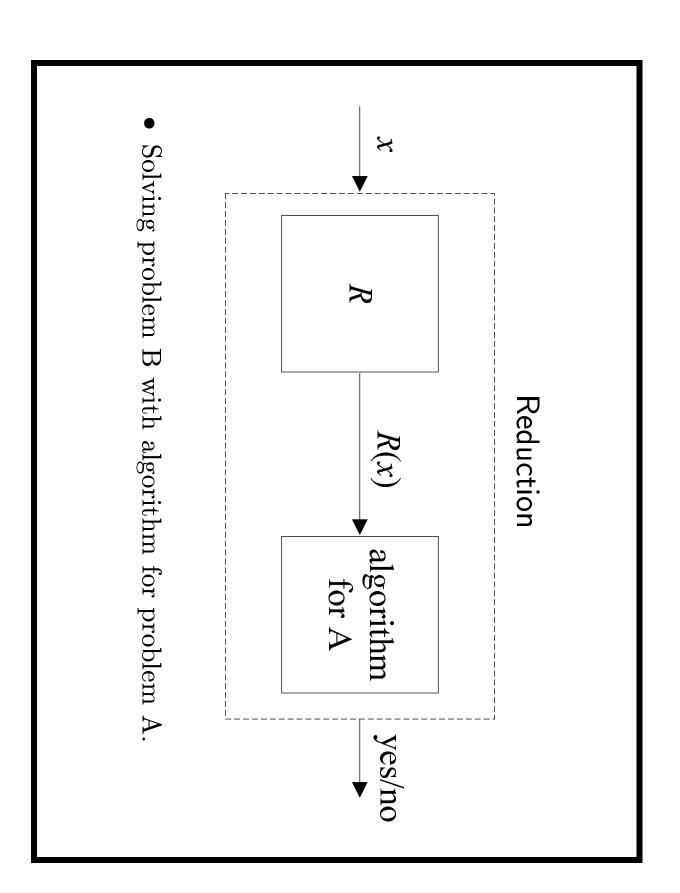
Degrees of Difficulty

- When is a problem more difficult than another?
- every input x of B yields an equivalent input R(x) of A. B reduces to A if there is a transformation R which for
- The answer to x for B is the same as the answer to R(x) for A.
- There must be restrictions on the complexity of computing R.
- Otherwise, R(x) might as well solve B.
- Problem A is at least as hard as problem B if B reduces



Reduction between Languages

- $O(\log n)$ —hence polynomial time—such that computable by a deterministic TM in space Language L_1 is **reducible to** L_2 if there is a function R
- R is called a **reduction** from L_1 to L_2 .

for all inputs $x, x \in L_1$ if and only if $R(x) \in L_2$.

- Degree of difficulty is not defined in terms of absolute complexity.
- It is possible for a language in $TIME(n^3)$ to be reducible to a language in $TIME(n^2)$.
- R can lengthen the input or may run in time n^3 .

Reduction of HAMILTONIAN PATH to SAT

- Given a graph G, we shall construct a CNF R(G) such Hamiltonian path. that R(G) is satisfiable if and only if G has a
- Suppose G has n nodes: $1, 2, \ldots, n$.
- R(G) has n^2 boolean variables x_{ij} , $1 \le i, j \le n$.
- In particular, x_{ij} means "node j is the ith node in the Hamiltonian path."

The Clauses of R(G)

- 1. Each node j must appear in the path.
- $x_{1j} \vee x_{2j} \vee \cdots \vee x_{nj}$ for each j.
- 2. No node j appears twice in the path.
- $\neg x_{ij} \lor \neg x_{kj}$ for all i, j, k with $i \neq k$.
- 3. Every position i on the path must be occupied.
- $x_{i1} \lor x_{i2} \lor \cdots \lor x_{in}$ for each i.
- 4. No two nodes j and k occupy the same position in the path.
- $\neg x_{ij} \lor \neg x_{ik}$ for all i, j, k with $j \neq k$.
- 5. Nonadjacent nodes i and j cannot be adjacent in the path.
- $\neg x_{ki} \lor \neg x_{k+1,j}$ for all $(i,j) \notin G$ and $k=1,2,\ldots,n-1$.

