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Of all the intellectual hurdles which the human mind has confronted and
has overcome in the last fifteen hundred years, the one which seems to me
to have been the most amazing in character and the most stupendous

in the scope of its consequences is the one relating to the problem of motion.
—Herbert Butterfield,

The Origins of Modern Science [125, p. 15]

This chapter introduces basic ideas in stochastic processes and Brownian motion. Brow-
nian motion underlies all the continuous-time price models in this book.! From time to time,
we go back to earlier discrete-time binomial models to mark the linkage; the transition to

continuous time is as natural as it is inescapable.

! After losing money in warrants, Merton created an option pricing model based on jump processes [73].
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13.1 Stochastic Processes

A stochastic process X = { X (¢) } is a time series of random variables. In other words,
X (t) is a random variable for each time ¢ and is usually called the state of the process
at time ¢. For clarity, X (¢) is often written as X;. Other terms for stochastic process
are random process and random function. Any realization of X is called a sample
path or trajectory. Note that a sample path defines an ordinary function of f. If the
times ¢ form a countable set, X is called a discrete-time stochastic process, a stochastic
sequence, or a time series. In such a case, X is usually denoted by { X, }. If the times
form a continuum, X is called a continuous-time stochastic process.

A continuous-time stochastic process { X () } is said to have independent increments
if, for all tg <ty < --- < t,, the random variables

X(t1) — X(to), X(t2) — X (t1), -, X(tn) — X (1)

are independent. It is said to possess stationary increments if X (# + s) — X (¢) have the
same distribution for all ¢. That is, the distribution depends only on s. We have the

following useful lemma.
Lemma 13.1.1

FIX() - X(0)] = tE[X(1)= X(0)]
Var[ X (t)]— Var[ X (0)] = ¢ (Var[ X(1)]— Var[ X(0)])

if {X(t),t>0} is a stationary independent increment process. O

The covariance function of a stochastic process X = { X(¢) } is defined as
Kx(s,t) = Cov[ X (s), X(t)].
Note that Kx(s,t) = Kx(t,s). The mean function is defined as
mx(t) = FLX(2)].
A stochastic process { X (¢) } is (covariance) stationary if the random variable sets
{X(t1),...,X(tn)} and {X(t1+h),..., X(t,+h)}

have the same joint probability distribution for any n > 0, time points ¢; < --- < ¢,, and
h. From this definition,

mx(t)=FE[X)]=F[X({t+h)]=mx(t+h)
for any h. In other words, the mean function becomes a constant. Similarly,
Kx(s,s+1) = E[(X() = mx) (X(s+ ) — mx)] = B[(X(0) — mx) (X(t) - mx) ]

In other words, the covariance function Kx(s,t) depends only on the lag, |s—¢|. A more
generous definition of stationary process, which shall be adopted here, is the following.



204 Stochastic Processes and Brownian Motion

Definition 13.1.2 A stochastic process { X(t)} is stationary if E[X(t)?] < oo, the
mean function is a constant, and the covariance function depends only on the lag. O

A Markov process is a stochastic process for which everything that we know about its
future is summarized by its current value. Formally, a continuous-time stochastic process
X ={X(t),t >0} is called a Markov process if

Prob[ X (t) < z| X(u),0<u<s]=Prob[X(t) <z|X(s)]

for s <t. When Prob[X(t+s) = j| X(s) =] is independent of s, the Markov process is
said to have stationary transition probabilities.

13.1.1 Random walks

Random walks of various kinds are the foundation of discrete-time probabilistic models
of asset prices [294]. In fact, the binomial model of stock prices is a random walk in
disguise. This subsection introduces some random walks whose importance will become
clear in connection with continuous-time models.

Example 13.1.3 Consider a particle on the integer line, 0,41, £2,.... At each time step,
this particle can make one move to the right with probability p or one move to the left
with probability 1 — p. See Fig. 13.1. Let F;; represent the probability that the particle
will make a transition to point j when currently in point 7. Then

Piymi=p=1-F,

for i = 0,+1,42,.... This random walk is symmetric if p = 1/2. The probability that a
symmetric random walk will return to its original position after 2n steps is roughly 1/y/7n.
Do you see the connection with the binomial option pricing model? a

Posi tion
4

A
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Figure 13.1: RANDOM WALK. The
particle in each step can move up or
down with equal probability.

Example 13.1.4 The random walk with drift is the following discrete-time process,
X, :,U‘I'Xn—l +€n7 (131)

where &, are independent and identically distributed with zero mean. The drift p is
the expected change per period. The random walk with drift is an example of a Markov
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process. An alternative characterization of random walks is to consider {S,,n > 1} with
Sy = >." , X;, where X; are independent, identically distributed random variables with

Example 13.1.5 The classical ruin problem is a special kind of random walk [298]. Let
z represent the capital, ¢, the probability of the gambler’s ultimate ruin when the wealth
becomes zero, and 1— ¢, the probability of winning when the wealth becomes c¢. After one
trial, the gambler’s fortune is either z — 1 or z 4 1. Hence, for 1 < z < ¢ — 1, we have

q: = Pq-41 + qq-—1, (132)

where p is the probability of winning one dollar and ¢ = p — 1 is the probability of losing
one dollar for each play. The boundary conditions are

@ =pg2+q and Ge_1 = qGc_3.

If we adopt the convention that ¢o = 1 and ¢. = 0, then (13.2) alone takes care of the
boundary conditions as it is now valid for 1 <z <e¢—1. a

13.2 Martingales (“Fair Games”)
A stochastic process { X (¢),£> 0} is a martingale if F[| X (¢)|] < oo for ¢ > 0 and
E[X({#)|X(u),0<u<s]=X(s).
In the discrete-time setting, a martingale means
E[Xps1]| X1, .., Xn] = X, (13.3)

If X, is interpreted as a gambler’s fortune after the nth gamble, the above identity says
that the expected fortune after the (n+1)st gamble equals the fortune after the nth gamble
regardless of what may have occurred before. A martingale is therefore a generalized version
of a fair game. The law of iterated conditional expectations applied to both sides of (13.3)

implies
E[X,]=F[X1] (13.4)
for all n and, similarly, E[ X (t)]= FE[ X (0)].

Example 13.2.1 Consider the stochastic process { Z,,n > 1}, where Z, =3 " | X;, and
X; are independent random variables with zero mean. This process is a martingale because

E[Zn+1|Zl7'--7Zn] = E[Zn+/Yn+1|Zl7---7Zn]
= FElZ, | Z1,....Z, )+ E[ Xug1| 21y, Z0]
= Zy+ E[Xpi1] = Zy.

Note that {7, } subsumes the random walk in Example 13.1.4. O
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Example 13.2.2 Let { X(f),t > 0} be a stochastic process with independent increments.
It is not hard to show that { X (¢),£ > 0} is a martingale if, furthermore, E[ X (t) — X (s) ] =
0 for any ¢,s > 0 and Prob[ X (0)=0] = 1; in fact,

E[X(t) | X (tarr), -, X(1)] = E[X () = X (tnet) | X (bat)s- -y X (t1) ]+ X (tnet)
= X(tw-1).

The last equality is true because

E[X(tn) — X (tno1) | X (tae1), .., X (1) ]
= E[X(tn) = X(tao1) | X (taet) = X (tnea), .-, X(t2) — X (1), X (t1) — X (0)]
= E[X(ta) ~ X(ta-)] = 0.

13.2.1 The binomial option pricing model and martingales

We learned back in Lemma 9.2.1 that the price of a European option is the expected
discounted future payoff at expiration in a risk-neutral economy. This important principle
can be generalized using the language of martingale. Recall the recursive valuation of

European option via (9.5), repeated below,

:pcu—l-(l—p)cd

C
R 3

in a risk-neutral economy, where p is the risk-neutral probability and $1 grows to $R in a
period. Let C'(7) denote the value of the call option at time 7 and consider the discount
process {C(i)/R',i=0,1,...,n}. From the above formula,

C(i+1) , pCy+(1=p)Cy C
The above result can be easily generalized to
C(k) : C
E[ FiE ‘ C(z):C] = (13.5)
Hence, the discount process is a martingale as
% =ET [C]g’j)] for k > 1, (13.6)

where ET means the expectation is taken over the risk-neutral probability given the infor-
mation available at time 7. For this reason, the risk-neutral probability is also called the
equivalent martingale probability [457].

In fact, under discrete-time models, (13.6) holds for any asset not just options and
derivatives even if interest rates are stochastic [628]. In this general case, the equation

becomes

= ET [ﬂ] for k > i. (13.7)
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Above, M (j) denotes the balance in the money market account at time j using the rollover
strategy with an initial investment of $1. For this reason, it will be called the bank account
process. If interest rates are stochastic, M (j) is a random variable. Note that A (0) =1,
and we assume M (j) is known at time j — 1. Note also that M (j) is not the reciprocal of
the market discount function, which is known today for sure.

This identity (13.7) is the general formulation of risk-neutral valuation. In plain English,
it says the discount process is a martingale under 7. The above fact and Comment 9.2.4
result in the following fundamental theorem for asset pricing.

