Programming T Ms

We will skip the details.

It is not without loss of generality, in most cases, to
describe a TM with pseudocode.

They are equivalent anyway.

Because of the simplicity of the TM (but not its
programs), the model has the advantage of when it

comes to complexity issues.

21

Configurations

e A configuration is a complete description of the

current state of the computation.

e The specification of a configuration is sufficient for the

computation to continue as if it had not been stopped.

— What does your PC save before it enters the sleep
mode?

e A configuration is a triple (g, w,u), where ¢ € K, w € ¥*
is the string to the left of the cursor (inclusive), and
u € X* is the string to the right of the cursor.

22

H

>1000110000111001110001110u1U

e w —=>1000110000.

e 4 —=111001110001110.

23

Yielding
o FixaTM M.

e Configuration (q,w,u) yields configuration (¢’,w’,u') in one
step, denoted

M
AQV w, Qv — AQ\Q g\u Q\vv
if a step of M from configuration (g, w,u) results in

configuration (q',w’,u’).

e That configuration (g, w,u) yields configuration (¢',w’,u’) in

k
k € N steps is denoted by (g, w, u) M (¢, w',u).

N&*

e That configuration (g, w,u) yields configuration (q',w’,u’) is
denoted by (¢, w,u) — (¢',w’,u’).

24

Inserting a Symbol

We want to compute f(z) = ax.

The TM moves the last symbol of x to the right by one
position, it then moves the next to last symbol to the
right, and so on.

The TM finally writes a in the first position.

The total number of steps is O(n), where n is the length
of x.

25

Palindromes

e A string is a palindrome if it reads the same forwards
and backwards (e.g., 001100).

e A TM program can be written to recognize palindromes:

“yes” for palindromes and “no” for nonpalindromes.

— It matches the first character with the last character,
the second character with the next to last character,
etc.

— This program takes O(n?) steps.

— There is a matching lower bound of Q(n?).

26

Decidability and Recursive Languages

Let L C (X —{[|})* be a language, i.e., a set of strings
of symbols with a finite length.

Let M be a TM such that for any string x:

— If z € L, then M(x) = “yes.”

— If x ¢ L, then M(x) = “no.”

We say M decides L.
If L is decided by some TM, then L is called a

recursive language.

— Palindromes over {0, 1}* constitute a recursive

language.

27

Acceptability and Recursively Enumerable Languages

o Let L C (X —{| |})* be alanguage, i.e., a set of strings
of symbols with a finite length.

Let M be a TM such that for any string x:
— If z € L, then M(x) = “yes.”

— If € L, then M(x) ="

We say M accepts L.

If L is accepted by some TM, then L is called a
recursively enumerable language.

28

Recursive and Recursively Enumerable Languages

Proposition 1 If L is recursive, then it is recursively

enumerable.

e Let TM M decides L.

e M’ is identical to M except that when M is about to
halt with a “no” state, M’ moves its cursor to the right

forever and never halts.

— M’ can be constructed by slightly modifying M’s

program.

e L is clearly accepted by M’.

29

Turing-Computable Functions

Let f: (X —{|[})* — =*.

— Optimization problems, root finding problems, etc.

Let M be a TM with alphabet ..

M computes f if for any string z € (X — {| |})*,
M(z) = f(z).

We call f a recursive function if such an M exists.

30

Church’s Thesis or the Church-Turing Thesis

e What is computable is Turing-computable; TMs are
algorithms (Kleene 1953).

e Many other computation models have been proposed.

— Recursive function (Godel), A calculus (Church),
formal language (Post), assembly language-like RAM
(Shepherdson & Sturgis), boolean circuits (Shannon),
various extensions of the Turing machine (more

strings, two-dimensional strings, and so on), etc.
e All have been proved to be equivalent.

e No “intuitively computable” problems have been shown
to be Turing-uncomputable (yet).

31

Extended Church’s Thesis

e All “reasonably succinct encodings” of problems are

polynomaally related.

— Representations of a graph as an adjacency matrix
and as a linked list are both succinct.

— The unary representation of numbers is not succinct.