The Proof

- R(G) can be computed efficiently.
- Suppose $T \models R(G)$.
- Clauses of 1 and 2 imply that for each j, there is a unique i such that $T \models x_{ij}$.
- Clauses of 3 and 4 imply that for each i, there is a unique j such that $T \models x_{ij}$.
- So there is a permutation π of the nodes such that $\pi(i) = j$ if and only if $T \models x_{ij}$.
- Clauses of 5 guarantees that $(\pi(1), \pi(2), \ldots, \pi(n))$ is a Hamiltonian path.

Conversely, suppose that G has a Hamiltonian path

$$(\pi(1),\pi(2),\ldots,\pi(n)),$$

where π is a permutation.

• Clearly, the truth assignment

$$T(x_{ij}) = \mathtt{true} \ \text{if and only if} \ \pi(i) = j$$

satisfies all clauses of R(G).

Reduction of REACHABILITY to CIRCUIT VALUE

- Note that both problems are in P.
- Given a graph G, we shall construct a variable-free circuit R(G).
- Incidentally, R(G) will not have \neg gates
- The output of R(G) is true if and only if there is a path from node 1 to node n in G
- Idea: the Floyd-Warshall algorithm.

The Gates

- The gates are
- $-g_{ijk}$ with $1 \le i, j \le n$ and $0 \le k \le n$.
- $-h_{ijk}$ with $1 \leq i, j, k \leq n$.
- g_{ijk} : There is a path from node i to node j without passing through a node bigger than k.
- h_{ijk} : There is a path from node i to node j passing through k but not any node bigger than k.
- Input gate $g_{ij0} = \text{true}$ if and only if i = j or $(i, j) \in G$.

The Construction

- h_{ijk} is an AND gate with predecessors $g_{i,k,k-1}$ and $g_{k,j,k-1}$, where k = 1, 2, ..., n.
- g_{ijk} is an OR gate with predecessors $g_{i,j,k-1}$ and $h_{i,j,k}$, where k = 1, 2, ..., n.
- g_{1nn} is the output gate.
- Interestingly, R(G) uses no \neg gates: It is a monotone circuit
- The depth of R(G) is O(n), which is not optimal.

Reduction of CIRCUIT SAT to SAT

- if C is satisfiable. Given a circuit C, we shall construct a boolean expression R(C) such that R(C) is satisfiable if and only
- -R(C) will turn out to be a CNF.
- gate g of C. The variables of R(C) are those of C plus g for each
- Each gate of C will be turned into clauses of R(C).

The Clauses of R(C)

g is a variable gate x: Add clauses $(\neg g \lor x)$ and $(g \lor \neg x)$.

• Meaning: $g \Leftrightarrow x$.

g is a true gate: Add clause (g).

Meaning: g must be true to make R(C) true.

g is a false gate: Add clause $(\neg g)$.

Meaning: g must be false to make R(C) true.

g is a \neg gate with predecessor gate h: Add clauses $(\neg g \lor \neg h)$ and $(g \lor h)$.

• Meaning: $g \Leftrightarrow \neg h$.

The Clauses of R(C) (continued)

g is a \vee gate with predecessor gates h and h': Add clauses $(\neg h \lor g)$, $(\neg h' \lor g)$, and $(h \lor h' \lor \neg g)$.

• Meaning: $g \Leftrightarrow (h \lor h')$.

g is a \land gate with predecessor gates h and h': Add clauses $(\neg g \lor h)$, $(\neg g \lor h')$, and $(\neg h \lor \neg h' \lor g)$.

• Meaning: $g \Leftrightarrow (h \land h')$.

g is the output gate: Add clause (g).

Meaning: g must be true to make R(C) true.

