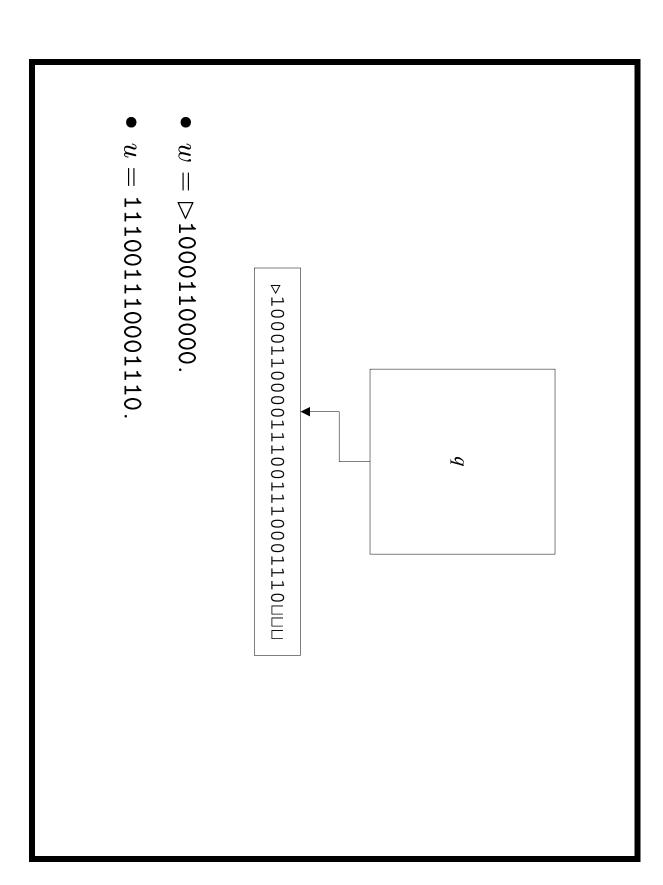
Programming TMs

- We will skip the details.
- It is not without loss of generality, in most cases, to describe a TM with pseudocode.
- They are equivalent anyway.
- Because of the simplicity of the TM (but not its programs), the model has the advantage of when it comes to complexity issues.

Configurations

- A configuration is a complete description of the current state of the computation.
- The specification of a configuration is sufficient for the computation to continue as if it had not been stopped.
- What does your PC save before it enters the sleep mode?
- A configuration is a triple (q, w, u), where $q \in K$, $w \in \Sigma^*$ $u \in \Sigma^*$ is the string to the right of the cursor. is the string to the left of the cursor (inclusive), and



Yielding

- Fix a TM M.
- Configuration (q, w, u) yields configuration (q', w', u') in one step, denoted

$$(q, w, u) \xrightarrow{M} (q', w', u'),$$

configuration (q', w', u'). if a step of M from configuration (q, w, u) results in

- That configuration (q, w, u) yields configuration (q', w', u') in $k \in \mathbb{N}$ steps is denoted by $(q, w, u) \xrightarrow{M^k} (q', w', u')$.
- That configuration (q, w, u) yields configuration (q', w', u') is denoted by $(q, w, u) \xrightarrow{M^*} (q', w', u')$.

Inserting a Symbol

- We want to compute f(x) = ax.
- The TM moves the last symbol of x to the right by one right, and so on. position, it then moves the next to last symbol to the
- The TM finally writes a in the first position.
- of x. The total number of steps is O(n), where n is the length

Palindromes

- A string is a **palindrome** if it reads the same forwards and backwards (e.g., 001100).
- A TM program can be written to recognize palindromes: "yes" for palindromes and "no" for nonpalindromes
- It matches the first character with the last character, the second character with the next to last character,
- This program takes $O(n^2)$ steps.
- There is a matching lower bound of $\Omega(n^2)$.

