Simulating Nondeterministic TMs

Theorem 4 Suppose that language L is decided by an NTM
N in time f(n). Then it is decided by a 3-string
deterministic TM M in time O(cf(™), where ¢ > 1 is some

constant depending on N.

e On input x, M goes down every computation path of NV
using depth-first search (M does not know f(n)).

e If some path leads to “yes,” then M enters the “yes” state.

e If none of the paths leads to “yes,” then M enters the “no”

state.

Corollary 5 NTIME(f(n))) C U,~; TIME(c/ (™).
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A Nondeterministic Algorithm for Graph Reachability
T = 1;
for:=2,3,... ,ndo
Guess y € {2,3,...,n}; {The next node.}
if (z,y) € G then
if y =n then
“yes”; {Node n is reached from node 1.}
else
z =y
end if
else
“no”;
end if
: end for

2503 m

1:
2:
3:
4:
5:
6:
7
8:
9:

e e e
Ll S
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Space Analysis

Variables i, x, and y each require O(logn) bits.

Testing if (z,y) € G is accomplished by consulting the
input string with counters of O(logn) bit long.

Hence REACHABILITY € NSPACE(logn).

— REACHABILITY with more than one terminal node
also has the same complexity.

REACHABILITY 1S in P.
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Infinite Sets

e A set is countable (countably infinite, or

denumerable) if it is finite or if it can be put in

one-one correspondence with the set of natural numbers.
Set of integers N.
Set of positive integers.
Set of odd integers.
Set of rational numbers
(1/1,1/2,2/1,1/3,2/2,3/1,1/4,2/3,3/2,4/1,...).

Set of squared integers.
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Cardinality

Let A denote a set.

Then 2# denotes its power set, that is {B : B C A}.
— If |A| = k, then |24| = 2.

For any set C, define |C| as C’s cardinality (size).

Two sets are said to have the same cardinality (written as
|A| = |B| or A ~ B) if there exists a one-to-one

correspondence between their elements.

|A| < | B] if there is a one-to-one correspondence between A
and one of B’s subsets.

A < |B| if |A] < |B| but |4] £ |B|.
— If A C B, then |A| < |B|, but if A C B, then |A| < |B|?

-
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Cardinality and Infinite Sets

e If A and B are infinite sets, it is possible that A C B yet
Al = [B|.
— The set of integers properly contains the set of odd

integers.

— But the set of integers has the same cardinality as

the set of odd integers.

e A lot of “paradoxes.”
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Hilbert's® Paradox of the Grand Hotel

For a hotel with a finite number of rooms with all the

rooms occupied, a new guest will be turned away.

Now let us imagine a hotel with an infinite number of

rooms, and all the rooms are occupied.

A new guest comes and asks for a room.

“But of course!” exclaims the proprietor, and he moves
the person previously occupying Room 1 into Room 2,
the person from Room 2 into Room 3, and so on .

e The new customer occupies Room 1.

2David Hilbert (1862-1943).
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Hilbert's Paradox of the Grand Hotel (continued)

e Let us imagine now a hotel with an infinite number of
rooms, all taken up, and an infinite number of new

guests who come in and ask for rooms.

Y

“Certainly, gentlemen,” says the proprietor, “just wait a

minute.”

He moves the occupant Room 1 into Room 2, the
occupant of Room 2 into Room 4, and so on.

Now all odd-numbered rooms become free and the

infinity of new guests can be accommodated in them.

(“There are many rooms in my Father’s house, and I am
going to prepare a place for you.” John 14:3.)
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Galileo’s* Paradox (1638)

The squares of the positive integers can be placed in

one-to-one correspondence with all the positive integers.

This is contrary to the axiom of Euclid that the whole is

greater than any of its proper parts.

Resolution of paradoxes: Which notion results in better

mathematics.

2Galileo (1564-1642).
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Cantor's® Theorem

Theorem 6 The set of all subsets of N (2V) is infinite and

not countable.

e Suppose it is countable with f : N — 2% being a bijection.

e Consider the set B={ke N : k¢ f(k)} CN.
Suppose that B = f(n) for some n.

If n € f(n), then n € B, but then n € B by the definition of
B.

Hence B # f(n) for any n.

e f is not a bijection, a contradiction.

aGeorg Cantor (1845-1918).
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Two Corollaries

e For any set T', finite or infinite,

T| < 27,

— |T| < |27 as f(x) = {z} maps T into a subset of 27
— The inequality uses the same proof as Cantor’s

theorem.

e The set of all functions on N is not countable.