Theorem 13.2.3 There is no arbitrage in a discrete-time model if and only if there exists a
probability measure such that the discount process is a martingale. (This probability measure
is called the risk-neutral probability.) O

13.2.2 Martingale and futures price under the binomial model

Futures prices form a martingale under the risk-neutral probability. This is because the
expected futures price in the next period is

1-d u—1
pfFu—}—(l—pf)Fd—F(u_du—l—u_dd)_F.

(Review §12.4.6.) The above thesis can be generalized to
F=E"[F], (13.8)

where F; is the futures price at time 2. This identity holds under stochastic interest rates
as well (see Exercise 13.2.11).

13.2.3 Martingales with respect to a process

More generally, a stochastic process { X (¢),t > 0} is called a martingale with respect
to process {Y(t)} if EF[|X(¢)|]< oo for t >0 and

E[X(#)|Y(u),0<u<s]=X(s) (13.9)
for s < t. Intuitively, { Y (u),0 < u < s} can be treated as the information up to time s.

Example 13.2.4 Consider the stochastic process {S, —ng,n > 1}, where S, =", X,

and Xy, Xg,... are independent random variables with mean p. Check that
E[Sn-l-l - (TL+1)/L|X17 7Xn] = E[Sn+1|X17"' 7Xn]_ (TL—|—1),M
= S, —npu.

Hence, { S, — nu,n > 1} is a martingale with respect to { X,,,n > 1}, generalizing the
results in Example 13.2.1. a
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Example 13.2.5 Let S, =3 ;_, Y, where Y,, ~ N (0,1) are independent. Lemma 6.1.1
says S, ~ N(0,n). Fix an a € R and define X, = e*572"/2_ W shall show that
{X,,n > 1} is a martingale with respect to {Y,,n > 1}. First,

El| X,|]=FE[X,] = e [ex5n] = et 2eno? 2 = | < 0,

The next-to-last equality above is due to (6.10) and Lemma 6.1.1. Now,

E[Xn+1|}/17"'7yn] = E{ea5n+1—(n+1)a2/2‘yh‘”7Yn}
- E { eaSn—na2/2 eozYn+1—oz2/2 e 7}%}
— eaSn—na2/2E ann+1—a2/2}
= XnE [ann+1—02/2:| = )(n
since E | e?Ynt1=0%/2 | — g=o?/2 0y, (@) = e 2 et/ = 1, =

13.3 Brownian Motion

A Brownian motion process is a stochastic process { X (¢),# > 0} satisfying the follow-
ing three conditions.

1. X (0) = 0, unless stated otherwise;

2. forany 0 <ty <t < --- < t,, the random variables X (t;) — X (tx—1) for 1 <k <n
are independent;

3. for 0 < s <t, X(t)— X(s) is normally distributed with mean g (¢ —s) and variance
o?(t — s), where g and o # 0 are real numbers. The constant u is called the drift
and o? the variance.

Such a process will be called a (i, ) Brownian motion. Figure 13.2 plots a realization of
a Brownian motion process.

X(t)

Figure 13.2: SAMPLE PATH OF A
BROWNIAN MOTION PROCESS. The
stochastic process has volatility, as tes-
tified by the jittery of the path. Also
plotted for reference is the related de-
terministic process with the randomness
removed.

Time (t)

The existence and uniqueness of such a process is guaranteed by Wiener’s theorem [67].
Although Brownian motion is a continuous function of ¢ with probability one, it is almost
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nowhere differentiable. Note that Property 2 implies X (¢) — X (s) is independent of X ()
for A <s.

Any continuous-time process with stationary independent increments can be proved to
be a Brownian motion process [371]. This fact explains the significance of Brownian motion
in stochastic modeling. Brownian motion also demonstrates statistical self-similarity
in that X (rz)/+/r remains normalized Brownian motion if X is such. This means, if we
sample the process 100 times faster and then shrink the result 10 times, the path will look
statistically the same as the original one. This property naturally links Brownian motion

to fractals [207, 683]. Finally, Brownian motion is Markovian as

Prob[ X(t+s) <a|X(s)=z,X(u),0 < u < s]

= Prob[X(t+s)—X(s)<a—z|X(s)=z,X(u),0<u<s]
Prob[ X (t+s) — X(s) <a —z]

= Prob[X(t+s) <a|X(s)==z].

Brownian motion, named after Robert Brown (1773-1858), was first discussed mathe-
matically by Bachelier and received rigorous treatments by Wiener (1894-1964), including
the above concise definition. Therefore, it is also called Wiener process, generalized
Wiener process, or Wiener-Bachelier process [299, 473]. We shall reserve the term
Wiener process only for the (0,1) Brownian motion, which is also called normalized or
standard Brownian motion.

Example 13.3.1 Suppose the total value of a company, measured in millions of dollars,
follows a (20,30) Brownian motion (i.e., with a drift of 20 per annum and a variance of
900 per annum). The starting total value is 50. At the end of one year, the total value will
have a normal distribution with a mean of 70 and a standard deviation of 30. At the end

of six months, as another example, it will have a normal distribution with a mean of 60 and
a standard deviation of /450 = 21.21. a

Figure 13.3: UNCERTAINTY ABOUT
BROWNIAN MOTION. The future po-
sition of a Brownian motion process
is normally distributed with a stan-

dard deviation (uncertainty) propor-
0.2 tional to the square root of how far we
0- 13 babili ty look into the future.

Posi tion
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From the definition, X (¢) ~ N(0,t¢) for normalized Brownian motion { X (¢),t > 0}.
More generally, if { X(¢),t>0} isa (g, o) Brownian motion, then

X () = X(to) ~ N (p(t = to), o (t — to)) . (13.10)

A (p,0) Brownian motion Y = {Y(¢),t > 0} can be expressed in terms of normalized

Brownian motion via
Y(t)=put +0X(2). (13.11)

It follows that Y(t+s) — Y(t) ~ N (us,0%s). The implication is that, looking into the
future, our uncertainty about the future value of ¥ as measured by the standard deviation

grows as the square root of how far we look into the future. See Figs. 13.3 and 13.4.

Figure 13.4: DRIFT AND VARIANCE
OF BROWNIAN MOTION. Depicted is
a sample path of a (0.15,0.3) Brownian
motion. The envelope is for one stan-
dard deviation, or 0.3+/%, around the
mean.

Time (t)

13.3.1 Brownian motion as the limiting case of random walk

Brownian motion without drift is the limiting case of symmetric random walk. Suppose a
particle moves Az either to the left or to the right with equal probability in each At time
units. Without loss of generality, assume /At is an integer. Its position at time ¢ is then

Y1) = Az (Xi 4+ X0+ 4 X0 ), (13.12)

where
X = +1 if the 7th move is to the right
"7 ] =1 if the 7th move is to the left

and X; are independent with Prob[ X; = 1] = Prob[ X; = —1] = 1/2. Note that F[X;] =
0 and Var[ X;] = 1. Hence, F[Y(t)] =0 and Var[Y(t)] = (Az)?(t/At). Letting Az =
oV At and Az — 0, we get

E[Y(t)]=0 and Var[Y(t)] = ot

Thus {Y(t),t > 0} converges to a (0,c) Brownian motion by the Central Limit Theorem.
It is interesting to note that the above heuristic argument would not work for Az = o At.
Also note that

Y(t+AH) - Y(t) = A Xy,
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from (13.12). Hence, B[|Y(t+At) =Y (t) []= Az E | ‘ Xiy, ‘ | =ovat.

The more general Brownian motion with drift is also the limiting case of random walk.
Suppose a particle moves Az either to the left with probability 1 — p or to the right with
probability p in each At time units. Its position at time ¢ is also described by (13.12)
except that, now, Prob[ X; =1]=p=1— Prob[ X; = —1]. It is not hard to see that

E[Y()] = Az é (2p—1) and Var[Y(t)] = (Az)? é (1-@2p—1)?).

Letting Az = oVAL, p= (1 + (/L/U)\/At) /2, and At — 0, we have
t
E[Y(®)] = oVl EVAL =t
o

Var[Y(t)] = UQAté (1 — (g)ZAt) — %t

Thus, {Y(t),t > 0} converges to a (g, o) Brownian motion by the Central Limit Theorem.
The choice for p is identical to the choice in calibrating the binomial option pricing model
in (9.19)!

13.3.2 Geometric Brownian motion
If X={X(¢),t>0} is a Brownian motion process, then the process
Y(t)=e Dt >0

is called geometric Brownian motion. Its other names include exponential Brownian
motion and lognormal diffusion. See Fig. 13.5 for illustration. For the case where X is
normalized, we have X (¢) ~ N(0,¢) with the moment generating function

E |:65X(t)} _ 6521‘/2 _ E[Y(t)s]
from (6.10). Thus, E[Y ()] = €"/? and
Var[Y(t)]= E[Y(1)*] - E[Y(1)]? = ¢ — €.

