Two Notions
e Let R C X* X X* be a binary relation on strings.

e R is called polynomially decidable if
{z;y: (z,y) € R}
is in P.

e R is said to be polynomially balanced if (z,y) € R

implies |y| < |z|* for some k& > 1.
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An Alternative Characterization of NP

Proposition 28 (Edmonds, 1965) Let L C ¥* be a
language. Then L € NP if and only if there is a polynomzially
decidable and polynomially balanced relation R such that

L=A{x:(z,y) € R for some y}.

e Suppose such an R exists.

e [ can be decided by this NTM:

— On input z, the NTM guesses a y of length < |z|*

and tests if (z,y) € R in polynomial time.

— It returns “yes” if the test is positive.
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The Proof (continued)

Suppose that L € NP.

NTM N decides L in time |z|*.

Define R as follows: (x,y) € R if and only if y is the
encoding of an accepting computation of N on input x.

Clearly R is polynomially balanced because N is
polynomially bounded.

R is also polynomially decidable because it can be

efficiently verified by simulation.

Finally L = {x : (z,y) € R for some y} because N
decides L.
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Comments

Any “yes” instance x of an NP problem has at least one
succinct certificate or polynomial witness y of its

being a “yes” instance.
“No” instances have none.

Certificates are short and easy to verity.

— An alleged satisfying truth assignment for SAT, an
alleged Hamiltonian path for HAMILTONIAN PATH.

Certificates may be hard to generate (otherwise, NP

equals P), but verification must be easy.

NP is the class of easy-to-verify problems.
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You Have an NP-Complete Problem (for Your Thesis)

e From Propositions 23 (p. 163) and Proposition 24
(p. 164), it is the least likely to be in P.

Approximations.
Special cases.

Average performance.
Randomized algorithms.

Exponential-time algorithms that work well for small

problems.

“Heuristics” (and pray).

185



3SAT
e kSAT, where k € ZT, is the special case of SAT.

e The formula is in CNF and all clauses have ezxactly k

literals (repetition of literals is allowed).

e For example,

A&H V o V I_va AN AHH V 1 V I_&MV AN AHH V X9 V I_.&wv.
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3SAT |s NP-Complete

e Recall Cook’s Theorem (p. 177) and the reduction of
CIRCUIT SAT to SAT (p. 156).

e The resulting CNF has at most 3 literals for each clause.
— This shows that 3SAT where each clause has at most

3 literals is NP-complete.

e Finally, duplicate one literal once or twice to make it a
3SAT formula.
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Another Variant of 3SAT

Proposition 29 3SAT s NP-complete for expressions in
which each variable s restricted to appear at most three

times, and each literal at most twice.

e 3SAT here requires only that each clause has at most 3
literals.

e Consider a 3SAT expression in which z appears k times.
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The Proof (continued)

e Replace the first occurrence of by z1, the second by

x9, and so on, where x1,x9,... ,x, are k new variables.

o Add (—z1 Vaxa) A(—xaVas)A---A(—xr Vx1) to the
expression (ry = To = -+ = T = T1).

— Each clause may have fewer than 3 clauses.

e The equivalent expression satisfies the condition for x.
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2SAT and Graphs

e Let ¢ be an instance of 2SAT, in which each clause has
exactly 2 literals.

e Define graph G(¢) as follows:
— The nodes are the variables and their negations.

Add edges (—a, 8) and (=5, a) to G(¢) if aV (B is a
clause in ¢.

x For example, if zV -y € ¢, add (—z, —y) and (y, ).
x Two edges are added for each clause.

Think of the edges as —~a = 8 and =3 = «.
b is reachable from a iff —a is reachable from —b.

Paths in G(¢) are valid implications.
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[llustration

Digraph for

(x1 V) A(x1 V ox3) A (01 Vag) A(xe V x3).

I_unm
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Properties of G(¢)

Theorem 30 ¢ is unsatisfiable if and only if there is a

variable x such that there are paths from x to —~x and from

-z to x in G().
e Suppose that such paths exist, but ¢ can be satisfied by
a truth assignment 7.
— Without loss of generality, assume T'(z) = true.

As there is a path from x to —z and T'(—z) = false,
there must be an edge («, 8) on this path such that
T(a) = true and T(F) = false.

