Proper (Complexity) Functions

- We say that $f: \mathbb{N} \to \mathbb{N}$ is a **proper** (complexity) function if the following hold:
- -f is nondecreasing.
- for any x. There is a k-string TM M_f such that $M_f(x) = \sqcap^{f(|x|)}$
- M_f halts after O(|x| + f(|x|)) steps.
- M_f uses O(f(|x|)) space besides its input x.

Examples of Proper Functions

- Most "reasonable" functions are proper: c, $\lceil \log n \rceil$, polynomials of n, 2^n , \sqrt{n} , n!, etc.
- If f and g are proper, then so are f+g, fg, and 2^g .
- Nonproper functions when serving as the time bounds for complexity classes spoil "the theory building."
- For example, $TIME(f(n)) = TIME(2^{f(n)})$ for some recursive function f (the **gap theorem**).
- NTIME(f(n)), and NSPACE(f(n)). to complexity classes TIME(f(n)), SPACE(f(n)), We shall henceforth use only proper functions in relation

Space-Bounded Computation and Proper Functions

- In the definition of space-bounded computations, the TMs are not required to halt at all.
- When the space is bounded by a proper function f, computations can be assumed to halt:
- Run the TM associated with f to produce an output of length f(n) first.
- The space-bound computation must repeat a for some c (p. 128). configuration if it runs for more than $c^{n+f(n)}$ steps
- So we can count steps to prevent infinite loops.

Precise Turing Machines

- A TM M is **precise** if there are functions f and g such every computation path of M, that for every $n \in \mathbb{N}$, for every x of length n, and for
- M halts after precise f(n) steps, and
- g(n). All of its strings are at halting of length precisely
- * If M is a TM with input and output, we exclude the first and the last strings.
- M can be deterministic or nondeterministic.

Precise TMs Are General

respectively). which decides L in time O(n + f(n)) (or space O(f(n)), f(n), where f is proper. Then there is a precise TM M'nondeterministic) TM M decides L within time (or space) Proposition 10 Suppose that a (deterministic or

- M' on input x first simulates the TM M_f associated with the proper function f on x
- M_f 's output of length f(|x|) will serve as a "yardstick" or an "alarm clock."

The Proof (continued)

- If f is a time bound:
- advancing the cursor on the "clock" string. The simulation of each step of M on x is matched by
- string is exhausted. The simulation stops at the moment the "clock"
- The time bound is therefore O(|x| + f(|x|)).
- If f is a space bound:
- M' simulates on M_f 's output string.
- The total space, besides the input string, is O(f(n)).

The Most Important Complexity Classes

- We write expressions like n^k to denote the union of all complexity classes, one for each value of k.
- For example, $NTIME(n^k) = \bigcup_{j>0} NTIME(n^j)$.

$$P = TIME(n^k)$$

$$NP = NTIME(n^k)$$

$$PSPACE = SPACE(n^k)$$

$$NPSPACE = NSPACE(n^k)$$

$$EXP = TIME(2^{n^k})$$

$$L = SPACE(\log n)$$

$$NL = NSPACE(\log n)$$

Complements of Nondeterministic Classes

- From p. 89, we know R, RE, and coRE are distinct.
- coRE contains the complements of languages in RE, not the languages not in RE.
- Recall that the **complement** of L, denoted by L, is the language $\Sigma^* - L$.
- SAT COMPLEMENT is the set of unsatisfiable boolean expressions
- graphs without a Hamiltonian path. HAMILTONIAN PATH COMPLEMENT is the set of

The Co-Classes

For any complexity class C, coC denotes the class

$$\{\bar{L}: L \in \mathcal{C}\}.$$

- Clearly, if \mathcal{C} is a deterministic time or space complexity class, then C = coC.
- They are said to be closed under complement.
- one that decides \bar{L} within the same time or space bound by reversing the "yes" and "no" states. A deterministic TM deciding L can be converted to
- Whether nondeterministic classes for time are closed under complement is not known (p. 60).

The Halting Problem Quantified

- Let $f(n) \ge n$ be proper.
- Define

$$H_f = \{M; x : M \text{ accepts input } x \}$$
 after at most $f(|x|)$ steps $\}$,

where M is deterministic.

• Assume the input is binary.

The Quantified Halting Problem Is in $O(f(n)^3)$

Lemma 11 $H_f \in TIME(f^3(n))$.