Decidability and Recursive Languages

- Let $L \subseteq (\Sigma \{ \sqcup \})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.
- Let M be a TM such that for any string x:
- If $x \in L$, then M(x) = "yes."
- If $x \notin L$, then M(x) = "no."
- We say M decides L.
- If L is decided by some TM, then L is called a recursive language
- Palindromes over $\{0,1\}^*$ constitute a recursive language.

Acceptability and Recursively Enumerable Languages

- Let $L \subseteq (\Sigma \{ \sqcup \})^*$ be a **language**, i.e., a set of strings of symbols with a finite length.
- Let M be a TM such that for any string x:

- If
$$x \in L$$
, then $M(x) = \text{"yes."}$
- If $x \notin L$, then $M(x) = \nearrow$.

- We say M accepts L.
- If L is accepted by some TM, then L is called a recursively enumerable language.

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively enumerable.

- Let TM M decides L.
- M' is identical to M except that when M is about to halt with a "no" state, M' moves its cursor to the right forever and never halts
- M' can be constructed by slightly modifying M's program.
- L is clearly accepted by M'.

Turing-Computable Functions

- Let $f: (\Sigma \{ \sqcup \})^* \to \Sigma^*$.
- Optimization problems, root finding problems, etc.
- Let M be a TM with alphabet Σ .
- M computes f if for any string $x \in (\Sigma \{ \sqcup \})^*$, M(x) = f(x).
- We call f a **recursive function** if such an M exists.

Church's Thesis or the Church-Turing Thesis

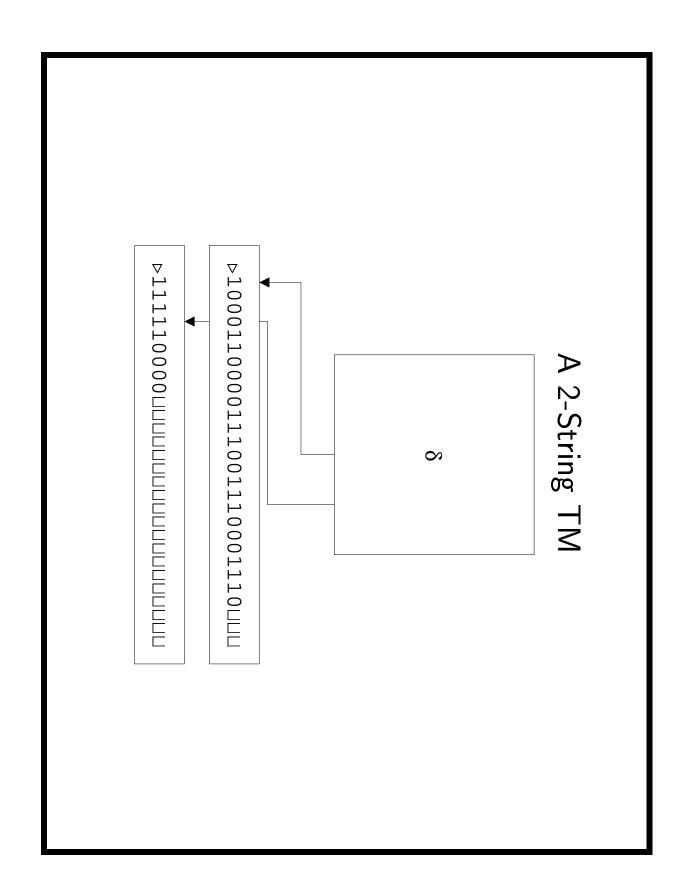
- What is computable is Turing-computable; TMs are algorithms (Kleene 1953).
- Many other computation models have been proposed.
- Recursive function (Gödel), λ calculus (Church), strings, two-dimensional strings, and so on), etc. various extensions of the Turing machine (more formal language (Post), assembly language-like RAM (Shepherdson & Sturgis), boolean circuits (Shannon),
- All have been proved to be equivalent.
- No "intuitively computable" problems have been shown to be Turing-uncomputable (yet).