— A function f : N — {0,1} determines an M C N in
that n € M if and only if f(n) = 1.

— So the set of functions from N to {0,1} has
cardinality |2%V].
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Existence of Uncomputable Problems

Every program is a sequence of Os and 1s.

Every program corresponds to some integer.

The set of programs is countable.

A function is a mapping from integers to integers.

So there must exist functions for which there are no

programs by the second corollary above.
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Universal Turing Machine®

e A universal Turing machine U interprets the input as the
description of a TM M concatenated with the description of

an input to that machine, .

— Both M and z are over the alphabet of U.

e U/ simulates M on x so that
UM;x) = M(x).

e Think of U as a modern computer, which can execute any
valid machine code, or a Java Virtual machine, which can

execute any valid Java bytecode.

e We skip the details of U.

@Turing, 1936.
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The Halting Problem

e Undecidable problems are problems that have no
algorithms or languages that are not recursive.

e We already knew undecidable problems must exist
(p. 80).

e We now define a concrete undecidable problem, the
halting problem:

H={M;z: M(z) #}.

— Does M halt on input z?
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H Is Recursively Enumerable

Proposition 7 H is recursively enumerable.
e Use the universal TM U to simulate M on z.
e When M is about to halt, U enters a “yes” state.

This TM accepts H.

Comment: Membership of z in any recursively

enumerative language accepted by M can be answered
by asking “M;x € H?”
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H Is Not Recursive

e Suppose there is a TM My that decides H.

o Write the program D(M) that calls My:
1: if Mg(M; M) = “yes” then
/% {Writing an infinite loop is easy, right?}

2
3: else
4.
5

: end if
e Consider now D(D):
— D(D) == My(D; D) = “yes” = D;:D € H =
D(D) # 7, a contradiction.
) = “yes” = My (D; D)= “no” = D;D ¢ H =
) =, a contradiction.
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Comments

e Two levels of interpretations of M:
— A sequence of 0s and 1s (data).

— An encoding of instructions (programs).

e There are no paradoxes.

— Concepts are familiar to computer scientists (but not

philosophers or mathematicians).

— Supply a C compiler to a C compiler, a Lisp
interpreter to a Lisp interpreter, a Java compiler to a
Java compiler, etc.
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Self-Loop Paradoxes

Cantor’s Paradox (1899):

Let T be the set of all sets.
e Then 27 CT.
e But we know 27| > |T|!

Russell’s* Paradox (1901): Consider S ={A: A & A}.
o If Sc§, then S €5 by definition.
o If SZ S5, then § € § also by definition.

Eubulides: The Cretan says, “All Cretans are liars.”

Sharon Stone, The Specialist: “I am not a woman you

can trust.”
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More Undecidability

e {M : M halts on all inputs}.

— Given M;x, we construct the following machine:
x M'(y) :if y = x then M (z) else halt.

M’ halts on all inputs if and only if M halts on z.

So if the said language were recursive, H would be

recursive, a contradiction.

This technique is called reduction.
o {M;x : there is a y such that M (z) = y}.
e {M:;x :the computation M on input = uses all states of M }.

o {M;x;y: M(z) =y}
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Properties of Recursive Languages

e If L is recursive, then so is L

— If L is decided by M, swapping the “yes” state and

the “no” state of M results in a TM that decides L
— Can’t work for recursively enumerable languages
(p. 60).
e L is recursive if and only if both L and L are recursively
enumerable.

Suppose both L and L are recursively enumerable,
accepted by M and M, respectively.

Simulate M and M in an interleaved fashion.
If M accepts, then M’ halts on state “yes.”
If M accepts, then M’ halts on state “no.”
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R, RE, and coRE

RE: The set of all recursively enumerable languages.

coRE: The set of all languages whose complements are

recursively enumerable (note that coRE is not RE).

R: The set of all recursive languages.
e Known: R = RE N coRE.

e Known: There exist languages in RE but not in R or
coRE (such as H).

e There are languages in coRE but not in R or RE

(such as H)

e There are languages in neither RE nor coRE.
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Rice's Theorem
Suppose M is a TM accepting L.
Write L(M) = L.

If M(x) is neither “yes” nor  (as required by the
definition of acceptance), we define L(M) = ().