— The binary representation of numbers is succinct.
x 1001 vs. 111111111.

e All numbers will be binary from now on.

32

Turing Machines with Multiple Strings

A k-string Turing machine (TM) is a quadruple
M = (K,3,9,s).

K, >, s are as before.

§: K x¥XF = (KU{h, “yes”, “no”}) x (X x {<, —, =}~

All strings start with a >.
The first string contains the input.
Decidability and acceptability are the same as before.

When TMs compute functions, the output is on the last
(kth) string.

33

A 2-String TM

'

>1000110000111001110001110uuL

v

>111110000uuuLLLUUUUULLUUUUUL

34

Palindromes Reuvisited

e A 2-string TM can decide palindromes in O(n) steps.

It copies the input to the second string.

The cursor of the first string is positioned at the first
symbol of the input.

The cursor of the second string is positioned at the
last symbol of the input.

The two cursors are then moved in opposite
directions until the ends are reached.

The machine accepts the input if and only if the
symbols under the two cursors are identical at all
steps.

35

H

>ababbaabbaabbaabbabauuu

v

>ababbaabbaabbaabbaball

36

Configurations and Yielding

The concept of configuration and yielding is the same as
before except that a configuration is a (2k + 1)-triple

Aﬂugf\gf\gwu@wu S “\S\f\ng“
where w;u; is the i¢th string and the ¢th cursor is reading
the last symbol of w;.
— Note that > is each w;’s first symbol.

The k-string TM'’s initial configuration is

2k
A%uvgmﬁuvumuvgmu... uvgmv.

37

Time Complexity

The multistring TM is the basis of our notion of the
time expended by TM computations.

If for a k-string TM M and input x, the TM halts after
t steps, then the time required by M on input zx is .

If M(x) =", then the time required by M on x is co.

Machine M operates within time f(n) for f : N — N
if for any input string x, the time required by M on z is
at most f(|z]).

— || is the length of string x.

— Function f(n) is a time bound for M.

38

Time Complexity Classes®

Suppose language L C (X — {| |})* is decided by a
multistring TM operating in time f(n).

We say L € TIME(f(n)).

TIME(f(n)) is the set of languages decided by TMs
with multiple strings operating within time bound f(n).

TIME(f(n)) is a complexity class.
— Palindrome is in TIME(f(n)), where f(n)

aHartmanis, Stearns, 1965, Hartmanis, Lewis, Stearns, 1965.

39

The Simulation Technique

Theorem 2 Given any k-string M operating within time
f(n), there exists a (single-string) M’ operating within time
O(f(n)?) such that M(x) = M'(z) for any input x.

e The single string of M’ implements the k strings of M.

e Represent configuration (w1, w1, ws, usg, ... , Wk, ug) of M

by configuration

(q, >wiur < waus < -+ - < wrpug < <)

of M'.

— < is a special delimiter.

/

. 1s w; with the first and last symbols primed.

— W

40

The Proof (continued)

e The initial configuration of M’ is

k — 1 pairs

7\

(5,5 x> </ <<).

e To simulate each move of M:

— M’ scans the string to pick up the k symbols under

the cursors.
+ The states of M’ must include (K x X)* to

remember them.
x The transition functions of M’ must also reflect it.

— M’ then changes the string to reflect the overwriting

of symbols and cursor movements of M.

41

The Proof (continued)

e It is possible that some strings of M need to be
lengthened.

— The linear-time algorithm on p. 25 can be used for
each such string.

e The simulation continues until M halts.

e M’ erases all strings of M except the last one.

42

The Proof (continued)

Since M halts within time f(|z|), none of its strings ever

becomes longer than f(|z|).

The total length of the string of M’ at any moment is
O(kf(|z])).

Simulating each step of M takes, per string of M,
O(kf(|x|)) steps to collect information and O(kf(|z|))
steps to write and, if needed, to lengthen the string.

— The total number of M’ steps is hence O(k?f(|z|)).

As there are f(|z|) steps of M to simulate, M’ operates
within time O(k? f(|z])?).