- For each input M; x, we simulate M on x with an alarm clock of length f(|x|).
- Use the simulator (p. 43), the universal TM, and the linear speedup theorem
- H_f may not be in TIME(f(n)) because the simulator needs to take into account all possible Ms
- Just because a Pentium processor can finish a job in seconds to verify that claim. 10 seconds does not mean that it takes only 10

The Quantified Halting Problem Is Not in $f(\lfloor n/2 \rfloor)$

Lemma 12 $H_f \notin \text{TIME}(f(\lfloor n/2 \rfloor))$.

- Suppose there is a TM M_{H_f} that decides H_f in time $f(\lfloor n/2 \rfloor)$.
- Consider machine $D_f(M)$:

if $M_{H_f}(M; M) = \text{"yes"}$ then "no" else "yes"

- D_f on input M runs in the same time as M_{H_f} on input M; M, i.e., in time $f(\lfloor \frac{2n+1}{2} \rfloor) = f(n)$.
- $D_f(D_f) = \text{"yes"} \Rightarrow D_f; D_f \notin H_f \Rightarrow D_f(D_f) = \text{"no."}$
- Similarly, $D_f(D_f) = \text{``no"} \Rightarrow D_f(D_f) = \text{``yes.''}$

The Time Hierarchy Theorem

Theorem 13 If $f(n) \ge n$ is proper, then

$$TIME(f(n)) \subseteq TIME(f^3(2n+1)).$$

• Combine Lemma 11 and Lemma 12.

Corollary 14 P \subseteq EXP.

- $P \subseteq TIME(2^n) \subseteq EXP$ because $poly(n) \leq 2^n$ for n large enough.
- By Theorem 13, $TIME(2^n) \subsetneq TIME((2^{2n+1})^3) \subseteq TIME(2^{n^2}) \subseteq EXP.$

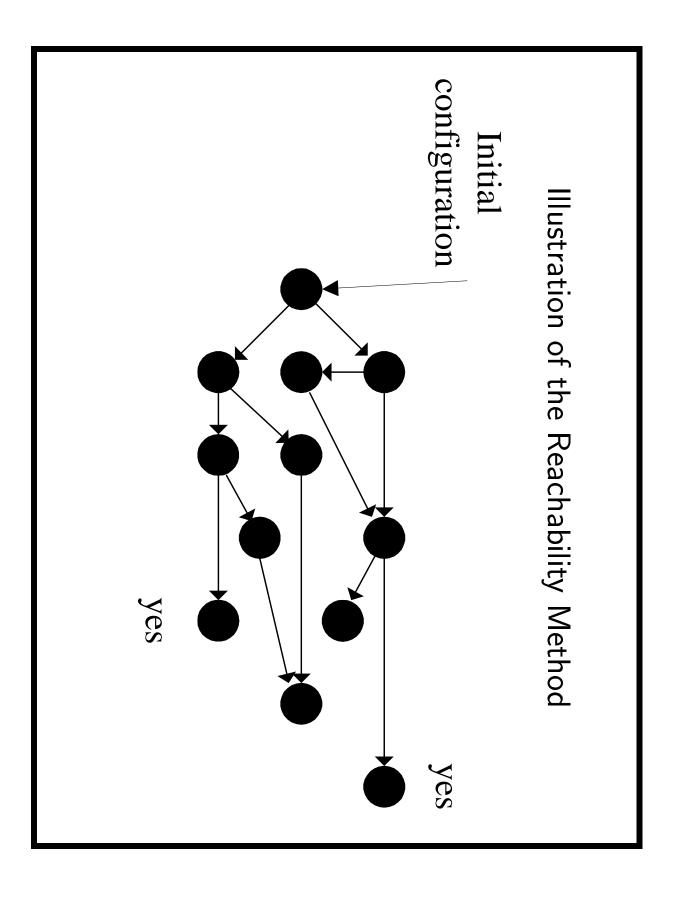
The Space Hierarchy Theorem

Theorem 15 If f(n) is proper, then $SPACE(f((n) \subseteq SPACE(f(n) \log f(n))).$

Corollary 16 L \subsetneq PSPACE.

The Reachability Method

- A computation of a TM (deterministic or nondeterministic) can be represented by directional transitions between configurations.
- The reachability method imagines a directed graph with connecting two nodes if one yields the other. all the TM configurations as its nodes and edges
- The start node (representing the initial configuration) has zero in degree
- out degree greater than one. When the TM is nondeterministic, a node may have an



Relations between Complexity Classes

Theorem 17 Suppose that f(n) is proper. Then

- 1. $SPACE(f(n)) \subseteq NSPACE(f(n)),$ $TIME(f(n)) \subseteq NTIME(f(n)).$
- 2. NTIME $(f(n)) \subseteq SPACE(f(n))$.
- 3. $\operatorname{NSPACE}(f(n)) \subseteq \operatorname{TIME}(k^{\log n + f(n)}).$
- Proof of 2:
- Explore the computation tree of the NTM for "yes."
- Use the depth-first search as f is proper
- Each path consumes at most O(f(n)) space because it takes O(f(n)) time, and space can be recycled.