Rice’s theorem says any nontrivial property of TMs is

undecidable.

Theorem 8 (Rice’s Theorem) Suppose that C # ) is a
proper subset of the set of all recursively enumerable
languages. Then the question “L(M) € C?” is undecidable.
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The Proof

Assume that ) € C (otherwise, repeat the proof for the class

of all recursively enumerable languages not in C).

Let L € C be accepted by TM My, (recall that L # ().

Let Mg accept the undecidable language H.

Consider machine M, (y):
if M (x) = “yes” then M (y) else
If we can prove that
L(My) € C if and only if =z € H, (1)

then we are done because the halting problem has been
reduced to deciding L(M;) € C.
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The Proof (continued)

e We proceed to prove claim (1).

e Suppose that x € H, i.e., My(x) = “yes.”

— M, (y) determines this, and it either accepts y or
never halts, depending on whether y € L.

— Hence L(M,) =L € C.

e Suppose that My (z) ="
— M, never halts.
— L(M,) =0 ¢&C.
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Boolean Logic?

Boolean variables: z1,z2,.
Literals: x;, —x;.
Boolean connectives: V, A, —.

Boolean expressions: Boolean variables, =¢ (negation),

1V ¢2 (disjunction), ¢1 A ¢2 (conjunction).
o \/' , ¢; stands for ¢1 V1 V-V .
o A, ¢istands for ¢1 A 1 A+ A ¢n.

Implications: ¢; = ¢2 is a shorthand for —¢1 V ¢s.

Biconditionals: ¢1 < ¢2 is a shorthand for

(61 = P2) A (P2 = ¢1).
2Boole (1815-1864), 1847.
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Truth Assignments

A truth assignment 7T is a mapping from boolean
variables to truth values true and false.

A truth assignment is appropriate to boolean
expression ¢ if it defines the truth value for every

variable in ¢.

T = ¢ means boolean expression ¢ is true under 7'; in
other words, T' satisfies ¢.

¢1 and ¢, are equivalent, written ¢; = ¢o, if for any
truth assignment T appropriate to both of them, T' = ¢
if and only if T = ¢s.

— Equivalently, T = (¢1 < ¢2).
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Truth Tables

Suppose ¢ has n boolean variables.

A truth table contains 2" rows, one for each possible

truth assignment of the n variables together with the

truth value of ¢ under that truth assignment.

A truth table can be used to prove if two boolean

expressions are equivalent.
De Morgan’s laws say that

—(P1 A ¢2)
(1 V @2)
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Normal Forms

e A boolean expression ¢ is in conjunctive normal
form (CNF) if ¢ = A,_, C;, where each clause C; is

the disjunction of one or more literals.

— AHH V &wv A A&H V I_&wv A A&w V &wv.

e A boolean expression ¢ is in disjunctive normal form
(DNF) if ¢ = \/._, D;, where each implicant D; is the

conjunction of one or more literals.

— AHH N\ &wv V A&H A I_&wv V A&w N\ &wv.
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Any Expression ¢ Can Be Converted into CNFs and DNFs
¢ = xj: This is trivially true.

¢ = ~¢1 and a CNF is sought: Turn ¢; into a DNF and apply
de Morgan’s laws to make a CNF' for ¢.

¢ = ~¢1 and a DNF is sought: Turn ¢; into a CNF and apply
de Morgan’s laws to make a DNF for ¢.

¢ = ¢1V ¢2 and a DNF is sought: Make ¢; and ¢» DNFs.

¢ = ¢1 V ¢2 and a CNF is sought: Let ¢ = A\, A; and
P2 = >M~HMH B; be CNFs. Set ¢ = >M@HHH >M~MH A; V B;.

¢ = ¢1 A ¢2: Similar.
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Satisfiability

e A boolean expression ¢ is satisfiable if there is a truth
assignment T' appropriate to it such that T = ¢.

e ¢ is valid or a tautology,® written = ¢, if T = ¢ for all
T appropriate to ¢.

e ¢ is unsatisfiable if and only if ¢ is false under all
appropriate truth assignments if and only if —¢ is valid.

aWittgenstein (1889-1951), 1922.
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SATISFIABILITY (SAT)

The length of a boolean expression is the length of the
string encoding it.

SATISFIABILITY (SAT): Given a CNF ¢, is it satisfiable?

Solvable in time O(n?2™) on a TM by the truth table
method.