43

Linear Speedup

Theorem 3 Let L € TIME(f(n)). Then for any € > 0,
L € TIME(f'(n)), where f'(n) =ef(n) +n+ 2.

e Let L be decided by a k-string TM M = (K, X, 4, s)
operating within time f(n).

Our goal is to construct a k’-string TM
M' = (K', ¥ ¢, s") operating within the time bound
f'(n) and which simulates M.

e Set k' = max(k,2).

e We encode m symbols of M in one symbol of M’ so that
M’ can simulate m steps of M within siz steps.

44

The Proof (continued)

e m € ZT depend on M and € alone.
o Y =XUXm™,
e Phase one of M’:

M’ has states corresponding to K x X°.

Map each block of m symbols of the input
0109 - - O to the single symbol (o109 ---0,,) € X of
M’ to the second string.

Doable because M’ has the states for remembering.

This takes m[|x|/m| + 2 steps.

45

Compression of Symbols; Enlarging the Word Length

A4 [

>1000110000111001110001110uuU
v

>94049130138uuuUULLUuLUuuyuuL

o m = 3.

e 3-ary representation, with | | — 2.

46

The Proof (continued)

e Treat the second string as the one containing the input.

— If £ > 1, use the first string as an ordinary work

string.

e M’ repeatedly simulates m steps of M by six or fewer

steps, called a stage.

e A stage begins with M’ in state (q, j1,j2,- .- ,J&)-
— q € K and j; < m is the position of the ¢th cursor

within the m-tuple scanned.

— If the ¢th cursor of M is at the fth symbol after >,
then the (i + 1)st cursor of M’ will point to the
[4/m]th symbol after > and j; = ((/—1) mod m) + 1.

47

The Proof (cantinnied)

18/3]
7i=((8=1)mod 3) +1 = 2.

48

The Proof (continued)

e Then M’ moves all cursors to the left by one position,
then to the right twice, and then to the left once.

— This takes 4 steps.

e M' now “remembers” all ¥’ symbols at or next to all

Cursors.

— M’ needs states in K x {1,2,...,m}* x 33mF 4
mF - |S[3™*_fold increase.

e Because no cursor of M can get out of the m-tuples
scanned by M’ above, M’ has all the information to
predict the next m moves of M!

49

The Proof (continued)

50

The Proof (continued)

M’ uses its ¢’ function to implement the changes in
string contents and state brought about by the next m
moves of M.

— This takes 2 steps: One for the current m-tuple and
one for one of its two neighbors.

The total number of M’ steps is at most 6 per stage.

The total number of M’ steps is at most

D),

m

lz| +2 46 X ﬁ

Choose m = [6/€] to complete the proof.

51

Implications of the Speedup Theorem

e We can trade state size for speed.

o If f(n) =cn with ¢ > 1, then ¢ can be made arbitrarily
close to 1.

o If f(n) is superlinear, say f(n) = 14n? + 31n, then the
constant in the leading term (14 in this example) can be
made arbitrarily small.

— Arbitrary linear speedup can be achieved.

— This justifies the asymptotic big-O notation.

52

_U

By the linear speedup theorem, any polynomial time
bound can be represented by its leading term n”* for
some k > 1.

If L is a polynomially decidable language, it is in
TIME(n*) for some k € N.

The union of all polynomially decidable languages is
denoted by P, that is,

P = |] TIME(n").
k>0

Think of P as efficiently solvable problems.

53

Charging for Space

e We do not want to charge the space used only for input

and output.

e Let £ > 2 be an integer.

e A k-string Turing machine with input and output
is a k-string TM that satisfies the following conditions.
— The input string is read-only.

— The last string, the output string, is write-only.
x The cursor never moves to the left.

— The cursor of the input string does not wander off
into the | |s.

54

Space Complexity
Consider a k-string TM M with input z.

If M halts in configuration
(H,wi,u1,ws,us, ..., W, us), then the space required

by M on input z is MuwHH |[w;ug).

If M is a TM with input and output, then the space

required by M on input z is Muwnlw [w;u;).

