Degrees of Difficulty

e When is a problem more difficult than another?
e B reduces to A if there is a transformation R which for
every input x of B yields an equivalent input R(x) of A.

— The answer to x for B is the same as the answer to

R(x) for A.

— There must be restrictions on the complexity of
computing R.

— Otherwise, R(x) might as well solve B.

e Problem A is at least as hard as problem B if B reduces

to A.

146

Reduction

algorithm

e Solving problem B with algorithm for problem A.

147

Reduction between Languages

e Language L, is reducible to L5 if there is a function R
computable by a deterministic TM in space
O(log n)—hence polynomial time—such that

— for all inputs x, € Ly if and only if R(z) € L.
e R is called a reduction from L; to Ls.

e Degree of difficulty is not defined in terms of absolute

complexity.

— It is possible for a language in TIME(n°) to be

reducible to a language in TIME(n?).

— R can lengthen the input or may run in time n°.

148

Reduction of HAMILTONIAN PATH to SAT

Given a graph G, we shall construct a CNF R(G) such
that R(G) is satisfiable if and only if G has a

Hamiltonian path.

Suppose GG has n nodes: 1,2,... ,n.

R(G) has n? boolean variables z;;, 1 <14,j < n.

In particular, z;; means “node j is the ith node in the

Hamiltonian path.”

149

The Clauses of R(G)

Each node 3 must appear in the path.

® T1;Vx2; V- -V, for each j.

No node j appears twice in the path.
o —x;; V xy; for all ¢, j, k with ¢ # k.

Every position ¢ on the path must be occupied.

® ;1 VZioV---Vux, for each 3.

No two nodes 7 and k£ occupy the same position in the path.

o —x;; Vx for all 4,5, k with 5 # k.

Nonadjacent nodes ¢ and j cannot be adjacent in the path.

® —xy; V xpy1,; forall (4,5) 2 Gand k=1,2,... ,n— 1.

150

The Proof
R(G) can be computed efficiently.
Suppose T' = R(G).

Clauses of 1 and 2 imply that for each 7, there is a
unique ¢ such that T' = z;;.

Clauses of 3 and 4 imply that for each ¢, there is a
unique j such that T' = z;;.

So there is a permutation 7 of the nodes such that

m(¢) = 7 if and only if T |= x;.

Clauses of 5 guarantees that (7w(1),7(2),...,7(n)) is a
Hamiltonian path.

151

The Proof (continued)

e Conversely, suppose that G has a Hamiltonian path

where 7 is a permutation.

e Clearly, the truth assignment
T(z;;) = true if and only if 7(i) = j

satisfies all clauses of R(G).

152

Reduction of REACHABILITY to CIRCUIT VALUE
Note that both problems are in P.

Given a graph G, we shall construct a variable-free
circuit R(G).
— Incidentally, R(G) will not have — gates.

The output of R(G) is true if and only if there is a path
from node 1 to node n in G.

Idea: the Floyd-Warshall algorithm.

153

The Gates
The gates are
— gijkr With 1 < 4,7 <nand 0 <k <n.
— hijr with 1 <14,5,k < n.

gijk: There is a path from node ¢ to node j without
passing through a node bigger than k.

h;;k: There is a path from node 7 to node 7 passing
through £ but not any node bigger than k.

Input gate g;;0 = true if and only if i = j or (3, j)

154

G.

The Construction

h;;k 1s an AND gate with predecessors g; . x—1 and
9k.,j,k—1, where k = Hu Mg ... 5 N

gijk 1s an OR gate with predecessors g; ; x—1 and h; ; &,

where k =1,2,... ,n.
Jinn 18 the output gate.

Interestingly, R(G) uses no — gates: It is a monotone
circuit.

The depth of R(G) is O(n), which is not optimal.

155

Reduction of CIRCUIT SAT to SAT

e Given a circuit C, we shall construct a boolean
expression R(C') such that R(C) is satisfiable if and only
if C' is satisfiable.

— R(C) will turn out to be a CNF.

e The variables of R(C) are those of C plus g for each
gate g of C.

e Fach gate of C will be turned into clauses of R(C).

156

The Clauses of R(C)

g is a variable gate z: Add clauses (—g V x) and (g V —x).
e Meaning: g & .

g is a true gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

g is a false gate: Add clause (—g).
e Meaning: g must be false to make R(C') true.

g is a - gate with predecessor gate h: Add clauses
(—g V —h) and (g V h).

e Meaning: g < —h.