In the general case where X is a (i, o) Brownian motion, then

E[Y(t)]=exp [ (u + %2) t] (13.13)
Var[Y ()] = E[Y()]* (e = 1) (13.13)

Geometric Brownian motion models situations in which the percentage changes are in-
dependent and identically distributed. For example, suppose Y, denotes the stock price
at time n and assume relative returns X, =V, /Y,_1 with Yy = 1 are independent and
identically distributed. Then Y, = X;---X,,, and

InYy, = z”: In X;
=1
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is a sum of n independent, identically distributed random variables. Thus, {InY,,n > 0} is
approximately Brownian motion, and {Y,,,n > 0} approaches geometric Brownian motion.
(We knew from §9.3 that Y, approaches the lognormal distribution.) Note that In X; is
the continuously compounded rate of return between prices Y;_{ and Y.

Y(t)
Figure 13.5: SAMPLE PATH OF GE-
OMETRIC BROWNIAN MOTION. The
process is Y (t) = eX(*) where X is a
(0.5, 1) Brownian motion. The envelope
i1s for one standard deviation, which is
(et — 1) €2, around the mean. Can
you tell the qualitative difference be-
tween this plot and the stock price
------ charts in Fig. 6.47

= o Time (1)

6

5

13.3.3 Stationarity

Normalized Brownian motion { X (¢),t > 0} is not stationary (see Exercise 13.3.2). How-
ever, it can be transformed into one via

Y(t)=e "X (). (13.14)

This claim can be verified as follows. Since Y (t) ~ N(0,1), the mean function is zero, a
constant. Furthermore,

ElYW)?]=F {e_QtX (627“)2} =e e =1< 0.
Finally, the covariance function is, for s < ¢,

E [e—tX (621‘) e S X (625)] — e—s—tE [)( (621‘) X (625> ] — e—s—teQS — es—t

i

where the next to last equality is due to Exercise 13.3.2. Therefore, {Y(¢),t > 0} is
stationary. The process Y is called the Ornstein-Uhlenbeck process [199, 222, 472].
Another way to create stationary process from normalized Brownian motion is by

t+1
Y(t) = /t (X (s) — X (1)) ds.

Note also that, trivially, X (t+h)— X (¢) is stationary for a (i, o) Brownian motion { X (¢) }
and any fixed h > 0.

13.3.4 Brownian martingales

Let { X(¢),t >0} bea (0,0) Brownian motion. The following three processes are martin-
gales with respect to { X (¢),¢>0}: (1) X (¢); (2) X(t)® — 0t; (3) exp [aX (t) — a?c?t/2],
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where @ € R (Wald’s martingale). For instance, { X (t)? — o%,¢ > 0 } is a martingale,

13.3.5 Variations

Many formulae in standard calculus do not carry over to Brownian motion. Take the
quadratic variation of any function f:[0,00) = R defined by

S ()G

(For technical reasons, the partition of the time interval [0,¢] is dyadic, i.e., at points
kt/2™ for 0 < k < 2".) It is not hard to see that the quadratic variation vanishes as
n — oo if f is differentiable.

The above conclusion no longer holds if f is Brownian motion: A theorem says

2" -1 2
) (k4 1)t kt 9

with probability one, where { X (¢),# > 0} is a (i, o) Brownian motion [473]. This result
informally says fg(a’.)((s))2 = 0?t, frequently written as

(dX)* = o*dt. (13.16)

The above differential formula does not make sense in standard calculus, but it becomes
true in stochastic calculus. It can furthermore be shown that

(dX)" =0 for n>2 (13.17)
and dX dt = 0.
With (13.15), the total variation of a Brownian path is infinite with probability one,
that is,
gy (k+ 1)t ket

Brownian motion is thus continuous but with highly irregular sample paths.



214 Stochastic Processes and Brownian Motion

13.3.6 Brownian bridge

Brownian bridge is “tied down” Brownian motion [474]. It is defined as normalized
Brownian motion { X (¢),0<¢ > 1} plus the constraint X (0) = X (1) = 0. An alternative
formulation of Brownian bridge is

X(t)—tX(1), 0<t<1.
For a general time period [0,7'], Brownian bridge can be written as [164]
t
Zt)y=Wi(t) — TW/(T)’ 0<t<T,

where W(0) =0 and W(T) are known at time zero. Observe that Z(t) is pinned to zero
at both endpoints, zero and T.

Additional Reading

The idea of martingale is due to Lévy (1886-1974) and received thorough developments by
Doob [174, 242, 472, 780]. See [719] for a complete treatment of random walks. Consult
[543] for a history of Brownian motion from the physicists’ point of view and [238] for
Bachelier’s contribution. The book [94] collects results and formulae in connection with
Brownian motion. Books such as [179, 199, 319, 473] contain advanced materials. The
heuristic arguments in §13.3.1 showing Brownian motion as the limiting case of random
walk can be made rigorous by Donsker’s theorem [67, 250, 472, 502].
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The pursuit of mathematics is a

divine madness of the human spirit.
—Alfred North Whitehead (1861-1947),
Science and the Modern World [778, p. 20]

In after years I have deeply regretted that

1 did not proceed far enough at least to understand
something of the great leading principles of mathematics.
—Charles Darwin (1809-1882),

Autobiography [215, p. 58]



216 Continuous-Time Financial Mathematics

This chapter introduces the mathematics behind continuous-time models. This approach
was initiated by Merton [251]. Formidable as the mathematics seems to be, it can be made
accessible at some expense of rigor and generality. The theory will be applied to a few

fundamental financial problems.

14.1 Stochastic Integrals

We saw that classical calculus cannot be applied to Brownian motion in §13.3.5. One reason
is that its sample path, regarded as a function, has unbounded total variation. Stochastic
integral therefore cannot be defined in the conventional Riemann-Stieltjes sense. From now
on, we shall use W = {W(t),t > 0} to denote exclusively the Wiener process, that is,
normalized Brownian motion. The purpose of this section is to develop stochastic integrals

with respect to Brownian motion,
¢
L(X)= / Xdw, t >0, (14.1)
0

for X from a class of stochastic processes.
Note that I;(X) is a random variable. These random variables are called stochastic
integrals of X with respect to W, and the entire stochastic process { [¢(X),t > 0} will

be denoted by [ X dW. Typical requirements for X are: (1) Prob {fg X2(s)ds < oo} =1

for all ¢ > 0 or the stronger fot E[X?(s)] ds < oo and (2) information at time ¢ includes
the history of X and W up to that point in time but nothing about the future evolution of
X or W after ¢t (nonanticipating, so to speak). The unknown future therefore does not
influence the present. Hence, { X (s),0< s <t} is independent of { W(t+ u) — W(t),u >

0},

14.1.1 The Ito integral

The Ito integral is a theory of integration with respect to Brownian motion. As with
calculus, we start with step functions. A stochastic process { X(¢)} is called simple if
there exist times 0 =tg < t; < t3 < --- such that

X(t) = X(ty—1) for t € [ty_1,t;) and k=1,2,...

for any realization. See Fig. 14.1 for illustration. The Ito integral of such a simple process
is defined in the Riemann-Stieltjes sense as

) = 3 X () (W (1) — W (1), (14.2)
k=0

where ¢, =t. We emphasize that the integrand X is evaluated at #g, not tzx41.

The natural step to follow is to define the Ito integral as a limiting random variable
of the Ito integral of simple stochastic processes. Indeed, for a general stochastic process
X ={X(t),t > 0}, there exists a random variable [;(X), unique almost certainly, such
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X(t)

Figure 14.1: A SIMPLE STOCHASTIC PROCESS.

that I,(X,) — I;(X) for each sequence of simple stochastic processes X1, X3,... such that
X, — X. In particular, if X is continuous with probability one, then /;(X,,) converges in
probability to I;(X) as &, = maxj<g<n(tx — trk—1) goes to zero, that is,

n—1

i
/ X AW = stelims, o 3 X (t) (W (ths1) — W (t4)). (14.3)
0 k=0

It is a fundamental fact that [ X dW is continuous almost surely [371, 494]. The fol-
lowing theorem says the lto integral is a martingale. (Its discrete analogue appeared in
Exercise 13.2.13.) A simple corollary is the mean value formula, ¥ {f; XdW} = 0.

Theorem 14.1.1 The Ito integral [ X dW is a martingale. a

Let us inspect (14.3) again. It says the simple stochastic process below can be used in
place of X to approximate the stochastic integral fot X dw,

)A((s) = X(tg—1) for s € [ty_1,t) and k=1,2,...,n.
Note the nonanticipating feature of X: The information up to time s,

{)?(t),W(t),ogtgs},

cannot determine the future evolution of either X or W. Had we defined the stochastic

integral as

3
|
—_

/Y(tk+1) (VV(tIH-l) - I/V(tk))7

o
Il

we would have been using a different simple stochastic process,

X(s) = X(tg) for s € [ty_1,tx) and k=1,2,...,n,

which clearly anticipates the future evolution of X. See Fig. 14.2.
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Figure 14.2: STOCHASTIC INTEGRALS. The simple process X in (a) does not anticipate X,
while the simple process X in (b) does. They correspond to different ways of defining the stochastic
integral.