Composition of Reductions

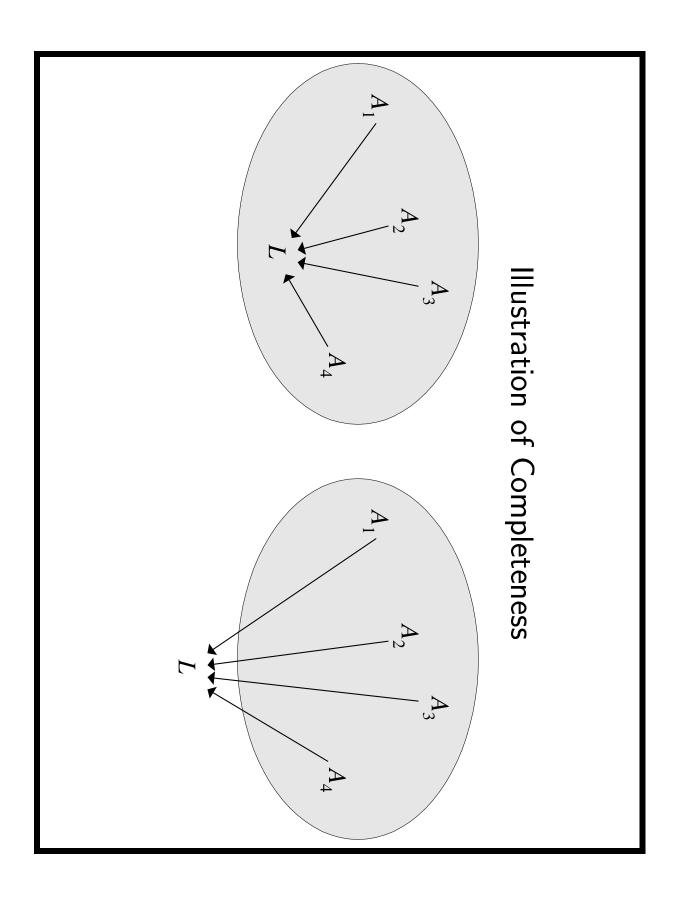
is a reduction from L_2 to L_3 , then the composition $R \cdot R'$ is **Proposition 22** If R is a reduction from L_1 to L_2 and R' a reduction from L_1 to L_3 .

- Clearly $x \in L_1$ if and only if $R'(R(x)) \in L_3$.
- $R \cdot R'$ can be computed in space $O(\log n)$.
- Generating R(x) before feeding it to R' may consume problem if we require reductions to be in P not L.] too much space because R(x) is on a work string. [No
- The trick is to let R' drive the computation: It asks R to deliver each bit of R(x) when needed
- Recall that R(x) is produced in a write-only manner.

Completeness^a

- Now that reducibility is transitive, problems can be ordered with respect to their difficulty.
- Is there a maximal element?
- Let \mathcal{C} be a complexity class and $L \in \mathcal{C}$.
- L is C-complete if any $L' \in C$ can be reduced to L.
- Every complexity class we have seen so far has complete problems!
- Complete problems capture the difficulty of a class; they are also the hardest.

^aCook, 1971.



Closedness under Reduction

- reducible to L' and $L' \in \mathcal{C}'$, then $L \in \mathcal{C}'$. A class C' is closed under reductions if whenever L is
- P, NP, coNP, L, NL, PSPACE, and EXP are all closed under reductions.

Complete Problems and Complexity Classes

L is a complete problem for C. Then C = C' if $L \in C'$. such that $C' \subseteq C$. Assume C' is closed under reductions and Proposition 23 Let C' and C be two complexity classes

- Every language $A \in \mathcal{C}$ reduces to $L \in \mathcal{C}'$.
- Because C' is closed under reductions, $A \in C'$.
- Hence $\mathcal{C} \subseteq \mathcal{C}'$.

The above proposition implies that

- P = NP if an NP-complete problem in P.
- L = P if a P-complete problem is in L.

Complete Problems and Complexity Classes (continued)

then C = C'. closed under reductions. If L is complete for both C and C', Proposition 24 Let C' and C be two complexity classes

- All languages in \mathcal{C} reduce to $L \in \mathcal{C}'$.
- Since C' is closed under reductions, $C \subseteq C'$.
- The proof for $C' \subseteq C$ is symmetric.

Table of Computation

- Let $M=(K,\Sigma,\delta,s)$ be a polynomial-time deterministic TM deciding L.
- Its computation on input x can be thought of as a $|x|^k \times |x|^k$ table, where $|x|^k$ is the time bound.
- Rows are time steps (0 to $|x|^k 1$).
- Columns are positions in the string of the TM (the same range).
- The (i,j)th table entry represents the contents of position j of the string after i steps of computation.