Extended Church's Thesis

- All "reasonably succinct encodings" of problems are polynomially related.
- Representations of a graph as an adjacency matrix and as a linked list are both succinct.
- The unary representation of numbers is not succinct.
- The binary representation of numbers is succinct
- * 1001 vs. 1111111111.
- All numbers will be binary from now on.

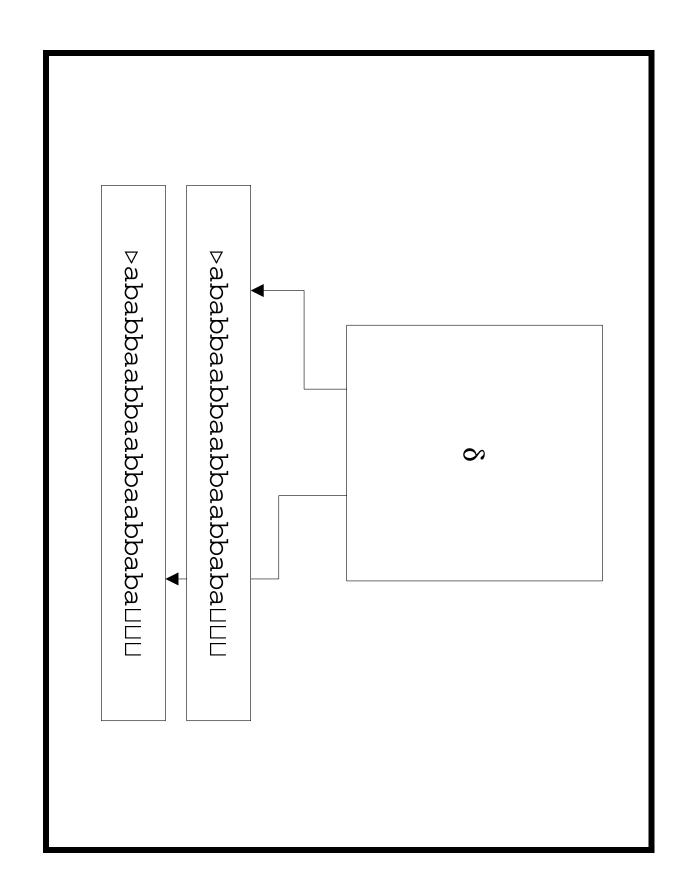
Turing Machines with Multiple Strings

- A k-string Turing machine (TM) is a quadruple $M = (K, \Sigma, \delta, s).$
- K, Σ, s are as before.
- $\delta: K \times \Sigma^k \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times (\Sigma \times \{\leftarrow, \rightarrow, -\})^k$.
- All strings start with a \triangleright .
- The first string contains the input.
- Decidability and acceptability are the same as before
- When TMs compute functions, the output is on the last (kth) string.



Palindromes Revisited

- A 2-string TM can decide palindromes in O(n) steps.
- It copies the input to the second string.
- The cursor of the first string is positioned at the first symbol of the input.
- The cursor of the second string is positioned at the last symbol of the input.
- The two cursors are then moved in opposite directions until the ends are reached
- symbols under the two cursors are identical at all The machine accepts the input if and only if the



Configurations and Yielding

The concept of configuration and yielding is the same as before except that a configuration is a (2k+1)-triple

$$(q, w_1, u_1, w_2, u_2, \ldots, w_k, u_k),$$

the last symbol of w_i . where $w_i u_i$ is the *i*th string and the *i*th cursor is reading

- Note that \triangleright is each w_i 's first symbol.
- The k-string TM's initial configuration is

$$(s, \triangleright, x, \triangleright, \epsilon, \triangleright, \epsilon, \dots, \triangleright, \epsilon).$$

Time Complexity

- The multistring TM is the basis of our notion of the time expended by TM computations
- If for a k-string TM M and input x, the TM halts after t steps, then the time required by M on input x is t.
- If $M(x) = \nearrow$, then the time required by M on x is ∞ .
- Machine M operates within time f(n) for $f: \mathbb{N} \to \mathbb{N}$ at most f(|x|). if for any input string x, the time required by M on x is
- |x| is the length of string x.
- Function f(n) is a **time bound** for M.