As an illustration, we approximate [W dW as follows,

W (te) (W (thr) = W(te))

3
|
—_
3
|
—_

= S W) = W()?] — 5 3 (W (tks) — W (1))’
k=0 k=0
= LY W) - W)

Since the second term above converges to ¢/2 by (13.15),

/thW:M—f. (14.4)
0 2 2

In calculus, we expect fg W dW = W (t)%/2. (In fact, ordinary calculus formulae hold for
processes with finite total variation.) So the extra ¢/2 term is surprising. This phenomenon
can be traced to the infinite total variation of Brownian motion. Another way to see the
mistake of fot W dW = W (t)%/2 is through Theorem 14.1.1: W (t)*/2 is not a martingale
(see Exercise 14.1.3), but (W (t)? —t) /2 is (see §13.3.4).

14.2 1Ito Processes

An Tto process is the stochastic process X = { Xy, > 0} satisfying

¢ ¢
X: = Xo —}—/ ag ds—l—/ bsdW,, t >0, (14.5)
0 0

where Xg is a scalar starting point, and {a; : ¢ > 0} and {b; : t > 0} are stochastic
processes satisfying fot |as|ds < oo and fg |bs]|?ds < oo, respectively, almost surely for
all £ > 0. The term a; is called the drift and b; the diffusion of the Ito process.
Following Langevin’s work in 1904 [24, 339], a shorthand for (14.5) is the following stochastic
differential equation or Ito differential,

d)(t = dt + bt dVVt (146)
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This is Brownian motion with an instantaneous drift of ¢; and an instantaneous variance
of . The process becomes deterministic if b; = 0, in which case it is called a Liouville
process.

An equivalent form to (14.6) is the so-called first form of the Langevin equation,
dX; = a;dt + bVdt €, (14.7)

where £ ~ N(0,1), while (14.6) is in the second form. Note that dW is normally
distributed with mean zero and variance di. This formulation makes it easy to derive
Monte Carlo simulation algorithms. Although dt < /dt, the deterministic term a; still
matters because the random variable £ makes sure the fluctuation term b; over successive
intervals tends to cancel each other out.

14.2.1 Discrete approximations

The following finite difference approximation arises naturally from (14.7),

-~

Xtps1) = X(ta) + a ()?(tn)) At +b ()?(tn)) AW (L), (14.8)

where t, = nAt. Note that AW(t,) should be interpreted as W(t,4+1) — W (t,), not
W(t,) — W(t,—1), because ¢ and b are required to be nonanticipating. Under mild condi-
tions, )A((tn) indeed converges to X (¢,) [501]. This method is called Euler’s method or
the Euler-Maruyama method [484]. To make X well-defined for the whole time interval
[0, 7], just use the linear interpolation scheme between two discrete time points. The more
advanced Milsh’stein scheme adds (1/2)bb' ((AW)% — At) to Euler’s method to provide
better approximations [577, 578]. For geometric Brownian motion, Euler’s scheme says

-~

X(tpg1) = X(tn) + X (£) At 4+ 0 X (t,) AW (1),

whereas Milsh’stein scheme adds %02)?(%) (AW (tn))* — At) to the right.
Under fairly loose regularity conditions, the discrete approximation (14.8) can be re-

placed by
X(tpp1) = X(t) + a (X(tn)) At + b (X(tn)) VALY (t,),
where Y (t0),Y (t1),... are independent and identically distributed with zero mean and unit

variance. This general result is guaranteed by Donsker’s theorem [11].
Another discrete approximation scheme is by way of Bernoulli random variables,

~

R(tnsr) = X(ta) +a (X)) At b (X (r)) VATE, (14.9)

where Prob[{ = 1] = Prob[¢ = —1] = 1/2. Note that F[{] =0 and Var[{] = 1. This
clearly defines a binomial model. As At goes to zero, X converges to X [255, 388, 485].
All the above-mentioned schemes work for non-stationary stochastic differential equations,
dX =a(X,t)dt+b(X,t)dW.

The quality of a discrete-time approximation must be judged based on some criterion
reflecting the goal of simulations. The simulation of solutions of stochastic differential
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equations falls into two basic types. The first type, such as direct simulation, demands
a good pathwise approximation, meaning the sample paths of the approximation should
be close to those of the Ito process. The second type is concerned with approximating
expectations of some function of the value of the Ito process or its probability distribution
at a given time. This is useful when the analytic solution proves elusive. The requirements
here are not as stringent as for pathwise approximations.

14.2.2 The Ito integral and trading strategies

Consider an Ito process dS; = psdt + o; dW;. Interpret S; as the vector of security prices
at time t. Let ¢, be a trading strategy denoting the quantity of each type of security held
at time t. Clearly, the stochastic process ¢,S; is the value of the portfolio ¢, at time ¢.
The stochastic integral ¢, dS; = ¢, (u: dt+ o4 dW;) then represents the change in the value
from security price changes occurring at time ¢. The equivalent Ito integral,

T T T
Gr(@)= [ ouasi= [ oumdrs [ ouoidm,

corresponds to the capital gains realized by the trading strategy over the period [0,7].
Finally, a strategy is self-financing if

qtht = ¢)OSO + Gt(qlt)) 0<t<T. (1410)

These concepts can be captured clearly under discrete-time models. Let tg < t; < --- <
t, denote the trading points. As before, S is the price vector at time ¢, and the vector
¢;. denotes the quantity of each security held during [#g,tz+1). Then ¢Sy stands for the
value of portfolio ¢, right after its establishment at time ¢z, and ¢.Sr4+1 stands for the
value of portfolio ¢, at time ¢z, before any transactions are made. The nonanticipation
requirement of the Ito integral means ¢, must be established before Siiq is known. The
quantity ¢,ASy, = ¢ (Sk+1—Sk) represents the capital gains between times #; and 41,
and the summation

n—1
G(n) =) ¢,AS,
k=0

is the total capital gains through time ¢,. The above summation is consistent with the
definition of the Ito integral (14.2). A trading strategy is self-financing if

¢k5k = ¢k—15k

for all 0 < k& < n, that is, if there is no injection or withdrawal of funds at any time.
This condition implies (14.10) under the discrete-time context (see Exercise 14.2.1). The
transition to continuous time is now clear: The Ito integral is the limit of the Ito integrals
of simple processes.

Consider the Ito process dX; = a; dt 4+ b; dW; again. The nonanticipating requirement
says that a; and b; cannot embody future values of dW, and the future evolution of X
depends solely upon its current value. In other words, X is a Markov process. Ito process

is hence ideal for modeling asset price dynamics under the weak form of efficient markets.
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14.2.3 Ito’s lemma

The central tool in the Ito integral is Ito’s lemma, which reduces many stochastic problems
to deterministic differential equations. Ito’s lemma basically says a smooth function of an
Ito process is itself an Ito process.

Theorem 14.2.1 (Ito’s lemma: one-dimensional version) Suppose f : R — R is twice
continuously differentiable,! and dX = a;dt + b, dW. Then f(X) is the Ito process,

100 = 1050 + [ 70X asds [ #0x) beaw 43 [ r0x) sas
for t > 0. O
In differential form, Ito’s lemma becomes
&F(X) = f1(X) adt+ f'(X) bdW + %f”(X) b2 dt. (14.11)

Compared to calculus, the interesting part is the third term on the right-hand side. This
can be traced to the positive quadratic variation of Brownian paths, making (dW)? non-
negligible. A convenient formulation of Ito’s lemma suitable for generalization to higher
dimensions is

df(X) = f/(X) dX + % F(X)(dX) (14.12)

Here, one is supposed to multiply out (dX)? = (adt + bdW)? symbolically according to
the following multiplication table:

X dW dt
dW | dt 0
dt 0 0

Note that the (dW)* = dt entry is justified by (13.16). This form is easy to remember
because of the similarity to Taylor expansion.

Theorem 14.2.2 (Ito’slemma: higher-dimensional version) Let Wy, ..., W, be n indepen-
dent Wiener processes, and X = (X1,...,X,,) be a vector process. Suppose f: R™ — R is
twice continuously differentiable and X; is an Ito process with dX; = a; dt + 2?21 bi; dW;.
Then, df (X) is an Ito process with the differential,

m 1 m m i
df (X) = Z LX) dXi+ 5 Z 3 F(X) dX;d X (14.13)
i=1 =1 k=1
Here, f; = 0f/0z; and fiy, = 0*f/0z;0z. m|
The multiplication table for Theorem 14.2.2 is
X dW; dt
de 5ik dt 0
dt 0 0

'This means all first- and second-order partial derivatives exist and are continuous.
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in which

6%:{ 1 if 1=k

0 otherwise

In applying the higher-dimensional Ito’s lemma, usually one of the variables, say Xj,
is the time variable ¢ and dX; = dt. Hence, by; = 0 for all 7, and a; = 1. An alterna-
tive formulation incorporates the interdependence of the variables Xi,...,X,, into that
between the Wiener processes.

