Theory of Computation Class Notes

Yuh-Dauh Lyuu
Dept. Computer Science & Information Engineering
and
Department of Finance
National Taiwan University

Class Information

Computational Complezity, 2nd printing, 1995, by

Papadimitriou.

— Arguably the best book on the market for graduate
students.

Probably no homework.
At least two examinations.

No roll calls.
— You do not have to show up for class.

— You do have to show up for examinations, in person.

Teaching assistants to be announced.

A Brief History (Biased towards Complexity)

1930-1931: Godel’s (1906-1978) completeness and

incompleteness theorems.

1935-1936: Kleene (1909-1994), Turing (1912-1954),
Church (1903-1995), Post (1997-1954) on computability.

1936: Turing defined Turing machines and oracle Turing

machines.

1938: Shannon (1916-2001) used boolean algebra for the
design and analysis of switching circuits. Circuit
complexity was also born. Shannon’s master’s thesis was
“possibly the most important, and also the most

famous, master’s thesis of the century.”

A Brief History (continued)

1947: Dantzig invented linear programming simplex

algorithm.

1947: Paul Erdés (1913-1996) popularized the probabilistic
method. (Also Shannon, 1948.)

1949: Shannon established information theory.
1949: Shannon’s study of cryptography was published.
1956: Ford and Fulkerson’s network flows.

1959: Rabin and Scott’s notion of nondeterminism.

A Brief History (Biased towards Complexity)

1964-1966: Solomonoff, Kolmogorov, and Chaitin formalized

Kolmogorov complexity (program size and randomness).

1965: Hartmanis and Stearns started complexity theory and
hierarchy theorems. (See also Rabin, 1960.)

1965: Edmonds identified NP and P (actual names were coined
by Karp in 1972).

1971: Cook invented the idea of NP-completeness.

1972: Karp established the importance of NP-completeness.
1972-1973: Karp, Meyer, and Stockmeyer defined the

polynomial hierarchy.

A Brief History (Biased towards Complexity)

1973: Karp studied PSPACE-completeness.

1973: Meyer and Stockmeyer studied exponential time and

space.

1973: Baker, Gill, and Solovay studied “NP=P” relative to
oracles.

1975: Ladner studied P-completeness.

1976—-1977: Rabin, Solovay, Strassen, and Miller proposed
probabilistic algorithms (for primality testing).

1976—-1978: Diffie, Hellman, and Merkle invented
public-key cryptography.

A Brief History (Biased towards Complexity)

1977: Gill formalized randomized complexity classes.
1978: Rivest, Shamir, and Adleman invented RSA.
1978: Fortune and Wyllie defined the PRAM model.
1979: Garey and Johnson published their book on

computational complexity.
1979: Valiant defined #P.
1979: Pippenger defined NC.

1979: Khachiyan proved that linear programming is in
polynomial time.

1979: Yao founded communication complexity.

A Brief History (Biased towards Complexity)

1980: Lamport, Shostak, and Pease defined the Byzantine

agreements problem in distributed computing.

1981: Shamir proposed cryptographically strong pseudorandom

numbers.
1982: Goldwasser and Micali proposed probabilistic encryption.
1982: Yao founded secure multiparty computation.

1982: Goldschlager, Shaw, and Staples proved that the

maximum flow problem is P-complete.

1982-1984: Yao, Blum, and Micali founded pseudorandom
number generation on complexity theory.

A Brief History (Biased towards Complexity)

1983: Ajtai, Komlds, and Szemerédi constructed an
O(log n)-depth, O(nlogn)-size sorting network.

1984: Valiant founded computational learning theory.

1984—-1985: Furst, Saxe, Sipser, and Yao proved
exponential bounds for parity circuits of constant depth.

1985: Razborov proved exponential lower bounds for

monotone circuits.

1985: Goldwasser, Micali, and Rackoff invented
zero-knowledge proofs.

1985: Sleator and Tarjan invented on-line algorithms.