Time Complexity Classes^a

- Suppose language $L \subseteq (\Sigma \{ \bigcup \})^*$ is decided by a multistring TM operating in time f(n).
- We say $L \in \text{TIME}(f(n))$.
- TIME(f(n)) is the set of languages decided by TMs with multiple strings operating within time bound f(n).
- TIME(f(n)) is a complexity class.
- Palindrome is in TIME(f(n)), where $f(n) = O(n^2)$.

^aHartmanis, Stearns, 1965, Hartmanis, Lewis, Stearns, 1965.

The Simulation Technique

 $O(f(n)^2)$ such that M(x) = M'(x) for any input x. f(n), there exists a (single-string) M' operating within time **Theorem 2** Given any k-string M operating within time

- The single string of M' implements the k strings of M.
- Represent configuration $(w_1, u_1, w_2, u_2, \dots, w_k, u_k)$ of Mby configuration

$$(q, \triangleright w_1'u_1 \triangleleft w_2'u_2 \triangleleft \cdots \triangleleft w_k'u_k \triangleleft \triangleleft)$$

of M'.

- \lhd is a special delimiter.
- w_i' is w_i with the first and last symbols primed.

• The initial configuration of M' is

$$(s, \triangleright \triangleright' x \triangleleft \triangleright' \triangleleft \cdots \triangleright' \triangleleft \triangleleft).$$

- To simulate each move of M:
- M' scans the string to pick up the k symbols under the cursors.
- * The states of M' must include $(K \times \Sigma)^k$ to remember them.
- * The transition functions of M' must also reflect it.
- M' then changes the string to reflect the overwriting of symbols and cursor movements of M.

- It is possible that some strings of M need to be lengthened.
- The linear-time algorithm on p. 25 can be used for each such string.
- The simulation continues until M halts.
- M' erases all strings of M except the last one.

- Since M halts within time f(|x|), none of its strings ever becomes longer than f(|x|).
- The total length of the string of M' at any moment is O(kf(|x|)).
- Simulating each step of M takes, per string of M, steps to write and, if needed, to lengthen the string. O(kf(|x|)) steps to collect information and O(kf(|x|))
- The total number of M' steps is hence $O(k^2 f(|x|))$.
- As there are f(|x|) steps of M to simulate, M' operates within time $O(k^2 f(|x|)^2)$.

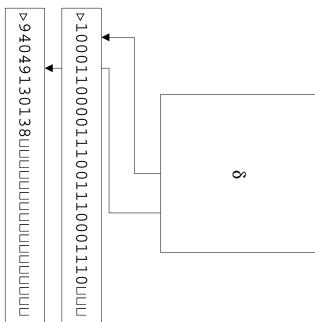
Linear Speedup

 $L \in TIME(f'(n)), where f'(n) = \epsilon f(n) + n + 2.$ **Theorem 3** Let $L \in TIME(f(n))$. Then for any $\epsilon > 0$,

- Let L be decided by a k-string TM $M=(K,\Sigma,\delta,s)$ operating within time f(n).
- Our goal is to construct a k'-string TM f'(n) and which simulates M $M' = (K', \Sigma', \delta', s')$ operating within the time bound
- Set $k' = \max(k, 2)$.
- We encode m symbols of M in one symbol of M' so that M' can simulate m steps of M within six steps.

- $m \in \mathbb{Z}^+$ depend on M and ϵ alone.
- $\Sigma' = \Sigma \cup \Sigma^m$.
- Phase one of M':
- M' has states corresponding to $K \times \Sigma^i$.
- Map each block of m symbols of the input $\sigma_1 \sigma_2 \cdots \sigma_m$ to the *single* symbol $(\sigma_1 \sigma_2 \cdots \sigma_m) \in \Sigma'$ of M' to the second string.
- Doable because M' has the states for remembering.
- This takes m[|x|/m] + 2 steps.