Theorem 14.2.3 (Ito’s lemma: alternative higher-dimensional version) Let Wy,... , W,
be m Wiener processes and X = (Xy,...,X,,) be a vector process. Suppose f: R™ — R
is twice continuously differentiable, and X; is an Ito process with dX; = a; dt + b; dW;.
Then df (X)) is the following Ito process,

df (X) = Z F(X) dX + % Z S f(X) dX,dX;,
=1

=1 k=1

with the following multiplication table:

X dW; dt
de Pik dt 0
dt 0 0
Here, p;;, denotes the correlation between dW; and dWj. a

In the above theorem, the correlation between dW; = Vdt & and dWy = Vdt & refers

to that between the normally distributed random variables & and &.

14.2.4 Stochastic differential equations

For stochastic differential equations of the form dX; = a¢(X;) dt + b;(X;) dW;, there are
regularity conditions that guarantee the existence and uniqueness of solution [24, 327, 494].
The solution to a stochastic differential equation is also called a diffusion process. A
stochastic differential equation is linear if both b¢(z) and a;(z) are linear functions of
xz. In this case, the solution X; is closely related to the solution of the corresponding
deterministic differential equation. The mean and covariance functions of X; as well as
more general treatments of linear stochastic differential equations can be found in [24].

14.3 Applications

This section presents applications of the Ito process, some of which will be useful later.
Example 14.3.1 A (p, o) Brownian motion is pdt + o dW by Ito’s lemma and (13.11). O

Example 14.3.2 Consider the Ito process dX = p(t) dt+ o(t) dW. It is identical to Brow-
nian motion except that the drift u(¢) and diffusion o(t) are no longer constants. As with
Brownian motion,

X(t) ~ N (X(O) + /0 tu(s) ds, /0 t o2(s) d.s)

is normally distributed. O
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Example 14.3.3 Consider the geometric Brownian motion process Y (t) = eX () where
X(t) isa (p, o) Brownian motion. Ito’s formula (14.11) implies

dy 1
The instantaneous rate of return is u + /2 not u, consistent with Exercise 13.3.5. ad

Example 14.3.4 Consider the Ito process U =Y Z with dY = adt+bdW and dZ = fdt+
gdW. Processes Y and Z share the Wiener process W. Ito’s lemma (Theorem 14.2.2)
can be employed to show that

dU =72dY +Y dZ + dY dZ.
This can be expanded using formal multiplication into
dU=2dY +Y dZ + (adt + bdW)(fdt + gdW) = ZdY +Y dZ + bg dt.

If either b =0 or g = 0, then integration by parts holds. O

Example 14.3.5 (Geometric average of correlated geometric Brownian motion) Consider
the Ito process U = Y Z, where dY/Y = adt + bdW, and dZ/Z = fdt + gdW,. The
correlation between W, and W, is p. Apply Theorem 14.2.3 to show that
dU = ZdY +Y dZ +dY dZ
= ZY (adt+bdW,)+YZ (fdt+gdW,)+YZ (adt +bdW,)(fdt + gdW,)
= Ula+ f+bgp)dt+ UbdW,+ UgdW,.

Note that dU/U has volatility /b2 + 2bgp + ¢? by (6.13). The product of two (or more)
correlated geometric Brownian motion processes thus remains geometric Brownian motion.
This result has applications in correlation options, whose value depends on multiple
assets [793]. Now, since

- 52
Y = exp (a—?) dt—l—dey]

2
r b2 2
U = exp (a—l—f— —;g)dt—l-\/dey—l-gdWZ

In U is Brownian motion with a mean equal to the sum of the means of InY and In Z.
This holds even if Y and Z are correlated. Also, InY and In Z have correlation p. O

- 7
Z = exp (f— )dt—}—gdWZ]

Example 14.3.6 Assume S follows the geometric Brownian motion process,

ds
— =pudt+odW.
S
Then the process F(S,t) = Se? (T=t) follows another geometric Brownian motion process,
dF

7 = (w-y)dt+odW,

by Ito’s lemma. This result has applications in pricing forward and futures contracts. O
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14.3.1 Correlated geometric Brownian motion processes

Let B = [b;ij]ici<ni<j<n be a non-singular n X n matrix. (A square matrix is non-
singular if its inverse exists.) Define C' = [¢;;] = BB", that is, ¢;; = > bix bjr. Let
Wi,...,W, be n independent Wiener processes and

Y (0) = [Vi(0),..., Yalt)] = pt + BW (1)

be vector Brownian motion, where W = [Wy,... , W, ]" and p = [p1,...,1s]". Thus,
Y; is Brownian motion with drift x; and variance Y, b%.. In fact, the covariance matrix of
Y (t) is precisely C (see Exercise 14.3.11). Set Z;(t) = Z:(0) ¥()=(t/2) for 4 =1,... n
with constants Z;(0) > 0. Ito’s lemma can be applied here to obtain dZ7;/7; = dY;
(see Exercise 14.3.12). Define the correlated geometric Brownian motion as 5;(t) =
€"Z;(t). Then dS;/S; = rdt+ dY;. This is one possible model for correlated stock prices.

14.3.2 The Ornstein-Uhlenbeck process
The Ornstein-Uhlenbeck process has the Ito differential,

d/Y — _K/XV dt + ag dIV7 (14.14)

where k,0 > 0. See Fig. 14.3 for illustration. Given X (t9) = zg, it can be shown that

E[X(t)] = e r=h) B[]
o2
Var[ X (t)] = oy (1 — e_QH(t_t°)> + e 25 (710) Var[ 24 ]
K
o2
Cov[X(s),X(t)] = Y e r(t=s) (1 — e (s_to)) + e~ (t+57210) Var[ 0]
K

for tg < s <t. In fact, as with Brownian motion, X (¢) is normally distributed if zg is a
constant or normally distributed [24]. For this reason, X is a normal process. Of course,
E[zg] = 2o and Var[zg] =0 if z¢ is a constant. If 29 ~ N (O “—), then it is easy to see

12K

that X is stationary.

() Figure 14.3: SAMPLE PATH OF ORNSTEIN-
UHLENBECK PROCESS. Depicted is a sam-
ple path of the Ornstein-Uhlenbeck process
dY = —0.15Y dt+0.15 dW, starting at Y (0) =

2. The envelope is for one standard devia-

tion \/M —e~03%) around the mean

26_0 15t

In contrast to Brownian motion,
which diverges to infinite values (see Fig. 13.3),
the Ornstein-Uhlenbeck process converges to a
stationary distribution.

Time (t)

The Ornstein-Uhlenbeck process describes the velocity of a tiny particle through a fluid
in thermal equilibrium—in a word, Brownian motion in nature [339]. This process has the
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following mean reversion property. When X > 0, the dX term tends to be negative,
pulling X toward zero, while if X < 0, the dX term tends to be positive, pulling X
toward zero again. For this reason, the Ornstein-Uhlenbeck process is sometimes called
elastic random walk. Other names for the Ornstein-Uhlenbeck process include AR(1)

process and mean-reverting Wiener process.

Example 14.3.7 Suppose X is an Ornstein-Uhlenbeck process. Ito’s lemma says V = X2
has the differential,

AV = 2XdX + (dX)2=2V/V (—m/V dt + o dw) +oldt
= (—2/@‘/—1— 02) dt + 20\/‘_/dW/,
a square-root process. O

Consider the following process, also called the Ornstein-Uhlenbeck process,
dX =k (p— X)dt+ o dW, (14.15)

where ¢ > 0. Given X (tg) = zo, a constant, it can be shown that

EIX()] = p+ (wo—p)e () (14.16)
Var[ X (1)] = ; (1—6—%<f—f0>) (14.17)

for to < t [759]. Since the mean and standard deviation are roughly u and o/v2k,
respectively, for large ¢, the probability of X being negative is extremely unlikely in any
finite time interval when g > 0 is relatively large compared to o/v2k (say p > 40/v2k).

The process in (14.15) has the salient mean-reverting feature that X tends to move
toward p. This property makes it useful for modeling term structure [759], stock price
volatility [726], and stock price return [528].

14.3.3 The square-root process

The square-root process has the Ito differential,
dX =k (p— X)dt + oVX dW,

where k,0 > 0, and the initial value of X is a non-negative constant. See Fig. 14.4 for
illustration. Like the Ornstein-Uhlenbeck process, it has mean reversion in that X tends
to move toward p; the volatility is proportional to v/ X instead of a constant, however.
When X hits zero, the probability is one that it will not move below zero if p > 0; in other
words, zero is a reflecting boundary. Hence, the square-root process is a good candidate
for modeling interest rate movements [203]. The Ornstein-Uhlenbeck process, in contrast,

would allow negative interest rates. The two processes are actually related (see Example
14.3.7).
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Feller (1906-1970) showed that the random variable 2¢X(¢) follows the non-central
Chi-square distribution [203],

4k —r
X (?, 2¢X(0)e 7‘L) )
where ¢ = (2/@/02) (1 - e"‘t)_l. Given X (0) = zg, a constant, it can be proved that

E[X(®)] = woe ™ +p(1—e)

Var[ X ()] = =9 % (e™ — e ) + ;_14 (1- e_“t)Q

for t > 0.