Some Conventions To Simplify the Table

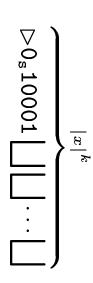
- M has one string and halts after at most $|x|^k-2$ steps.
- Assume a large enough k to make it true for $|x| \geq 2$.
- Pad the table with $\sqcup s$ so that each row has length $|x|^k$.
- The computation will never reach the right end of the table for lack of time.
- If the cursor scans the jth position at time i when M is a new symbol σ_q . at state q and the symbol is σ , then the (i,j)th entry is
- instead of σ_q . If q is "yes" or "no," simply use "yes" or "no"

Some Conventions To Simplify the Table (continued)

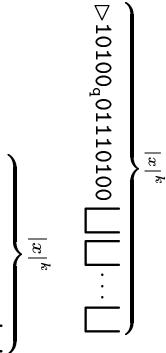
- Modify M so that the cursor starts not at \triangleright but at the first symbol of the input.
- The cursor never visits the leftmost \triangleright by telescoping to the leftmost \triangleright two moves of M each time the cursor is about to move
- The first symbol in every row is a \triangleright and not a \triangleright_q .
- If M has halted before its time bound of $|x|^k$, so that subsequent rows will be identical to that row "yes" or "no" appears at a row before the last, then all
- M accepts x if and only if the $(|x|^k 1, j)$ th entry is "yes" for some j.

Comments

- Each row is essentially a configuration.
- If the input x = 010001, then the first row is



A typical row may be



The last rows must be like $\gt \cdots$ "yes" \cdots

The First Complete Problem

P-complete. Theorem 25 (Ladner, 1975) CIRCUIT VALUE is

- CIRCUIT VALUE is in P.
- For any $L \in \mathbb{P}$, we will construct a reduction R from L to CIRCUIT VALUE.
- Given any input x, R(x) is a variable-free circuit such that $x \in L$ if and only if R(x) evaluates to true
- Let M decide L in time n^k .
- Let T be the computation table of M on x.

- T_{ij} is known. When i = 0, or j = 0, or $j = |x|^k - 1$, then the value of
- The jth symbol of x or \square , a \triangleright , and a \square , respectively.
- Three out of four of T's borders are known.
- Consider other entries T_{ij} .
- T_{ij} depends on only $T_{i-1,j-1}$, $T_{i-1,j}$, and $T_{i-1,j+1}$.

	$T_{i-1,j-1}$
T_{ij}	$T_{i-1,j}$
	$T_{i-1,j+1}$

- Let Γ denote the set of all symbols that can appear onthe table.
- Encode each symbol of Γ as an m-bit number, where

$$m = \lceil \log_2 |\Gamma| \rceil$$
.

- Called state assignment in circuit design.
- The computation table is now a table of binary entries $S_{ij\ell}$, where $0 \le i \le n^k - 1$, $0 \le j \le n^k - 1$, and $1 \le \ell \le m$.
- $-S_{ij1}S_{ij2}\cdots S_{ijm}$ encodes T_{ij} .

Each bit $S_{ij\ell}$ depends on only 3m other bits:

$$S_{i-1,j-1,1}$$
 $S_{i-1,j-1,2}$ $S_{i-1,j-1,m}$ $S_{i-1,j,1}$ $S_{i-1,j,2}$ $S_{i-1,j,m}$ $S_{i-1,j+1,1}$ $S_{i-1,j+1,2}$ $S_{i-1,j+1,m}$

So there are m boolean functions F_1, F_2, \ldots, F_m with 3m inputs each such that for all i, j > 0,