A Brief History (Biased towards Complexity)

1987—-1988: Szelepscényi and Immerman proved that NL
equals coNL.

1989: Blum and Kannan proposed program checking.
1990: Shamir proved IP=PSPACE.

1990: Du and Hwang settled the Gilbert-Pollak conjecture
on Steiner tree problems.

1992: Arora, Lund, Motwani, Sudan, and Szegedy proved
the PCP theorem.

10

What This Course Is All About

Computability: What can be computed?

e There exist well-defined problems that cannot be

computed.

e In fact, “most” problems cannot be computed.

Complexity: What is the inherent complexity of problems?

e Some computable problems require exponential time

and /or space; they are intractable.

e Some practical problems require super-polynomial

resources unless certain conjectures are disproved.

e What if we impose more limits besides time and

space”?

11

Tractability and intractability

Polynomial in terms of the input size n defines

tractability:.

— n, nlogn, n?, n%.

Time (more often), space, circuit size, etc.
It results in a fruitful and practical theory of complexity.
Few practical, tractable problems require a large degree.

Exponential-time algorithms are usually impractical

unless we compromise on complete “correctness.”

— plogn ovn on p|

12

Most Important Results: A Sampler

An operational definition of computability.
Decision problems in logic are undecidable.

Decisions problems on program behavior are usually
undecidable.

Complexity classes and the existence of intractable

problems.

Identification of complete problems for a complexity
class.

Randomization and cryptographic applications.

Nonapproximability.

13

What Is Computation?

e That can be coded in an algorithm.
e An algorithm is a detailed step-by-step method for
solving a problem.

— The Euclidean algorithm for the greatest common

divisor is an algorithm.

— “Let s be the least upper bound of compact set A” is
not an algorithm.

14

Turing Machines?®

A Turing machine (TM) is a quadruple M = (K, X%, 4, s).
K is a finite set of states
s € K is the initial state.

Y is a finite set of symbols (disjoint from K).

— Y includes | | (blank) and > (first symbol).

0: K x¥ — (KU{h, “yes”, “no”}) x ¥ x {+,—,—}is a
transition function.

— < (left), — (right), and — (stay) signify cursor

movements.

aTuring, 1936.

15

“Physical” Interpretations

K is like instruction numbers.

s is like “main()” in C.

> is the alphabet.

d is the program with the halting state (h), the accepting

state (“yes”), and the rejecting state (“no”).

— Given the current state ¢ € K and the current symbol
o€ X,

6(q,0) = (p, p, D)
specifies the next state p, the symbol p to be written over

o, and the direction D the cursor will move afterwards.

— We require §(q,>) = (p, >, —).

16

The Operations of TMs

Initially the state is s.

The string on the tape is initialized to a >, followed by a
finitely long string z € (X — {| |})*.

x is the input of the TM.

The cursor is pointing to the first symbol, always a >.
The TM takes each step according to 9.

The cursor never falls off the left end of the string.

The cursor may overwrite | | to make the string longer
during the computation.

17

A TM Schematic

'

>1000110000111001110001110uuu

18

Program Size

e Recall that the program ¢ is a function from K X X to
(K U{h, “yes”, “no” }) x ¥ x {+,—,—}.

e To completely specify such a function, |K| x || states
suffice.

e Given K and X, there are

(|K|+3) x [5] x 3)EIx>]

possible ¢’s, a constant—albeit large.

— All programs have a finite size.

e Different 0’s may define the same TM.

19

The Halting of a TM

e A TM M may halt in three cases.
“yes”: The machine accepts its input z, and
M(z) = “yes”.
“no”: The machine rejects its input z, and
M(x) = “no”.

h: M (x) =y, where the string consists of a >, followed

by a finite string y, whose last symbol is not | |,
followed, if any, by a string of | |s (y may be empty
denoted by €).

— g is called the output of the computation.

e If M never halts on x, then write M (z) ="

20