Y(t)

Figure 14.4: SAMPLE PATH OF SQUARE-
ROOT PROCESS. Depicted is a sample path
of the square-root process dY = 0.2(0.1 —
Y) dt40.15Y dW with the initial condition
Y (0) = 0.01. The envelope is for one stan-
dard deviation around the mean 0.01 =024

0.1 (1—e02t).

14.4 Backward and Forward Equations

Let p(z,y;t) denote the transition probability density function of a (i, o) Brownian motion
starting at z. By (13.10),

p[_@—w—mV]7

202t

1
r,y;t) = ex
p(z,y3t) Jirto
which satisfies Kolmogorov’s backward equation,

dp 1 ,0%p dp
ot =27 902 THe

and Kolmogorov’s forward equation (also called the Fokker-Planck equation),

This generalizes Exercise 13.3.4.
Both the backward equation and the Fokker-Planck equation describe a large class of
stochastic processes with continuous sample paths [327]. Consider the Ito process,

dX; = a( Xy, t) dt + b( Xy, t) dWy,
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where X; € R. It can be shown that, under some regularity conditions, the transition
probability density function p(z,s;y,t) of X(¢) given X (s) =z, i.e.,

b
Probla < X(t) < b| X (s)=2z] = / p(z,s;y,t) dy,
satisfies Kolmogorov’s backward equation,

817_ 1 2821’
% = —5 b($,8) @ — a(m,s) 8_'7

and the Fokker-Planck equation [24, 319],

op _ 102 (bly.0)"p) _ 0 (aly,t)p)

at 2 0y? oy

For instance, the transition density function of the Ornstein-Uhlenbeck process dX =
—kX dt + o dW satisfies the following backward and Fokker-Planck equations,

dp _ 1 ,0% dp dp _ 1 ,0%  0(py)

—_— = g a =<0 + K )

Js 2 0z Ox ot 2 0y? dy
and that of the square-root process dX = —xX dt + o/ X dW satisfies

2 2 (2
@_—102$8—p+5$@ and @—18 <U yp)_}_@(nyp)

ds 2 0z? Ox a2 oy? Jy

14.5 Applications in Finance

Some applications of continuous-time processes to finance are covered in this section. Many
of them will be explored in more details later in the book.

14.5.1 Transactions costs

Transactions costs are a fact of life, never zero however negligible. Under the proportional
transactions cost model, it is impossible to trade continuously. Here is the intuition.
The transactions cost per trade is proportional to |dW |. But we already demonstrated
that fOT | dW | = oo almost surely in (13.18). As a consequence, a continuous trader would
be bankrupt with probability one [571]. Even stronger claims can be made. For instance,
the cheapest trading strategy to dominate the value of European call at maturity is covered
call [715]; hence any strategy that replicates the European call must be trivial.

14.5.2 Stochastic interest rate models

Merton originated the following methodology to term structure modeling in 1970 [447].
Suppose the short rate r follows dr = p(r,t)dt + o(r,t)dW. Let P(r,t,T) denote the
price at time t of a zero-coupon bond that pays one dollar at time T. Write its dynamics
as

dP

?:updt—l—ade
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so that the expected instantaneous rate of return on a (7' —t)-year zero-coupon bond is p,
and the instantaneous variance is O'g. Of course, P(r,T,7) =1 holds for any T'. By Ito’s
lemma (Theorem 14.2.2),

op .. 0P 1 82 5
oP 8 10%P
= _8_Tdt+8 (u ( t)ydt+o (rt)dW)+§8—( w(r,t) dt + o (r,t) dW)?
B oP ( t)? 82P 8P
where dt = —dT in the second equality. Hence,
oP oP o(r,t)? 9*°P orP
— (9_T+ p(r,t) — a + 5 W_P,up and U(T,t)W—PUp.

(14.18)

Models in which the short rate is the only explanatory variable are called short rate
models.

The Merton model

If we impose the local expectations theory, which means p, equals the prevailing spot
rate r(t) for all 7', and assume p and o are constants, then the above partial differential
equations have the following solution,

p(T 1) o (T~ 1)

P(rt,T)=exp | —r (T —1t) — 5 + G

(14.19)

This model was first considered by Merton [571]. We make a few observations here. First,
o, = —o (T —t), which says, sensibly, that bonds with longer maturity are more volatile.
The dynamics of P is dP/P = rdt — o (T —t)dW. Now, P goes to infinity as T does
likewise, but this does not square with the reality at all. This results partially from the
negative rates allowed by the model. We shall develop more elaborate interest rate models
starting from Chapter 23.

Duration under parallel shifts

Define duration with respect to constant parallel shifts in the spot rate curve. For conve-
nience, assume ¢ = 0. Recall that the spot rate curve is defined by
In P(r,T)

T .

Parallel shift means S(r 4+ Ar,T) = S(r,T) + Ar for any Ar; so 9S(r,T)/0r = 1. This
implies S(r,T)=r 4 ¢(T) for some g with ¢(0) =0 as S(r,0) = r. Consequently,

S(r,T)= -
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Substitute this identity into the left-hand part of (14.18) and assume the local expectations
theory to obtain

g @)+ 22 = utry - 700

As the left-hand side is independent of r, so must the right-hand side. But the only way
this can hold for all 7" is when both pu(r) and o(r) are constants—the Merton model. As
mentioned before, this model is flawed, so must duration as such [450].

Immunization under parallel shifts revisited

A duration-matched portfolio under parallel shifts in the spot rate curve begets arbitrage
opportunities in that the portfolio value exceeds the liability for any instantaneous rate
change. This was shown in §5.10.2. However, this seeming inconsistency with equilibrium
disappears if changes in portfolio value through time are considered. Indeed, we can show
that, for some interest rate models, at any given time in the future, a portfolio value is
a convex function of the prevailing interest rate, but a liability immunized by a duration-
matched portfolio exceeds the minimum portfolio value. Thus, the claimed arbitrage profit
evaporates because the portfolio value does not always cover the liability.

This point can be illustrated by the Merton model dr = pdt+ o dW, which results from
parallel shifts in the spot rate curve and the local expectations theory. To immunize a $1
liability due at time s, a two-bond portfolio is constructed now with maturity dates ¢; and
ta, where #; < s < t5. Each bond is a zero-coupon bond with $1 par value, and the portfolio
contains b; > 0 units of bond ¢ for ¢+ = 1,2. The portfolio matches the present value of
the liability today, and its value relative to the present value of the liability is minimum
among all such portfolios (review §4.2.2). Let the current time be zero and consider any
future time ¢ such that 0 < ¢ < ¢;. With A(¢) denoting the portfolio value and L(t) the
liability value at time ¢, it can be shown that the asset/liability ratio A(t)/L(¢) is a convex
function of the prevailing interest rate and A(t) < L(t) (see Exercise 14.5.5). Consult [45]
for tackling the same issue for other interest rate models such as the Ho-Lee model.

14.5.3 Modeling stock prices

The most popular stochastic model for stock prices has been geometric Brownian motion,

d
?S =pdt+odW. (14.20)

From the analysis in Example 14.3.3, we know that S/S(0) is built from eX, where X is
a (u - 02/2,0) Brownian motion. Equivalently, In(S/S(0)) is a (,u - 02/2,0) Brownian
motion. See Fig. 14.5 for illustration. This model best describes an equilibrium where
expectations about the future returns have settled down [571].

To understand (14.20) better, look at its discrete analogue,

% = uAt+ oVAL €,

where £ ~ N(0,1). Hence, AS/S ~ N (,u At, O'2At). The percentage return for the next At

time hence has mean p At and variance o?At. In other words, the percentage return per
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Figure 14.5: SAMPLE PATH OF GE-
OMETRIC BROWNIAN MOTION. The
process X has the Ito differential dX =
0.15 X dt + 0.3 X dW starting at X (0) =
1. Two related deterministic processes are
plotted for reference: dY = 0.15Y dt and
dZ = (0.15— (0.3)?/2) Zdt. From the
discussions in §14.5.3, we know that X
is built by taking the exponentiation of
a (0.15 — (0.3)%/2,0.3) Brownian motion.

Time (1) Hence, it 1s Z, not Y, which traces the
expected value of X(t).

400

300

200
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unit time has mean g and variance o2, justifying calling p the expected instantaneous rate
of return and o2 (o) the instantaneous variance (price volatility) of the rate of return. Note
that, if there is no uncertainty about the stock price, that is, ¢ = 0, then S(¢) = S(0) e,
in which case the stock price grows at a continuously compounded rate of p.