157

The Clauses of R(C) (continued)

g is a V gate with predecessor gates h and h': Add
clauses (—h V g), (=h' V g), and (hV h' V —g).

e Meaning: g < (hV h').
g is a A gate with predecessor gates h and h': Add
clauses (g V h), (—gV Rh'), and (-=h V —=h' V g).
e Meaning: g < (hAR).
g is the output gate: Add clause (g).
e Meaning: g must be true to make R(C) true.

158

Composition of Reductions

Proposition 22 If R is a reduction from Ly to Ly and R’
s a reduction from Lo to L3, then the composition R - R’ is

a reduction from Ly to Ls.
e Clearly x € L, if and only if R'(R(z)) € Ls.

e R- R’ can be computed in space O(logn).

— Generating R(z) before feeding it to R’ may consume

too much space because R(x) is on a work string. [No

problem if we require reductions to be in P not L.]

— The trick is to let R’ drive the computation: It asks
R to deliver each bit of R(x) when needed.

— Recall that R(z) is produced in a write-only manner.

159

Completeness®

Now that reducibility is transitive, problems can be
ordered with respect to their difficulty.

Is there a mazimal element?
Let C be a complexity class and L € C.

L is C-complete if any L’ € C can be reduced to L.
— Every complexity class we have seen so far has

complete problems!

Complete problems capture the difficulty of a class; they
are also the hardest.

aCook, 1971.

160

lllustration of Completeness

161

Closedness under Reduction

e A class C’ is closed under reductions if whenever L is

reducible to L' and L’ € C’, then L € C'.

e P, NP, coNP, L, NL, PSPACE, and EXP are all closed

under reductions.

162

Complete Problems and Complexity Classes

Proposition 23 Let C' and C be two complexity classes

such that C' C C. Assume C' is closed under reductions and
L is a complete problem for C. Then C =C" if L € C'.

e Every language A € C reduces to L € C'.
e Because C’ is closed under reductions, A € C’.
e Hence C CC'.
The above proposition implies that
e P = NP if an NP-complete problem in P.

e L =P if a P-complete problem is in L.

163

Complete Problems and Complexity Classes
(continued)

Proposition 24 Let C' and C be two complexity classes

closed under reductions. If L is complete for both C and C’,
then C = C'.

e All languages in C reduce to L € C’.
e Since C’ is closed under reductions, C C C'.

e The proof for C' C C is symmetric.

164

Table of Computation

Let M = (K,X,4,s) be a polynomial-time deterministic
TM deciding L.

Its computation on input x can be thought of as a
lz|® x |z|* table, where |z|* is the time bound.

Rows are time steps (0 to |z|*® — 1).

Columns are positions in the string of the TM (the same

range).

The (4, 7)th table entry represents the contents of
position j of the string after ¢ steps of computation.

165

Some Conventions To Simplify the Table

e M has one string and halts after at most |z|* — 2 steps.

— Assume a large enough k to make it true for |z| > 2.

e Pad the table with | |s so that each row has length |z|*.

— The computation will never reach the right end of
the table for lack of time.

e If the cursor scans the jth position at time ¢ when M is
at state ¢ and the symbol is o, then the (7, 7)th entry is

a new symbol oy.

Y

— If g is “yes” or “no,” simply use “yes” or “no”

instead of oy.

166

Some Conventions To Simplify the Table (continued)

e Modify M so that the cursor starts not at > but at the
first symbol of the input.

The cursor never visits the leftmost > by telescoping
two moves of M each time the cursor is about to move
to the leftmost .

— The first symbol in every row is a I> and not a >,.

If M has halted before its time bound of |z|*, so that

)

“yes” or “no” appears at a row before the last, then all

subsequent rows will be identical to that row.

M accepts z if and only if the (|z|*¥ — 1,5)th entry is

7

“yes” for some j.

167

Comments

e Each row is essentially a configuration.

e If the input z = 010001, then the first row is

|z |*

o\

-~

50,1000t | || || |

e A typical row may be

k
||

N\

\VSSOO_SSSS_ I |-

||

7\

\
4 ” o,

e The last rows must be like > - - - “yes

168

The First Complete Problem

Theorem 25 (Ladner, 1975) CIRCUIT VALUE is
P-complete.

e CIRCUIT VALUE is in P.

e For any L € P, we will construct a reduction R from L
to CIRCUIT VALUE.

