Proper (Complexity) Functions

e We say that f : N — N is a proper (complexity)

function if the following hold:

f is nondecreasing.

There is a k-string TM M/ such that M;(x) = mf =)

for any =x.
M halts after O(|z| + f(|x|)) steps.
My uses O(f(|z|)) space besides its input z.

111

Examples of Proper Functions

Most “reasonable” functions are proper: ¢, [logn],
polynomials of n, 2™, v/n, n!, etc.

If f and g are proper, then so are f + g, fg, and 29.

Nonproper functions when serving as the time bounds
for complexity classes spoil “the theory building.”

— For example, TIME(f(n)) = TIME(2/(™) for some
recursive function f (the gap theorem).

We shall henceforth use only proper functions in relation
to complexity classes TIME(f(n)), SPACE(f(n)),
NTIME(f(n)), and NSPACE(f(n)).

112

Space-Bounded Computation and Proper Functions

e In the definition of space-bounded computations, the
TMs are not required to halt at all.

e When the space is bounded by a proper function f,
computations can be assumed to halt:

— Run the TM associated with f to produce an output
of length f(n) first.

— The space-bound computation must repeat a

configuration if it runs for more than ¢"*/(®) steps

for some ¢ (p. 128).

— So we can count steps to prevent infinite loops.

113

Precise Turing Machines

e A TM M is precise if there are functions f and g such
that for every n € N, for every = of length n, and for
every computation path of M,

— M halts after precise f(n) steps, and

— All of its strings are at halting of length precisely
g(n).
x If M is a TM with input and output, we exclude
the first and the last strings.

e M can be deterministic or nondeterministic.

114

Precise TMs Are General

Proposition 10 Suppose that a (deterministic or
nondeterministic) TM M decides L within time (or space)
f(n), where f is proper. Then there is a precise TM M’
which decides L in time O(n + f(n)) (or space O(f(n)),

respectively).

e M’ on input z first simulates the TM M/ associated

with the proper function f on z.

e M;’s output of length f(|z|) will serve as a “yardstick”
or an “alarm clock.”

115

The Proof (continued)

e If f is a time bound:

— The simulation of each step of M on z is matched by
advancing the cursor on the “clock” string.

— The simulation stops at the moment the “clock”
string is exhausted.

— The time bound is therefore O(|z| + f(|z])).

o If f is a space bound:
— M’ simulates on My’s output string.

— The total space, besides the input string, is O(f(n)).

116

The Most Important Complexity Classes

e We write expressions like n* to denote the union of all

complexity classes, one for each value of k.

— For example, NTIME(n*) = ., , NTIME(n/).

P TIME(n")
NP NTIME (n*)
)

PSPACE SPACE(n”
NPSPACE NSPACE(n")
EXP TIME(2™)
L SPACE(logn)
NL NSPACE(logn)

117

Complements of Nondeterministic Classes

e From p. 89, we know R, RE, and coRE are distinct.

— coRE contains the complements of languages in RE,

not the languages not in RE.

e Recall that the complement of L, denoted by L, is the
language X* — L.
— SAT COMPLEMENT is the set of unsatisfiable boolean

expressions.

— HAMILTONIAN PATH COMPLEMENT is the set of
graphs without a Hamiltonian path.

118

The Co-Classes

e For any complexity class C, coC denotes the class

{L:LecC}.

e Clearly, if C is a deterministic time or space complexity
class, then C = coC.

— They are said to be closed under complement.

— A deterministic TM deciding L can be converted to
one that decides L within the same time or space
bound by reversing the “yes” and “no” states.

e Whether nondeterministic classes for time are closed

under complement is not known (p. 60).

119

The Halting Problem Quantified

e Let f(n) > n be proper.
e Define

Hy ={M;xz: M accepts input z
after at most f(|x|) steps},

where M is deterministic.

e Assume the input is binary.

120

The Quantified Halting Problem Is in O(f(n)?)
Lemma 11 H; € TIME(f?(n)).

e For each input M; x, we simulate M on x with an alarm
clock of length f(|z|).

— Use the simulator (p. 43), the universal TM, and the
linear speedup theorem.

e H; may not be in TIME(f(n)) because the simulator
needs to take into account all possible M:s.

— Just because a Pentium processor can finish a job in
10 seconds does not mean that it takes only 10
seconds to verify that claim.