Comment 14.5.1 It may seem strange that the rate of return of a stock with dS/S =
pdt+odW is p instead of p—a?/2. After all, we know that S/S(0) = eX, where X is a
(,u —a%/2, U) Brownian motion, and therefore the continuously compounded rate of return
over the time period [0,7] is

In(S(T)/$(0)) _ X(T) - X(0) _ N( o’ 2) _ (14.21)

T - T =

The expected continuously compounded rate of return is then u — o?/2! Well, they refer
to alternative definitions of rates of return. Unless stated otherwise, it is the former (in-
stantaneous rate of return p) that we have in mind from now. It should be pointed out
that the p used in the binomial option pricing model, (9.17), referred to the latter rate of
return. In summary,

EL(S(Al) — 5(0))/5(0)]

Al -
W ELS(/50)] _
T
ElIn(S(T)/S(0)] _ H_U_2
T 2

by Comment 9.3.2, Corollary 9.3.4, Exercise 13.3.5, Example 14.3.3, and Exercise 14.5.6. O

Stock price and rate of return under the binomial model

What is the Ito process for the stock’s rate of return in a risk-neutral economy to which
the binomial model in §9.2 converges? A quick review first. The continuously compounded
rate of return of the stock price over a period of length 7 was shown to be a sum of n
independent identically distributed random variables

X — Inu with probability p
| Ind with probability 1 —p
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where u = e’V7/" d = e V7" and p = (e”/” - d) /(u — d). The rate of return is
hence the random walk »_" ; X;.
It is straightforward to verify that

2

ZX"I — (r— %) 7 and Var
=1

Employing the arguments in §13.3.1 to conclude that the continuously compounded rate of

E

XZ»] — o?r. (14.22)
1

=

return converges to a (r —a%/2, U) Brownian motion. The stock price consequently follows

d
?S =rdt+odW (14.23)

in a risk-neutral economy.

Additional Reading

We followed [472, 473, 666, 667] in the exposition of stochastic processes and [24, 250, 371,
474] in the discussion of stochastic integrals. Rigorous proofs of Ito’s lemma can be found in
[24, 371], whereas informal ones can be found in [421, 446, 571]. Mathematica programs for
carrying out some of the manipulations are explained in [758]. Consult [484, 485, 486, 673]
for numerical solutions of stochastic differential equations. See [528] for the multivariate
Ornstein-Uhlenbeck process. Other useful references include [725] (diffusion), [480] (Ito
integral), [242, 662] (stochastic processes), [180, 319, 676] (stochastic differential equations),
[222] (stochastic convergence), [484, 485] (numerical techniques for stochastic differential
equations), [475] (stochastic optimization in trading), [92, 154] (competitive trading without
probabilistic assumptions), and [101, 223, 235, 588] (transactions costs).
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This problem of time in the art of music
is of capital importance.

—Igor Stravinsky (1882-1971),

Poetics of Music [734, p. 31]
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This chapter first presents the partial differential equation that an option value should
satisfy. The general methodology is then extended to any derivatives, including options
on stocks that pay continuous dividends, futures, futures options, correlation options, ex-
change options, path-dependent options, currency-related options, barrier options, convert-
ible bonds with call provisions, and options under stochastic volatility.

15.1 Partial Differential Equations: a Brief Introduction

A two-dimensional (that is, two independent variables) second-order partial differential
equation has the following form,

2 2 2
p%—l—qai—gy—}—rg—yg—}—s%—}—tg—z—}—uﬁ—l—v:o, (15.1)
where p, q,r,s,t, u,v may be functions of the independent variables = and y as well as the
dependent variable ¢ and its derivatives. It is called elliptic, parabolic, or hyperbolic
according as ¢? < 4pr, ¢> = 4pr, or ¢* > 4pr, respectively, over the domain of interest.
For this reason, ¢? — 4pr is called the discriminant. See [398, §3.1] for discussions on the
significance of the above classification in solving these equations.

Partial differential equations can also be classified into initial value and boundary
value problems. An initial value problem propagates the solution forward in time from
the values given at the starting point. In contrast, a (two-point) boundary value problem
has known values which must be satisfied at both ends of the interval [348]. If the conditions
for some independent variables are given in the form of initial values and those for others
as boundary conditions, we have an initial value boundary problem.

A standard elliptic equation is the two-dimensional Poisson’s equation,

%0 0%

@‘}'8—3/2 = p(ac,y).

The wave equation,
%0 1 0%
ot w? gz?

is hyperbolic. The most important parabolic equation is the diffusion equation,

0,

Ly
29z ot
which is a special case of the Fokker-Planck equation. Given the initial condition #(z,0) =

f(z) for —oo < z < o0, its unique bounded solution for ¢ > 0 is a weighted average of

f(=),

1 o0 2

- —(e=2)*/(2D1t) 4 15.2
z)e 2, .

V2w Dt /—oo 1) ( )

when f(z) is bounded and piecewise continuous for all real z. The solution clearly depends

on the entire initial condition (say, the temperature distribution). This is the diffusion

equation on an infinite domain.
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It is known that (15.1) can be reduced to generalized forms of Poisson’s equation, the
diffusion equation, or the wave equation according as it is elliptic, parabolic, or hyperbolic.
variables for = and y.

15.2 The Black-Scholes Differential Equation

Black and Scholes in their path-breaking work [80] showed that the price of any derivative
on non-dividend-paying stock must satisfy a partial differential equation. The crust of the
argument lies in setting up a riskless portfolio of the stock and derivative. The trick is to
recognize that the same random process drives both securities; it is systematic. Given
that their prices are perfectly correlated, we can figure out the right proportion of stock
such that the gain from one offsets the loss from the other exactly. This done, the portfolio
value at the end of a short period of time is known for sure. This forces its return to be the
riskless rate of interest in order to avoid arbitrage opportunities.

Several assumptions will be made. Chiefly among them are the following. The stock
price follows the geometric Brownian motion dS = uS dt 4+ ¢S dW with constant u and
0. There are no dividends during the life of the derivative. Trading is continuous. Short
selling is allowed, and there are no transactions costs or taxes. All securities are infinitely
divisible. There are no riskless arbitrage opportunities. The term structure of riskless rates
is flat at r, and there is unlimited riskless borrowing and lending. We remark that some
of the assumptions can be relaxed; for instance, u, o, and r can be known functions of ¢
instead of constants [421]. In the following, ¢ denotes the current time (in years), and T
denotes the expiration time with 7 =T —t.

15.2.1 Merton’s derivation
Let C' be the price of a derivative on S. From Ito’s lemma in Theorem 14.2.2, we have

(L0090 1, L, PC e
M1_0685+8t+205 mﬁ)ﬁ+abas

dw.

Note that the same W drives both C' and S. The appropriate portfolio of the stock and
the derivative that eliminates this random source is short one derivative and long 9C'/dS
shares of stock (see Fig. 15.1). Define Il as the value of the portfolio. By construction,

aC
M=-C+8%.
C+5 s

The change in the value of the portfolio in time dt is given by

oC
dll = —d —— dS.
C+8S S

Substitute the formulae for dC' and dS into the above equation to yield

(¢ 1, ,0C
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Since this equation does not involve dW, the portfolio is riskless during time d¢ and hence
earns an instantaneous return rate of r, that is, dIl = rll dt. This equation becomes

aC 1 ,.,0%C\ aC

after applying the formulae for dIl and II. Equate the terms to finally obtain

oC L0C 1, ,0°C
at—}—rb 8S+QUS 852_7‘0. (15.3)

This is the celebrated Black-Scholes differential equation.

160+t .
Figure 15.1: STOCK PRICE AND
Stock prices DELTA, OC/0S. Here, the current
140t stock price is $100, and the strike price
is $95.
120}

Hedge
ratios (%
100

The Black-Scholes differential equation can be expressed in terms of sensitivity numbers,
1
@—I—TSA—}—iozszfer. (15.4)

(Review §10.1 for the definitions of sensitivity measures. Note that, there, differentiation
was with respect to 7, not t.) Note that the above equation leads to an alternative way of
computing theta © numerically from delta A and gamma [I'. In particular, if a portfolio
is delta-neutral, then the above equation becomes

1
®+§O'252FITC7
which shows a definite relationship between I' and ©.

15.2.2 Initial and boundary conditions

Solving the Black-Scholes differential equation depends on the initial and boundary con-
ditions defining the particular derivative security with S as the underlying asset. These
conditions spell out the values of the derivative at various values of S and ¢. In the case
of European call, the key final condition is that the call value is max(S(7) — X,0) at
expiration. In the case of European put, it is that the put value is max(X — S(7),0) at
expiration. Note that a final condition becomes an initial condition by the change of vari-
ables t' =T —t. There are also boundary conditions. The call value is zero when S(t) = 0,
and the put is Xe™"(T=) when S(t) = 0 (see Exercise 8.6.3). Furthermore, as S goes to

infinity, the call value is S and the put is zero.
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The boundary conditions above are more than what are mathematically necessary; how-
ever, they improve the accuracy of numerical methods [781]. The accuracy is even better if
S — Xe " (T=1) is used in place of S for the European call as S — oo.

The American put is more complicated because of the possibility of early exercise whose
boundary S(t) is unknown a priori. The formulation that guarantees a unique solution is

oP o°rP 1 o?p

W+TS%+50252852:TP and P>X—-S for S<S<o
P=X-8S for 0<S<S
Z—];:—l and P=X—-S for S=5

P=0 for S—

plus the terminal condition P = max(X — S,0) [135]. The region 0 < S < S is where
early exercise is optimal.