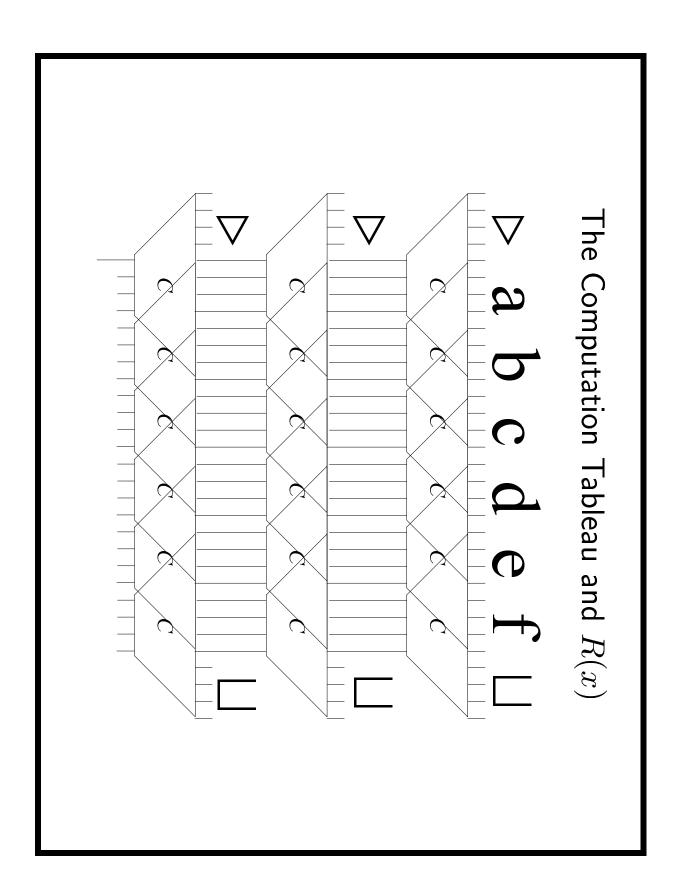
$$S_{ij\ell} = F_{\ell}(S_{i-1,j-1,1}, S_{i-1,j-1,2}, \dots, S_{i-1,j-1,m}, S_{i-1,j,1}, S_{i-1,j,1}, S_{i-1,j,2}, \dots, S_{i-1,j,m}, S_{i-1,j+1,1}, S_{i-1,j+1,2}, \dots, S_{i-1,j+1,m}).$$

- These F_i 's depend on only M's specification, not on x.
- Their sizes are fixed.
- They can be turned into boolean circuits.
- Compose these m circuits in parallel to obtain circuit Cwith 3m-bit inputs and m-bit outputs.

$$-C(T_{i-1,j-1},T_{i-1,j},T_{i-1,j+1})=T_{ij}.$$

C is like an ASIC (application-specific IC) chip.

- A copy of circuit C is placed at each entry of the table.
- Exceptions are the top row and the two extreme columns.
- R(x) consists of $(|x|^k 1)(|x|^k 2)$ copies of circuit C.
- Without loss of generality, assume the output $(|x|^k - 1, 1).$ "yes"/"no" (coded as 1/0) appear at position



MONOTONE CIRCUIT VALUE Is P-Complete

- Monotone boolean circuits are less expressive than general circuits because they can compute only monotone boolean functions
- Their output cannot change from true to false when one input changes from false to true.
- CIRCUIT VALUE. However, MONOTONE CIRCUIT VALUE is as hard as

Corollary 26 Monotone circuit value is P-complete.

Given any general circuit, we can "move the ¬'s downwards" using de Morgan's laws. (Think!)

Cook's Theorem: The First NP-Complete Problem

Theorem 27 (Cook, 1971) SAT is NP-complete.

- SAT is in NP (p. 61).
- CIRCUIT SAT reduces to SAT (p. 156).
- We only need to show that all languages in NP can be reduced to CIRCUIT SAT.

- Let single-string NTM M decide $L \in NP$ in time n^k .
- Assume M has exactly two nondeterministic choices at each step: choices 0 and 1.
- For each input x, we construct circuit R(x) such that $x \in L$ if and only if R(x) is satisfiable
- A sequence of nondeterministic choices is a bit string

$$B = (c_0, c_1, \dots, c_{|x|^k - 1}) \in \{0, 1\}^{|x|^k}.$$

Once B is fixed, the computation is deterministic.

- Each choice of B results in a deterministic polynomial-time computation, hence a table like the one on p. 175.
- Each circuit C at time i has an extra binary input ccorresponding to the nondeterministic choice.
- The overall circuit R(x) (on p. 180) is satisfiable if there is a truth assignment B such that the computation table accepts.
- This happens if and only if M accepts x, i.e., $x \in L$.