Solvable in polynomial time on an NTM, hence in NP
(p. 61).

A most important problem in answering the P = NP
problem (p. 175).
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Relations among SAT, unSAT, and Validity

T

/(\\

Unsatisfiable

e The negation of an unsatisfiable expression is a valid

expression.

e None of the three problems—satisfiability,

unsatisfiability, validity—are known to be in P.
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Horn Clauses

e A Horn clause is a clause with at most one positive
literal.
— —xo V3, 7x1 V X2 V I3,

e A Horn clause y V —x1 V 2oV ---V -z, can be

rewritten as an implication

A&H>&w>...>&3vHv@u

where y is the positive literal.

— If m = 0, use true = vy, also in implication form.

e If a Horn clause has no positive literals, we keep its

non-implication form, —x1 V 2o V -+ V 2x,.
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Satisfiability of CNFs with Horn Clauses Is in P

e Interpret a truth assignment as a set 1" of those
variables that are assigned true.

— T |=x; if and only if ; € T

e Let ¢ be a conjunction of Horn clauses.
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The Algorithm

. T :=(); {All variables are false.}

while not all implications are satisfied do
Pick an unsatisfied (x1 Azoa A+ Axpm) = y;
Add y to T; {Make y true.}

end while

if T = ¢ then
return “¢ is satisfiable”;

else
return “¢ is unsatisfiable”;

end if
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Analysis of the Algorithm

It will terminate, because T is monotonically increasing in
size and eventually it will be large enough to make all

implications (but not necessarily all Horn clauses) true.

By the time the while loop exits, all implications are
satisfied by T.

A T' satisfying all the implications must be such that 7" C T".

— Otherwise, the first time in the execution of the algorithm
at which T" Z T', the implication that causes insertion of
y to T cannot be satisfied by T".

T FE-x1V-oz2V---V Xy, then {z1,22,... ,2m} C T and
hence no supersets of T' can satisfy this clause, which means

¢ is unsatisfiable.
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Boolean Functions

An n-ary boolean function is a function
f : {true,false}” — {true, false}.

It can be represented by a truth table.

There are 22" such boolean functions.

— Each of the 2™ truth assignments can be true or false.

A boolean expression expresses a boolean function.

— Think of its truth value under all truth assignments.

A boolean function expresses a boolean expression.

B <mJ = ¢, literal y; is true under HA@H A% P RARRENA @ﬁv

— The exponential length in n cannot be avoided!
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Boolean Circuits
A boolean circuit is a graph C whose nodes are the gates.
There can be no cycles in C.

All nodes have indegree (number of incoming edges) equal to
0, 1, or 2.

Each gate has a sort from

{true, false,V,A\,—, x1,Z2,... }.

Gates of sort from {true, false,z1,x2,...} are the inputs

of C and have an indegree of zero.

The output gate(s) has no outgoing edges.

A boolean circuit computes a boolean function.
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Boolean Circuits and Expressions

e They are equivalent representations.

e One can construct one from the other:
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An Examble

(Ce,Hx, )Uee,Ux,)) (= (x,0x,))
[]

e (Circuits are more economical because of sharing.
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CIRCUIT SAT and CIRCUIT VALUE

CIRCUIT SAT: Given a circuit, is there a truth assignment such

that the circuit outputs true?

CIRCUIT VALUE: The same as CIRCUIT SAT except that the circuit
has no variable gates.

CIRCUIT SAT is clearly in NP: Simply guess a truth

assignment and then evaluate the circuit.

CIRCUIT VALUE is clearly in P: Simply evaluate the circuit
from the input gates gradually towards the output gate.

CIRCUIT SAT and CIRCUIT VALUE: Is there a truth assignment
of the variables of the circuit such that the resulting circuit

value is true?
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Some Boolean Functions Need Exponential Circuits

Theorem 9 (Shannon, 1949) For any n > 2, there is an
n-ary boolean function f such that no boolean circuits with

2™ /(2n) or fewer gates can compute it.
e There are 22" different n-ary boolean functions.

e There are at most ((n +5) x m?)™ boolean circuits with

m or fewer gates.

e But ((n+5) x m?)™ < 22" when m = 2"/(2n).

og., AnZ
— mlog,((n +5) x m?) = 27(1 — _mw|h+mv < 2™ for
n > 2.

e Can be improved to “almost all boolean functions...”
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