI layout.

Sometimes imposing additional restrictions makes a

problem easier.

Other times, it makes the problem as hard or harder.
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MAX BISECTION I|s NP-Complete

We shall reduce the more general MAX CUT to MAX
BISECTION.

Add |V| isolated nodes to G to yield G'.
G’ has 2|V| nodes.

As the new nodes have no edges, moving them around
contributes nothing to the cut.
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The Proof (continued)

e Every cut (S,V — §) of G = (V, E) can be made into a
bisection by appropriately allocating the new nodes

between S and V — S.

e Hence each cut of G can be made a cut of G’ of the

same size, and vice versa.
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BISECTION WIDTH

e BISECTION WIDTH is like MAX BISECTION except that it

asks if there is a bisection of size at most K (sort of MIN

BISECTION).

e Unlike MIN CUT, BISECTION WIDTH remains
NP-complete.
— A graph G = (V, E), where |V| = 2n, has a bisection
of size K if and only if the complement of G has a

bisection of size n? — K.

— This trick will not work for MIN CUT vs. MAX CUT
(why?).
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HAMILTONIAN PATH Is NP-Complete?

e Given an undirected graph, the question whether it has

a Hamiltonian path is NP-complete.
e The complex reduction is from 3SAT.

e We skip the proof.

aKarp, 1972.
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TSP (D) Is NP-Complete

Corollary 35 TSP (D) is NP-complete.

e Given a graph G with n nodes, define d;; =1 if

Set the budget B = n + 1.

Note that if G has no Hamiltonian paths, then any tour

must contain at least two edges with weight 2.
The total cost is then at least (n —2) +2-2 =n+ 2.

There is a tour of length B or less if and only if G has a

Hamiltonian path.
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Graph Coloring

k-COLORING asks if the nodes of a graph can be colored
with k colors (or fewer) such that no two adjacent nodes
have the same color.

2-COLORING is in P.
3-COLORING is NP-complete.

Since 3-COLORING is a special case of k-COLORING for
any k > 4, k-COLORING is NP-complete for k& > 3.
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3-COLORING |s NP-Complete®

We will reduce NAESAT to 3-COLORING.

We are given a set of clauses C1,C, ... ,C,, each with 3
literals.

The boolean variables are x1,xs, ..., T,.

We shall construct a graph G such that it can be colored
with colors {0, 1,2} if and only if all the clauses can be
NAE-satisfied.

Every variable x; is involved in a triangle | a, x;, ~x; |

with a common node a.

aKarp, 1972.
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The Proof (continued)

e Each clause C; = (¢ij1 V ¢i2 V ¢3) is also represented by a

dimbmg TMT Ci2,Ci3 _

e There is an edge between ¢;; and the node that
represents the jth literal of C;.
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A Clause in a Sample Construction
2
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The Proof (continued)

Suppose the graph is 3-colorable.

Assume without loss of generality that node a takes the
color 2, z; takes the color 1, and —x; takes the color 0.

A triangle must use all 3 colors.

The clause triangle cannot be linked to nodes with all 1s
or all 0s; otherwise, it cannot be colored with 3 colors.

Treat 1 as true and 0 as false.
Treat 2 as either true or false; it does not matter.

As each clause triangle contains one color 1 and one
color 0, the clauses are NAE-satisfied.
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The Proof (continued)

Suppose the clauses are NAE-satisfiable.
e Color node a with color 2.

e Color the nodes representing literals by their truth
values (color 0 for false and color 1 for true).
e For each clause triangle:

— Pick any two literals with opposite truth values and
color the corresponding nodes with 0 if the literal is
true and 1 if it is false.

— Color the remaining node with color 2.
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TRIPARTITE MATCHING

e We are given three sets B, G, and H, each containing n
elements.

o Let T'C B x G x H be a ternary relation.

e TRIPARTITE MATCHING asks if there is a set of n triples

in T, no who of which have a component in common.

— FKach element in B is matched to a different element
in G and different element in H.

Theorem 36 (Karp, 1972) TRIPARTITE MATCHING i$
NP-complete.
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Related Problems

We are given a family F' = {51, 59,...,5,} of subsets of
a finite set U and a budget B.

SET COVERING asks if there exists a set of B sets in F

whose union is U.

SET PACKING asks if there are B disjoint sets in F'.

Assume |U| = 3m for some m € N and |S;| = 3 for all 1.

EXACT COVER BY 3-SETS asks if there are m sets in F
that are disjoint and have U as their union.

Corollary 37 SET COVERING, SET PACKING, and EXACT
COVER BY 3-SETS are all NP-complete.
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INTEGER PROGRAMMING

e INTEGER PROGRAMMING asks whether a given system of

linear inequalities with integer coefficients has an integer

solution.

e Many NP-complete problems can be expressed as an
INTEGER PROGRAMMING problem.

— SET COVERING can be expressed by the inequalities

Az > 1, Yooz <B,0<x; <1, where

x x; is one if and only if S; is in the cover.

* A is the matrix whose columns are the bit vectors of
the sets S1,.52,.

—

* 1 is the vector of 1s.

e INTEGER PROGRAMMING is NP-complete [Papadimitriou,
1981].
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The KNAPSACK Problem
e There are a set of n items.
e Item ¢ has value v; € Z™ and weight w; € Z*.

e Given K € Z™ and W € Z™, KNAPSACK asks if there

exists a subset S C {1,2,... ,n} such that } ,_ qw; <W

and Mu&mm\c& N K.

— We want to achieve the maximum satisfaction within
the budget.
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KNAPSACK Is NP-Complete

KNAPSACK is in NP: Guess an S and verify the constraints.
We assume v; = w; for all 2 and K = W.

KNAPSACK becomes the problem if a subset of
{w1,wa, ... ,w,} adds up to exactly K.

— Think of yourself as a radio DJ.
We shall reduce EXACT COVER BY 3-SETS to it.

We are given a family F' = {S1,S52,...,Sn} of size-3 subsets
of U =4{1,2,...,3m}.

EXACT COVER BY 3-SETS asks if there are m disjoint sets in
F' that cover the set U.
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The Proof (continued)

Think of a set as a bit vector in {0, 1}°™.

— 001100010 means the set {3,4,8}, and 110010000
means the set {1,2,5}.

A bit vector can also be considered as a binary number.

Set union resembles addition.

— 001100010 + 110010000 = 111110010, which denotes
the set {1,2,3,4,5,8}, as desired.

Trouble is there is carry.

— 001100010 + 001110000 = 010010010, which denotes
the set {2, 5,8}, not the desired {3,4,5, 8}.
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The Proof (continued)

e To fix this problem, we only need to enlarge the base
just enough so that there are no carries.

e Because there are n vectors in total, we change the base
from 2 to n + 1.

e Finally, set

3m

—
which is 11---1 in base n + 1.
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BIN PACKINGS

e We are given N positive integers a1, as,... ,an, an

integer C' (the capacity), and an integer B (the number
of bins).

e BIN PACKING asgks if these numbers can be partitioned
into B subsets, each of which has total sum at most C.

e Think of packing bags at the check-out counter.

Theorem 38 BIN PACKING s NP-complete.
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