The Proof (continued)

- Proof of 3 (use the reachability method):
- Generate the configuration graph of a k-string NTM length n that decides $L \in \text{NSPACE}(f(n))$. $M=(K,\Sigma,\Delta,s)$ with input and output on input x of
- A configuration is a (2k+1)-tuple $(q, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$.
- * We only care about $(q, i, w_2, u_2, \dots, w_{k-1}, u_{k-1})$, where first cursor. i is an integer between 0 and n for the position of the
- * The number of configurations is therefore at most

$$|K| \times (n+1) \times |\Sigma|^{(2k-2)f(n)} = O(c_1^{\log n + f(n)})$$

for some c_1 , which depends on M.

The Proof (continued)

- Add edges to the configuration graph based on the transition function.
- initial configuration to some configuration of the form Whether $x \in L$ becomes equivalent to deciding whether ("yes", i, \ldots) [there may be many of them]. there is a path in the configuration graph from the
- The problem is therefore that of REACHABILITY on a graph with $O(c_1^{\log n + f(n)})$ nodes
- It is in $TIME(c^{\log n+f(n)})$ for some c because $(c_1^{\log n + f(n)})^k = (c_1^k)^{\log n + f(n)}$ REACHABILITY is in $TIME(n^k)$ for some k and

The Grand Chain of Inclusions

- $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP$.
- It is known that PSPACE \subseteq EXP.
- By Corollary 16 (p. 124), we know $L \subseteq PSPACE$.
- The chain must break somewhere between L and PSPACE.
- We suspect all four inclusions are proper, but there is no proof yet.

Nondeterministic Space and Deterministic Space

- By Theorem 4 (p. 69), $NTIME(f(n)) \subseteq TIME(c^{f(n)})$, an exponential gap.
- There is no proof that the exponential gap is inherent.
- How about NSPACE and SPACE?
- Surprisingly, the relation is only quadratic, a polynomial (Savitch's theorem).

Savitch's Theorem

Theorem 18 (Savitch, 1970)

REACHABILITY $\in SPACE(\log^2 n)$.

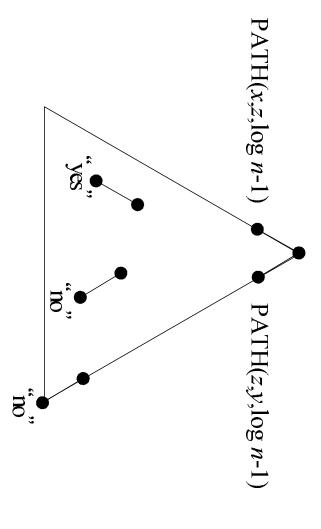
- Let G be a graph with n nodes and x, y be nodes of G.
- For $i \geq 0$, let PATH(x, y, i) mean that there is a path from x to y of length at most 2^i .
- There is a path from x to y if and only if $PATH(x, y, \lceil \log n \rceil)$.

The Simple Idea for Computing PATH(x, y, i)

- For i > 0, PATH(x, y, i) if and only if there exists a zsuch that PATH(x, z, i-1) and PATH(z, y, i-1).
- For PATH(x, y, 0), check the input graph or if x = y.
- search on a tree with nodes (x, y, i)s. We compute $PATH(x, y, \lceil \log n \rceil)$ with a depth-first
- Like stacks in recursive calls, we keep only the current path of (x, y, i)s.
- The space requirement is proportional to the depth of the tree, $|\log n|$.

The PATH Tree

 $PATH(x,y,\log n)$



- Depth is only $\lceil \log n \rceil$.
- Each node (x, y, i) needs space $O(\log n)$.
- Total space is $O(\log^2 n)$.