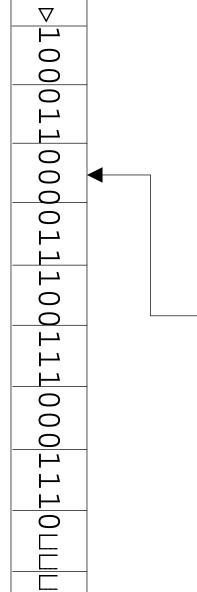
Compression of Symbols; Enlarging the Word Length



• 3-ary representation, with $\square \to 2$.

m=3.

- Treat the second string as the one containing the input.
- If k > 1, use the first string as an ordinary work string
- M' repeatedly simulates m steps of M by six or fewer steps, called a stage
- A stage begins with M' in state $(q, j_1, j_2, \dots, j_k)$.
- $q \in K$ and $j_i \leq m$ is the position of the ith cursor within the m-tuple scanned.
- If the ith cursor of M is at the ℓ th symbol after \triangleright , then the (i+1)st cursor of M' will point to the $\lceil \ell/m \rceil$ th symbol after \triangleright and $j_i = ((\ell-1) \mod m) + 1$.



- m = 3.
- $\ell=7.$
- [8/3] = 3.
- $j_i = ((8-1) \mod 3) + 1 = 2$.

- Then M' moves all cursors to the left by one position, then to the right twice, and then to the left once.
- This takes 4 steps.
- M' now "remembers" all Σ' symbols at or next to all cursors
- M' needs states in $K \times \{1, 2, \dots, m\}^k \times \Sigma^{3mk}$, a $m^k \cdot |\Sigma|^{3mk}$ -fold increase.
- predict the next m moves of M!scanned by M' above, M' has all the information to Because no cursor of M can get out of the m-tuples

- M' uses its δ' function to implement the changes in string contents and state brought about by the next mmoves of M.
- This takes 2 steps: One for the current m-tuple and one for one of its two neighbors
- The total number of M' steps is at most 6 per stage.
- The total number of M' steps is at most

$$|x| + 2 + 6 imes \left\lceil \frac{f(|x|)}{m} \right\rceil$$
.

• Choose $m = \lceil 6/\epsilon \rceil$ to complete the proof.

Implications of the Speedup Theorem

- We can trade state size for speed.
- If f(n) = cn with c > 1, then c can be made arbitrarily close to 1.
- If f(n) is superlinear, say $f(n) = 14n^2 + 31n$, then the made arbitrarily small. constant in the leading term (14 in this example) can be
- Arbitrary linear speedup can be achieved.
- This justifies the asymptotic big-O notation.

- some $k \geq 1$. By the linear speedup theorem, any polynomial time bound can be represented by its leading term n^k for
- If L is a polynomially decidable language, it is in $TIME(n^k)$ for some $k \in \mathbb{N}$.
- The union of all polynomially decidable languages is denoted by P, that is, $P = () TIME(n^k).$
- Think of P as efficiently solvable problems.

Charging for Space

- We do not want to charge the space used only for input and output.
- Let k > 2 be an integer.
- is a k-string TM that satisfies the following conditions A k-string Turing machine with input and output
- The input string is read-only.
- The last string, the output string, is write-only.
- * The cursor never moves to the left.
- The cursor of the input string does not wander off into the \square s.