— Given any input z, R(x) is a variable-free circuit
such that x € L if and only if R(z) evaluates to true.

e Let M decide L in time n*.

e Let T be the computation table of M on x.

169

The Proof (continued)

e When i =0, or j =0, or j = |z|*¥ — 1, then the value of
MJ\G. i1s known.

— The jth symbol of x or | |, a >, and a | |, respectively.

— Three out of four of T’s borders are known.
e Consider other entries T;;.

e T;; depends on only 751 ;—1, Ti—1 ;, and T3_1 j41.

Tic1j—1 | Tic1y | Tiz1,5+1
T,

170

The Proof (continued)

e Let I' denote the set of all symbols that can appear on
the table.

e Encode each symbol of I' as an m-bit number, where
m = [log, |T'|].
— Called state assignment in circuit design.

e The computation table is now a table of binary entries
Sije, where 0 <i<n*—1,0<j<n* -1, and
1 </ <m.

— m.&.Hrm‘Sm T %@.3 encodes MJS

171

The Proof (continued)

e Each bit 5;;, depends on only 3m other bits:
Si—1,j—1,1 Si—1,j-12 - Si—1,j-1,m
Si—1,5,1 Si—1,5,2 Si—1,j,m
Si—1,j+1,1 Si—1,j41,2 * Si—1,j41,m

e So there are m boolean functions Iy, Fs, ... , F,, with
3m inputs each such that for all 7,7 > 0,

Sije = Fo(Sic1,-1,1,5-1,j-1,2,-- ,Si—1,j—1,m;
M&IHQ.L“ vm‘s.lf.w.“wu < urm‘s.lfu.\;u

Sic141,1,0i—1, 41,25 -+ 5 9i—1j+1,m)-

172

The Proof (continued)

These F;’s depend on only M’s specification, not on z.
Their sizes are fixed.
They can be turned into boolean circuits.

Compose these m circuits in parallel to obtain circuit C
with 3m-bit inputs and m-bit outputs.

= O(Ti1,j-1,Ti15, Ti1,541) = Tij.

— (C is like an ASIC (application-specific IC) chip.

173

The Proof (continued)

e A copy of circuit C is placed at each entry of the table.
— Exceptions are the top row and the two extreme
columns.

o R(z) consists of (|z|* — 1)(|z|* — 2) copies of circuit C.

e Without loss of generality, assume the output

“yes” /“no” (coded as 1/0) appear at position
A_&_\Aw o H_J Hv

174

The Computation Tableau and R(x)

>abcdet U

EEEEEEEEEEE NN

o AKX K

o AKX K

175

MONOTONE CIRCUIT VALUE Is P-Complete

e Monotone boolean circuits are less expressive than
general circuits because they can compute only
monotone boolean functions.

— Their output cannot change from true to false when
one input changes from false to true.

e However, MONOTONE CIRCUIT VALUE is as hard as
CIRCUIT VALUE.

Corollary 26 MONOTONE CIRCUIT VALUE 18 P-complete.

e Given any general circuit, we can “move the —’s

downwards” using de Morgan’s laws. (Think!)

176

Cook’s Theorem: The First NP-Complete Problem

Theorem 27 (Cook, 1971) sAT is NP-complete.
e SAT is in NP (p. 61).
e CIRCUIT SAT reduces to SAT (p. 156).

e We only need to show that all languages in NP can be
reduced to CIRCUIT SAT.

177

The Proof (continued)
Let single-string NTM M decide L € NP in time n*.

Assume M has exactly two nondeterministic choices at
each step: choices 0 and 1.

For each input z, we construct circuit R(x) such that
x € L if and only if R(x) is satisfiable.

A sequence of nondeterministic choices is a bit string

k
B = Amovmf . e UQ_%_lev < AHOQ HHV_H_ .

Once B is fixed, the computation is deterministic.

178

The Proof (continued)

Each choice of B results in a deterministic polynomial-time

computation, hence a table like the one on p. 175.

Each circuit C' at time ¢ has an extra binary input c

corresponding to the nondeterministic choice.

The overall circuit R(z) (on p. 180) is satisfiable if there is a
truth assignment B such that the computation table accepts.

This happens if and only if M accepts z, i.e., x € L.

179

The Computation Tableau for NTMs and R(z)

vmcomow

] e

180