The Algorithm for $\mathsf{PATH}(x,y,i)$

- 1: if i = 0 then
- 2: if x = y or $(x, y) \in G$ then
- 3: return true;
- 4: else
- : return false;
- 6: end if
- 7: else
- 3: **for** z = 1, 2, ..., n **do**
- if PATH(x, z, i 1) and PATH(z, y, i 1) then
- 10: **return** true;
- 11: end if
- 12: end for
- 3: return false;
- 14: end if

The Relation between Nondeterministic Space and Deterministic Space Only Quadratic

Corollary 19 Let $f(n) \ge \log n$ be proper. Then

$$NSPACE(f(n)) \subseteq SPACE(f^2(n))$$

- Apply Savitch's theorem to the configuration graph of the NTM on the input.
- The graph is implicit—we check for connectedness only when i = 0, by examining the input string.
- From p. 128, the configuration graph has $O(c^{f(n)})$ nodes; hence each node takes space O(f(n)).

Implications of Savitch's Theorem

- PSPACE = NSPACE.
- Nondeterminism is less powerful with respect to space than it is with respect to time.

Nondeterministic Space Is Closed under Complement

We shall prove that

coNSPACE(f(n)) = NSPACE(f(n)).

So coNL = NL and coPSPACE = NPSPACE.

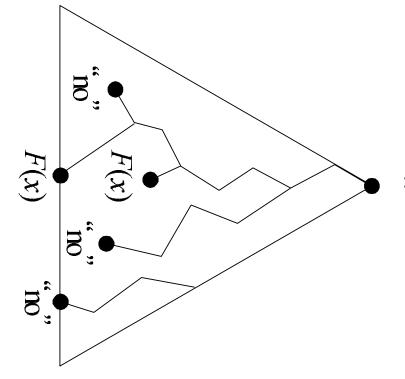
There is still no hint of coNP = NP

The concept is nontrivial only for nondeterministic complexity classes.

Functions and Nondeterministic TMs

- An NTM computes function F if the following hold:
- On input x, each computation path either outputs the correct answer F(x) or ends up in state "no."
- At least one computation path ends up with F(x).
- So all successful paths agree on their output.
- ones) are of length at most f(|x|). As before, the machine observes a space bound f(n) if at halting all strings (except for the input and output

How an NTM Computes a Function



The Immerman-Szelepscényi Theorem

reachable from x in G can be computed by an NTM within Theorem 20 (Szelepscényi, 1987, Immerman, 1988) Given a graph G and a node x, the number of nodes

• The algorithm has four nested loops.

space $O(\log n)$.

- Let n be the number of nodes.
- S(k) denotes the set of nodes in G that can be reached from x by paths of length at most k.
- So |S(n-1)| is the desired answer.

The Algorithm: Top 2 Levels

1:
$$|S(0)| := 1;$$

2: **for**
$$k = 1, 2, ..., n-1$$
 do

3: {Compute
$$|S(k)| \text{ from } |S(k-1)|.$$
}

$$\ell := 0;$$

5: **for**
$$u = 1, 2, ..., n$$
 do

$$\text{if } u \in S(k) \text{ then }$$

$$\ell := \ell + 1;$$

10:
$$|S(k)| := \ell;$$

12: **return**
$$|S(n-1)|$$
;

• Need
$$|S(k-1)|$$
, but not earlier ones.

The Third Loop, for $u \in S(k)$

- 1: m := 0; {Count members of S(k-1) encountered.}
- 2: reply := false;
- 3: **for** $v = 1, 2, \dots, n$ **do**
- $v \in S(k-1)$ then
- m := m + 1;
- : if G(v,u) then
- $: \qquad \texttt{reply} := \texttt{true};$
- 8: end if
- 9: end if
- 10: end for
- 11: **if** m < |S(k-1)| then
- 2: "no";
- 13: end if
- 14: return reply;

The Fourth Loop, for $v \in S(k-1)$

- 1: s := x;
- 2: **for** i = 1, 2, ..., k-1 **do**
- Guess a node $t \in \{1, 2, ..., n\}$; {Nondeterminism.}
- 1: if $(s,t) \notin G$ then
- 5: "no";
- 6: end if
- 7: s := t; 8: **end for**
- 9: if t = v then
- 11: else

10:

return true;

- 2: "no";
- 13: end if

Wrapping It Up

The nondeterministic algorithm needs space $O(\log n)$.

$$-\ k,\ |S(k-1)|,\ \ell,\ u,\ m,\ v,\ s,\ i,\ t.$$

Corollary 21 If $f \ge \log n$ is proper, then

$$NSPACE(f(n)) = coNSPACE(f(n)).$$

- Run the above algorithm on the configuration graph of the NTM M deciding $L \in \text{NSPACE}(f(n))$ on input x.
- We accept only if no accepting configurations have been encountered and if |S(n-1)| is computed.