Space Complexity

- Consider a k-string TM M with input x.
- If M halts in configuration by M on input x is $\sum_{i=1}^{k} |w_i u_i|$. $(H, w_1, u_1, w_2, u_2, \dots, w_k, u_k)$, then the space required
- If M is a TM with input and output, then the space required by M on input x is $\sum_{i=2}^{k-1} |w_i u_i|$.
- Machine M operates within space bound f(n) for on x is at most f(|x|). $f: \mathbb{N} \to \mathbb{N}$ if for any input x, the space required by M

Space Complexity Classes

- Let L be a language.
- Inen

$$L \in \mathrm{SPACE}(f(n))$$

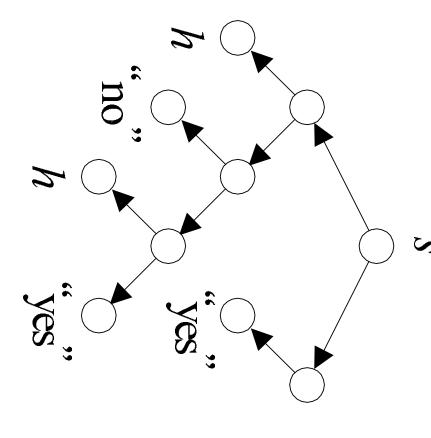
and operates within space bound f(n). if there is a TM with input and output that decides L

- SPACE(f(n)) is a set of languages.
- Palindrome is in SPACE($\log n$).
- As in the linear speedup theorem (Theorem 3), constant coefficients do not matter.

Nondeterminism

- quadruple $N = (K, \Sigma, \Delta, s)$. A nondeterministic Turing machine (NTM) is a
- K, Σ, s are as before.
- $\Delta \subseteq K \times \Sigma \to (K \cup \{h, \text{"yes"}, \text{"no"}\}) \times \Sigma \times \{\leftarrow, \rightarrow, -\} \text{ is}$ a relation, not a function.
- For each state-symbol combination, there may be more than one next steps—or none at all
- if there exists a rule in Δ that makes this happen A configuration yields another configuration in one step
- Determinism is a special case of nondeterminism.

Computation Tree and Computation Path

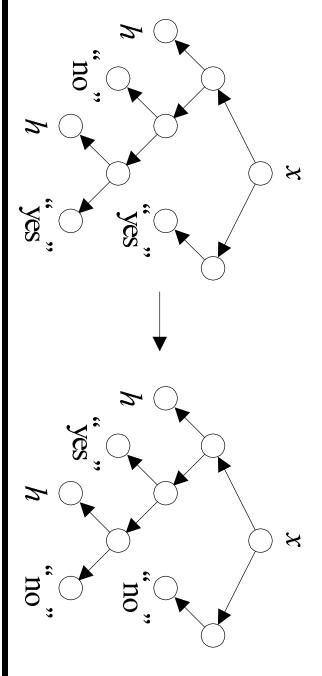


Decidability under Nondeterminism

- Let L be a language and N be an NTM.
- N decides L if for any $x \in \Sigma^*$, $x \in L$ if and only if there is a sequence of valid configurations that ends in "yes."
- computation paths. It is not required that the NTM halts in all
- So if $x \notin L$, then no nondeterministic choices should lead to a "yes" state.

Complementing a TM's Halting States

- Let M decide L, and M' be M after "yes" \leftrightarrow "no".
- If M is a TM, then M' decides \bar{L} .
- THE TO CO TIVE, CHICH IFE COCCICED AS.
- But if M is an NTM, then M' may not decide \bar{L} . Possible that both M and M' accept x.