Machine M operates within space bound f(n) for
f : N — N if for any input x, the space required by M

on z is at most f(|z|).

55

Space Complexity Classes

Let L be a language.
Then

L € SPACE(f(n))

if there is a TM with input and output that decides L
and operates within space bound f(n).

SPACE(f(n)) is a set of languages.

— Palindrome is in SPACE(logn).

As in the linear speedup theorem (Theorem 3), constant
coefficients do not matter.

56

Nondeterminism

A nondeterministic Turing machine (NTM) is a
quadruple N = (K, X, A, s).

K, >, s are as before.

ACK xS — (KU{h, “yes”, “no”}) x £ x {¢, =, —} is

a relation, not a function.

— For each state-symbol combination, there may be

more than one next steps—or none at all.

A configuration yields another configuration in one step
if there exists a rule in A that makes this happen.

Determinism is a special case of nondeterminism.

57

Computation Tree and Computation Path

A

58

Decidability under Nondeterminism

e Let L be a language and N be an NTM.

e NN decides L if for any x € ¥*, x € L if and only if there
is a sequence of valid configurations that ends in “yes.”

— It is not required that the NTM halts in all

computation paths.

e Soif z € L, then no nondeterministic choices should lead

to a “yes” state.

59

Complementing a TM's Halting States

e Let M decide L, and M’ be M after “yes” <+ “no”.

o If M is a TM, then M’ decides L

e But if M is an NTM, then M’ may not decide L.
— Possible that both M and M’ accept x.

X

60

A Nondeterministic Algorithm for Satisfiability

¢ is a boolean formula with n variables.
for:=1,2,... ,ndo

Guess z; € {0,1}; {Nondeterministic choice.}
end for
if ¢(z1,22,...,2,) =1 then

79

yes
else

QHHOS m

end if

1:
2:
3:
4:
5:
6:
7
8:

61

Analysis

e The algorithm decides language {¢ : ¢ is satisfiable}.

— The computation tree is a complete binary tree of
depth n.

— Every computation path corresponds to a particular
truth assignment out of 2".

— ¢ is satisfiable if and only if there is a computation
path (truth assignment) that results in the “yes”
state.

e General paradigm: Guess a “proof” and verify it.

62

The Computation Tree for Satisfiability

[LR 11 19 & & 19 &¢ b2 11 & 1 & 19 & 12

N0 Ye&S N0 VS ¥S N0 N0 NO ¥ES

63

The Traveling Salesman Problem

We are given n cities 1,2,... ,n and integer distances
d;; between any two cities ¢ and j.

Assume d;; = d;; (not essential here).

The traveling salesman problem (TsP) asks for the

total distance of the shortest tour of the cities.

The decision version TSP (D) asks if therer is a tour with
a total distance at most B, where B is an input.

Both problems are extremely hard.

64

A Nondeterministic Algorithm for TSP (D)
for:=1,2,... ,ndo

Guess z; € {1,2,... ,n}; {The ith city.}
end for
Tn+t1 := x1; {For convenience.}

if £1,x2,...,%, are distinct and) 7, dz;,2,., < B then

44 77

yes
else

2503 m

end if

1:
2:
3:
4:
5%
6:
7
8:
9:

e The degree of nondeterminism is n.

65

Time Complexity under Nondeterminism

e Nondeterministic machine N decides L in time f(n),
where f : N — N, if

— N decides L, and

— for any = € ¥*, N does not have a computation path
longer than f(|z|).

e We charge only the “depth” of the computation tree.

e Turning an NTM into a TM seems to require exploring
all the computation paths of the NTM.

66

Time Complexity Classes under Nondeterminism

e NTIME(f(n)) is the set of languages decided by NTMs
within time f(n).

e NTIME(f(n)) is a complexity class.

67

NP

NP = |] NTIME(n").
k>0

Clearly P C NP.
Think of NP as efficiently verifiable problems.

Boolean satisfiability (SAT).

Hamiltonian path.
Graph colorability.
TSP (D).

The most important open problem in theoretical
computer science is if P = NP.

68