Hence (—a V () is a clause of ¢.

But this clause is not satisfied by T', a contradiction.
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The Proof (continued)

Suppose there is no variable with such paths in G(¢).
We shall construct a satisfying truth assignment.
It is enough that no edges go from true to false.

Pick any node o which has not had a truth value and
there is no path from it to ~a (always doable by
assumption, why?).

Assign nodes reachable from « true and their negations
false.

— The negations are those nodes that can reach —a.
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The Proof (continued)

e The above steps are well-defined.

— If o could reach both 8 and =3, then there would be a
path from —5 to —«a, hence a path from o to —«a!

— If there were a path from «a to a node y already assigned
false, then —y can reach —a and «a has been assigned false

before!

e We keep picking such a’s until we run out of them.

e Every node must have had a truth value.

— If o does not, it must be because there is a path from it

to —a, but then the algorithm could have picked —a!

e The assignments make sure a false never follows a true.
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2SAT Isin NLC P
e By Corollary 21 on p. 145, coNL equals NL.

e We need to show only that recognizing unsatisfiable

expressions is in NL.

e In nondeterministic logarithmic space, we can test the
conditions of Theorem 30 by guessing a variable z and

testing if —x is reachable from x and if —x can reach x.

— See the algorithm for REACHABILITY (p. 70).
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Generalized 2SAT: MAX2SAT
Consider a CNF in which all clauses have two literals.
Let K € N.

MAXZ2SAT is the problem of whether there is a truth

assignment that satisfies at least K of the clauses.

MAX2SAT becomes 2SAT when K equals the number of

clauses.
MAX2SAT is an optimization problem.

MAX2SAT is in NP: Guess a truth assignment and verify
the count.
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MAX2SAT Is NP-Complete®

e Consider the following 10 clauses:

(@) A (y) A (2) A (w)
(mz VoY) A(—yV -z)A(—z V)
(xV-w)A(yV-w)A(zV-w)
e Let the 2SAT formula r(x,y, z, w) represent the
conjunction of these clauses.
e How many clauses can we satisfy?

e The clauses are symmetric with respect to x, y, and z.

aGarey, Johnson, Stockmeyer, 1976.
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The Proof (continued)

All of z,y, z are true: By setting w to true, we can satisty
4+ 0+ 3 =7 clauses.

Two of z,y, z are true: By setting w to true, we can
satisty 3 + 2 + 2 = 7 clauses; by setting w to false, we
can satisty 2 + 2 + 3 = 7 clauses.

One of z,vy, z is true: By setting w to false, we can satisfy
1 4+ 3 + 3 = 7 clauses, whereas by setting w to true, we
can satisty only 2 + 3 + 1 = 6 clauses.

None of z,y, z is true: By setting w to false, we can
satisty 0 + 3 + 3 = 6 clauses, whereas by setting w to
true, we can satisty only 1+ 3 + 0 = 4 clauses.
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The Proof (continued)

Any truth assignment that satisfies z V y V 2z can be
extended to satisfy 7 of the 10 clauses and no more.

The remaining truth assignment can be extended to
satisfy only 6 of them.
The reduction from 3SAT ¢ to MAX2SAT R(¢):

— For each clause C; = (aV BV ) of ¢, add group
ﬁAOf Qv Y \E@v to mﬁﬂv
— If ¢ has m clauses, then R(¢) has 10m groups.

Set K = Tm.
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The Proof (continued)

e We now show that K clauses of R(¢) can be satisfied if
and only if ¢ is satisfiable.

e Suppose 7m clauses of R(¢) can be satisfied.

— 7 clauses must be satisfied in each group because

each group can only have at most 7 clauses satisfied.

— But all clauses in ¢ must be satisfied.

e Suppose all clauses of ¢ are satisfied.

— Each group can set its w; appropriately to have 7
clauses satisfied.
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NAESAT

e The NAESAT (for “not-all-equal” SAT) is like 3SAT.

e But we require additionally that there be a satistying
truth assignment under which no clauses have the three

literals equal in truth value.

— Each clause must have one literal assigned true and

one literal assigned false.
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NAESAT Is NP-Complete®

Recall the reduction of CIRCUIT SAT to SAT on p. 156.