121

The Quantified Halting Problem Is Not in f(|n/2])
Lemma 12 H; ¢ TIME(f(|n/2])).

e Suppose there is a TM My, that decides Hy in time
f([n/2]).
Consider machine D¢ (M):

if My, (M; M) = “yes” then “no” else “yes”

Dy on input M runs in the same time as Mg, on input

M; M, ie., in time f(| 252]) = f(n).
NuxANU\v = “yes” = @?bx m mx = @\wav = “no.”

Similarly, D¢(Dys) = “no” = D¢(Dy) = “yes.”

122

The Time Hierarchy Theorem

Theorem 13 If f(n) > n is proper, then

TIME(f(n)) C TIME(f3(2n + 1)).

e Combine Lemma 11 and Lemma 12.
Corollary 14 P C EXP.
e P C TIME(2") C EXP because poly(n) < 2" for n large

enough.

e By Theorem 13,
TIME(2") C TIME((2271)3) C H;\:w@:mv C EXP.

123

The Space Hierarchy Theorem

Theorem 15 If f(n) is proper, then
SPACE(f((n) & SPACE(f(n)log f(n)).

Corollary 16 L C PSPACE.

124

The Reachability Method

A computation of a TM (deterministic or
nondeterministic) can be represented by directional

transitions between configurations.

The reachability method imagines a directed graph with
all the TM configurations as its nodes and edges

connecting two nodes if one yields the other.

The start node (representing the initial configuration)

has zero in degree.

When the TM is nondeterministic, a node may have an

out degree greater than one.

125

lllustration of the Reachability Method

Initial
configuration

126

Relations between Complexity Classes

Theorem 17 Suppose that f(n) is proper. Then

1. SPACE(f(n)) € NSPACE(f(n)),
TIME(f(n)) € NTIME(f(n)).
C

. NTIME(f(n)) C SPACE(f(n)).
. NSPACE(f(n)) C TIME(klegn+f(n),

Proof of 2:
— Explore the computation tree of the NTM for “yes.”
— Use the depth-first search as f is proper.

— Each path consumes at most O(f(n)) space because

it takes O(f(n)) time, and space can be recycled.

127

The Proof (continued)

e Proof of 3 (use the reachability method):

— Generate the configuration graph of a k-string NTM

M = (K, X, A, s) with input and output on input = of

length n that decides L € NSPACE(f(n)).

* A configuration is a (2k + 1)-tuple
(q, w1, u1, w2, U2, ... , Wk, Uk).

* We only care about (q, ¢, w2, u2,... ,Wkr—1,Uk—1), where
¢ is an integer between 0 and n for the position of the
first cursor.

* The number of configurations is therefore at most

mm X Ail_l C X _M_Gwlw:?v _ QAQ_Hom:Lnl:J

for some c;, which depends on M.

128

The Proof (continued)

Add edges to the configuration graph based on the

transition function.

Whether x € L becomes equivalent to deciding whether
there is a path in the configuration graph from the
initial configuration to some configuration of the form
(“yes”,i,...) [there may be many of them].

The problem is therefore that of REACHABILITY on a

graph with Q?wom :+23v nodes.

It is in TIME(clo8 /(") for some ¢ because

REACHABILITY is in TIME(n*) for some k& and
Amwom :._.i:vvw _ Am%%om n+f(n)

129

The Grand Chain of Inclusions
L CNL CP CNP C PSPACE C EXP.
It is known that PSPACE C EXP.

By Corollary 16 (p. 124), we know L. C PSPACE.

The chain must break somewhere between L and

PSPACE.

We suspect all four inclusions are proper, but there is no
proof yet.

130

Nondeterministic Space and Deterministic Space

e By Theorem 4 (p. 69), NTIME(f(n)) C TIME(c/(™), an
exponential gap.

— There is no proof that the exponential gap is

inherent.
e How about NSPACE and SPACE?

e Surprisingly, the relation is only quadratic, a polynomial
(Savitch’s theorem).

131

Savitch's Theorem

Theorem 18 (Savitch, 1970)
REACHABILITY € SPACE(log® n).

e Let GG be a graph with n nodes and z, y be nodes of G.

e For i > 0, let PATH(x, y,7) mean that there is a path
from z to y of length at most 2°.

e There is a path from x to y if and only if
PATH(x,y, [logn]).

132

The Simple Idea for Computing PATH(x, y, %)

For i > 0, PATH(z, y,) if and only if there exists a z
such that PATH(z, 2,7 — 1) and PATH(z,y,7 — 1).

For PATH(z,y,0), check the input graph or if z = y.