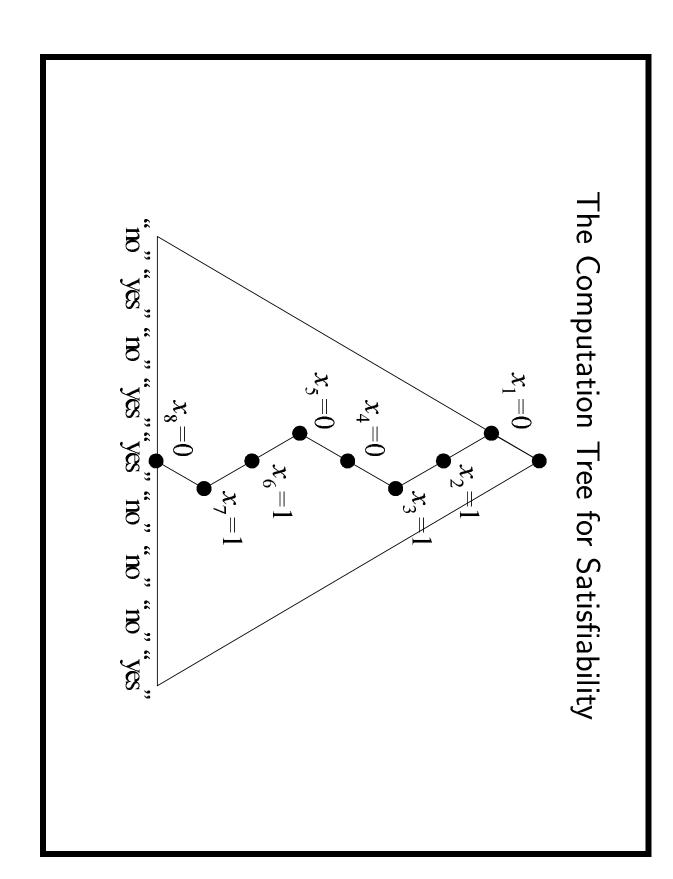
A Nondeterministic Algorithm for Satisfiability

 ϕ is a boolean formula with n variables.

- 1: **for** i = 1, 2, ..., n **do**
- 2: Guess $x_i \in \{0, 1\}$; {Nondeterministic choice.}
- 3: end for
- 4: **if** $\phi(x_1, x_2, \dots, x_n) = 1$ **then**
- 5: "yes";
- 6: else
- 7: "no;
- 8: end if

Analysis

- The algorithm decides language $\{\phi : \phi \text{ is satisfiable}\}$.
- The computation tree is a complete binary tree of depth n.
- Every computation path corresponds to a particular truth assignment out of 2^n .
- ϕ is satisfiable if and only if there is a computation path (truth assignment) that results in the "yes"
- General paradigm: Guess a "proof" and verify it.



The Traveling Salesman Problem

- We are given n cities $1, 2, \ldots, n$ and integer distances d_{ij} between any two cities i and j.
- Assume $d_{ij} = d_{ji}$ (not essential here).
- The traveling salesman problem (TSP) asks for the total distance of the shortest tour of the cities
- The decision version TSP (D) asks if therer is a tour with a total distance at most B, where B is an input.
- Both problems are extremely hard.

A Nondeterministic Algorithm for TSP (D)

- 1: **for** i = 1, 2, ..., n **do**
- 2: Guess $x_i \in \{1, 2, \dots, n\}$; {The *i*th city.}
- 3: end for
- 4: $x_{n+1} := x_1$; {For convenience.}
- 5: if x_1, x_2, \ldots, x_n are distinct and $\sum_{i=1}^n d_{x_i, x_{i+1}} \leq B$ then
- 6: "yes";
- 7: else
- 8: "on";
- 9: end if
- The degree of nondeterminism is n.

Time Complexity under Nondeterminism

- Nondeterministic machine N decides L in time f(n), where $f: \mathbb{N} \to \mathbb{N}$, if
- N decides L, and
- for any $x \in \Sigma^*$, N does not have a computation path longer than f(|x|).
- We charge only the "depth" of the computation tree
- Turning an NTM into a TM seems to require exploring all the computation paths of the NTM.

Time Complexity Classes under Nondeterminism

- NTIME(f(n)) is the set of languages decided by NTMswithin time f(n).
- NTIME(f(n)) is a complexity class.

NP

Define

$$NP = \bigcup_{k \ge 0} NTIME(n^k).$$

- Clearly $P \subseteq NP$.
- Think of NP as efficiently verifiable problems.
- Boolean satisfiability (SAT).
- Hamiltonian path.
- Graph colorability.
- TSP (D).
- The most important open problem in theoretical computer science is if P = NP.