It produced a CNF ¢ in which each clause has at most 3
literals.

Add the same variable z to all clauses with fewer than 3
literals to make it a 3SAT formula.

We will argue that the new formula ¢(z) is
NAE-satisfiable if and only if the original circuit is
satisfiable.

aKarp, 1972.

202



The Proof (continued)

e Suppose T' NAE-satisfies ¢(z).

T also NAE-satisfies ¢(z).

Under either T or T, variable z takes the value false.
This truth assignment must satisfy all clauses of ¢.

So it satisfies the original circuit.
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The Proof (continued)

e Suppose there is a truth assignment that satisfies the

circuit.

Then there is a truth assignment 7" that satisfies
every clause of ¢.

Extend T' by adding T'(z) = false to obtain 7".
T’ satisfies ¢(z).
So in no clauses are all three literals false under 7.

Under 77, in no clauses are all three literals true.

x Review the construction on p. 157 and p. 158.
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Undirected Graphs

e An undirected graph G = (V, E) has a finite set of
nodes, V', and a set of undirected edges, E.

e It is like a graph except that the edges have no
directions and there are no self-loops.

e We use [i, j] to denote the fact that there is an edge
between node ¢ and node j.
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Independent Sets

Let G = (V, F) be an undirected graph.
ICV.

I is independent if whenever ¢, 5 € I, there is no edge

between ¢ and j.

The INDEPENDENT SET problem is this: Given an

undirected graph and a goal K, is there an independent
set of size K7

— Many applications.
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INDEPENDENT SET Is NP-Complete

e This problem is in NP: Guess a set of nodes and verify

that it is independent and meets the count.

e If a graph contains a triangle, any independent set can

contain at most one node of the triangle.

e We consider graphs whose nodes can be partitioned in m
disjoint triangles.
— If the subproblem is hard, the original problem is at

least as hard.
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Reduction from 3SAT to INDEPENDENT SET
Let ¢ be an instance of 3SAT with m clauses.

We will construct graph G (with constraints as said)
with K = m such that ¢ is satisfiable if and only if G
has an independent set of size K.

There is a triangle for each clause with the literals as the

nodes.

Add additional edges between x and —x for every

variable z.
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A Sample Construction

AHH V xo V &wv N AI_HH V —x9 V I_&wv N AI_&H V xy V &wv.
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The Proof (continued)

e Suppose G has an independent set I of size K = m.

An independent set can contain at most m nodes,

one from each triangle.

An independent set of size m exists if and only if it
contains exactly one node from each triangle.

Truth assignment 1" assigns true to those literals in 1.

T is consistent because contradictory literals are
connected by an edge, hence not both in I.

T satisfies ¢ because it has a node from every

triangle, thus satisfying every clause.
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The Proof (continued)

e Suppose a satisfying truth assignment 7' exists for ¢.

— Collect one node from each triangle whose literal is

true under T'.

— This set of m nodes must be independent by

construction.

Corollary 31 4-DEGREE? INDEPENDENT SET 1S
NP-complete.

Theorem 32 INDEPENDENT SET is NP-complete for planar
graphs.

a@The degrees in the graph are at most 4 if we start with NAESAT.
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CLIQUE and NODE COVER

e We are given an undirected graph G and a goal K.

e CLIQUE asks if there is a set of K nodes that form a
clique, which have all possible edges between them.

e NODE COVER asks if there is a set C' with K or fewer
nodes such that each edge of G has at least one of its
endpoints in C.
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Both CLIQUE and NODE COVER Are NP-Complete

Corollary 33 CLIQUE is NP-complete.

e Let G be the complement of G, where [z,y] € G if and
only if [z,y] € G.

e Then I is a clique in G if and only if I is an independent

set in G
Corollary 34 NODE COVER is NP-complete.

e [ is an independent set of G = (V, F) if and only if
V — I is a node cover of G.
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MIN CUT and MAX CUT

A cut in an undirected graph G = (V, E) is a partition
of the nodes into two nonempty sets S and V — S.

The size of a cut (S,V — 5) is the number of edges
between S and V — §.

MIN CUT is in P.

MAX CUT asks if there is a cut of size at least K.
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