We compute PATH(z, y, [logn|) with a depth-first

search on a tree with nodes (z,y,7)s.

Like stacks in recursive calls, we keep only the current
path of (z,y,1)s.

The space requirement is proportional to the depth of
the tree, [logn].

133

The PATH Tree
PATH(x,y.log n)

PATH(x,z,log n-1) PATH(z,y,log n-1)

nav\@u ’ w

no

b

e Depth is only [logn].
e Each node (z,y,1) needs space O(logn).

e Total space is O(log® n).

134

The Algorithm for PATH(x, y,)
if + = 0 then
if x =y or (z,y) € G then
return true;
else
return false;
end if
else
for 2 =1,2,... ,ndo
if PATH(z, 2,7 — 1) and PATH(z,y,7 — 1) then
return true;
end if

end for

1:
2:
3:
4:
5%
6:
7
8:
9:

_ = = =
w N = O

return false;
: end if

—_
1NN

135

The Relation between Nondeterministic Space and
Deterministic Space Only Quadratic

Corollary 19 Let f(n) > logn be proper. Then
NSPACE(f(n)) C SPACE(f?(n)).

e Apply Savitch’s theorem to the configuration graph of
the NTM on the input.

e The graph is implicit—we check for connectedness only
when ¢ = 0, by examining the input string.

e From p. 128, the configuration graph has O(c/(™)

nodes; hence each node takes space O(f(n)).

136

Implications of Savitch’'s Theorem

e PSPACE = NSPACE.

e Nondeterminism is less powerful with respect to space
than it is with respect to time.

137

Nondeterministic Space Is Closed under Complement

e We shall prove that
coNSPACE(f(n)) = NSPACE(f(n)).

— So coNL = NL and coPSPACE = NPSPACE.
— There is still no hint of coNP = NP.

e The concept is nontrivial only for nondeterministic

complexity classes.

138

Functions and Nondeterministic TMs

e An NTM computes function F' if the following hold:

— On input x, each computation path either outputs
the correct answer F'(x) or ends up in state “no.”

— At least one computation path ends up with F(z).
— So all successful paths agree on their output.

e As before, the machine observes a space bound f(n) if
at halting all strings (except for the input and output

ones) are of length at most f(|z|).

139

How an NTM Computes a Function

X

140

The Immerman-Szelepscényi Theorem

Theorem 20 (Szelepscényi, 1987, Immerman, 1988)
Given a graph G and a node x, the number of nodes
reachable from x in G can be computed by an NTM within
space O(logn).

e The algorithm has four nested loops.
e Let n be the number of nodes.

e S(k) denotes the set of nodes in GG that can be reached
from x by paths of length at most k.

e So |S(n — 1)| is the desired answer.

141

The Algorithm: Top 2 Levels

: |S(0)] :=
: fork=1,2,... , n—1do
{Compute |S(k)| from |S(k — 1)|.}
{:=0;
foru=1,2,... ,ndo
if v € S(k) then
{:=041;
end if
end for
1S(k)| == ¢
: end for
: return |S(n — 1)|;

e Need |S(k — 1)|, but not earlier ones.

142

The Third Loop, for u € S(k)

m := 0; {Count members of S(k — 1) encountered.}
reply := false;
forv=1,2,... ,ndo
if ve S(k—1) then
m:=m + 1;
if G(v,u) then
reply := true;
end if
end if
end for
: if m < |S(k —1)| then

2503 w

. end if

: return reply;

1:
2:
3:
4:
5%
6:
7
8:
9:

e e e e
y-lkoo_[_Dr—\@

143

T T
W Q9

2:
3:
4:
5:
6:
7
8:
9:

The Fourth Loop, for v € S(k — 1)

for:=1,2,... ,k—1do

Guess a node t € {1,2,.

if (s,t) ¢ G then
“no”;
end if
S :=1t;
end for
if ¢t = v then

return true;

. else

?HHOS W

. end if

144

.. ,n}; {Nondeterminism.}

Wrapping It Up

e The nondeterministic algorithm needs space O(logn).

— k, |S(k—-1)|, 4, u, m, v, s, i, t.
Corollary 21 If f > logn is proper, then

NSPACE(f(n)) = coNSPACE(f(n)).

e Run the above algorithm on the configuration graph of
the NTM M deciding L € NSPACE(f(n)) on input .

e We accept only if no accepting configurations have been

encountered and if |S(n — 1)| is computed.

145