15.2.3 Remarks

Continuous adjustments

Note that the portfolio Il is riskless only for an infinitesimally short period of time. If
dC'/0S changes as S and t do, the portfolio must be continuously adjusted to ensure that
it remains riskless.

Number of random sources

There is no stopping at the single-factor random source. In the presence of two random
sources, three securities suffice to eliminate uncertainty: Use two to eliminate the first
source and add the third to eliminate the second source [213]. Of course, the factors must
be traded. A traded security is an asset that is held solely for investment by a significant
number of individuals. Generally speaking, a market is complete only if the number of
traded securities is at least as large as the number of random sources [70].

Risk neutrality

Like the binomial option pricing model, the Black-Scholes differential equation does not
depend directly on the risk preferences of investors. All the variables in the equation (current
stock price, time to maturity, stock price volatility, and riskless rate) are independent of
risk preferences. The one variable that depends on the risk preferences, the expected return
on the stock, is not part of the equation. As a consequence, any risk preference can be
used in pricing, including the risk-neutral one, and the resulting solutions will be valid in
all worlds.

In a risk-neutral economy, the expected return on all securities is r. This is because
risk-neutral investors do not require a premium for taking risks. Furthermore, present value
can be obtained by discounting the expected value at the riskless rate. The risk-neutral
assumption simplifies the analysis of derivatives. Lemma 9.2.1 says the same thing of the

binomial option pricing model. In fact, the Black-Scholes formula can be derived along this
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line [421, 446, 793]. We emphasize that r is the instantaneous return rate of the stock (see
Comment 14.5.1 for the subtleties).

15.3 Solving the Black-Scholes Differential Equation

The Black-Scholes differential equation can be solved directly for the European option. We
shall follow Merton’s steps [571]. Transform (15.3) with the change of variable, C'(S,7) =
B(S,7)e™""X. The partial differential equation becomes, after simplification,

0B B 1 5262 *B
“or T s T g =0
where B(0,7) =0 for 7 >0 and B(S,0) = max(S/X — 1,0) for S > 0. With D(z,7) =

B(S,7) and z = (5/X) €7, we end up with the diffusion equation,

~or T ) G2 =0

where D(0,7) = 0 for 7 > 0 and D(z,0) = max(z — 1,0) for z > 0. After one more
transformation, u = o%r, the function H(z,u)= D(z,T) satisfies

0H 1 2 0*H

“ou T2 e 70

where H(0,u) =0 for u > 0 and H(z,0) = max(z — 1,0) for z > 0. One final transfor-
mation, O(z,u) z = H(z,u) with z = (u/2) 4 Inz, lands us at

e, 100

ou 2 022

The boundary conditions are |O(z,u)| <1 for « >0 and ©O(z,0) = max(1—e~*,0). By
(15.2), the above diffusion equation has the following solution,

O(z,u) = \/%/ (1—eY)e (Z_y)2/(2“)dy

_ /() g, / e (=) /(20) g
\/27ru \/27ru

1
—w?/2 g / —w2/2 ’
= — e "1/ dw e dw
V2T /_Z/\/g b V2T X Jo(z—u)//u ?

z 1 zZ—u
= ]\7 —— - — j\f ——
(\/ﬂ) z ( Vu )
with the change of variables wy = (y — z)/y/u and wy = (y — z + u)//u. Hence,

H(z,u) = O(nz + (u/2),u)z =2 N (W) - N (W) .

Put everything back to obtain

0(57 7') = H (% 67”7'70.27_) e TX
2 2
SN (ln(S/X) +rr+o 7/2) XN (ln(S/X)—I—rT o 7/2) 7
Vo?r Vo?r

which is the Black-Scholes formula for the European call.
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15.4 Variations and Applications

15.4.1 Continuous dividend yields
The price for a stock that continuously pays out dividends at an annualized rate of ¢ follows

d
?S = (p—q)dt+ odW, (15.5)

where p is the rate of return from stock ownership with the dividends included. This process
was postulated for the stock index and exchange rate—price of foreign currency—before.
In a risk-neutral economy, @ = r and the dynamics becomes

ds

< = (r—q)dt+ odW.

In general, any derivative security whose value f depends on a stock paying a continuous
dividend yield must satisfy a differential equation. From Ito’s lemma in Theorem 14.2.2,
of 0f |1 5.0°f of
df = —)S—=4+—=—+4+-0°5"— ] dt S —= dW.
1 ((“ D555t o t37 5 g5z) 4955
Set up a portfolio which is short one derivative security and long df/0S shares. The value
of the portfolio is

of
M= - S ==.
F+533
The change in the value of the portfolio in time dt is given by
of
dll = —d ds.
f+ 53

Substitute the formulae for df and dS into the above equation to yield
1 2

The total wealth change is simply the above amount plus the dividends,

of 1, zaz_f) of
(—(%—205 552 dt—}—anSdt.

As its value is not stochastic, the portfolio must be instantaneously riskless; thus

Of 1 5, 0%f Lof
( T 205852 dt—I—qbant_ert.

Simplify to obtain

Urr-asgles

Of 1 520 f
t 95 1279 g52

—rf. (15.6)
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For the European call, the boundary conditions are identical to those of the standard
option except that its value should be Se~?(T=%) as S goes to infinity. Review (9.28) for
the solution. For the American call, the formulation that guarantees a unique solution is

oC oC 1 0*C

——}—(r—q)5—+—0252 =rC and C > max(S— X,0) for 0<S<S

ot s 2 052
C=85-—X for S<S<ox
80—1 and C=8—-X for S=8
oS N : N
C=0 for S=0
plus the terminal condition C'= max(S — X, 0), of course [781].
15.4.2 Futures and futures options
Since the futures price is related to the spot price via F = Se"=9(T=1) e have
dF
=0 dw

by Example 14.3.6. So, for pricing futures option, the futures price can be treated as a
stock paying a continuous dividend yield equal to r. This is the rationale behind the Black
model.

15.4.3 Barrier options

The value of a barrier option B satisfies the Black-Scholes differential equation. The initial
and boundary conditions are different from those of the corresponding standard option only
at the barrier H. Take the European down-and-out call on a non-dividend-paying stock for
instance and assume H < X. The terminal value remains B(S,7) = max(S(7)—X,0), and
its value prior to expiration is approximately S as it goes to infinity. However, B(H,#) =0
for t < T because the option is worthless once S hits H.

For European down-and-in calls, the boundary conditions can be similarly derived.
Suppose the barrier is yet to be crossed. Then the option’s terminal value is zero, and
its value prior to the expiration date is also zero as S goes to infinity because the stock
price is unlikely to fall that low. The additional boundary condition is B(H,t) = C(X,1),
where C'(X,t) denotes the value of an otherwise identical standard European call. This
clearly holds because the down-and-in call becomes a standard European call the moment
the barrier is hit.

15.4.4 Path-dependent options

All the path-dependent options in §11.8 have continuous-time counterparts. To simplify the
notation, assume the option was initiated at time zero. The average-rate call and put now
have terminal values given by

T T
S(u)d S(u)d
max (M—X,O) and max (X—W,O) ,
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respectively. This kind of averaging is called arithmetic average. Arithmetic average-rate
options are notoriously hard to price [793]. Most average-rate options are European; how-
ever, the prices are sampled at discrete points in time [518]. If averaging is done geometri-

T
1 d
—X,O) and max (X—exp [W] ,0),

respectively. Geometric averages are lognormally distributed when the underlying asset

cally, then the payoffs become

S(u
max (exp [fo .

T

prices are so distributed (see Example 14.3.5). The lookback call and put on the average

have values max (S(T) 7[5 S( ) du, 0) and max( fo u)du— S(T ),O) at expira-
tion, respectively.

Analytic formulae are available for geometric average-rate European options and look-
back options on the average [421, 479]. In the case of geometric average-rate European
option, for example, the formulae can be derived from the Black-Scholes formulae with its
volatility replaced by o/v/3 and dividend yield replaced by (1/2) (r +q+ 02/6).

We proceed to derive the partial differential equation satisfied by the value V of a
European arithmetic average-rate option. Introduce a new variable A(t) = fgS(u) du.
First, it is not hard to verify that dA = Sdt without any explicit stochastic term. Ito’s

lemma (Theorem 14.2.2) applied to V' says

LAV OV 1,0V OV LoV
dV‘(Sas+at+ “’asﬁsaA)d”"“’as

Consider the portfolio of short one derivative and long 9V/0S shares of stock. This portfolio
must earn riskless returns because of the lack of randomness. Hence, the partial differential
equation is very much like the Black-Scholes differential equation,

oV O 1 L&V OV
— =V
Syt Sttt o kS =V

15.4.5 Options on more than one asset

For a correlation option whose value depends on the prices of two other assets, both of

which follow lognormal diffusions, the partial differential equation is

aC aC aC 1 o2 *C |1 2 0*C *C
W—}—Tsla—sl—}—TSQa—SQ—}— Sl 352 528 2—|—p0’10’25152851852—7‘0.

(15.7)
15.4.6 Exchange options

An exchange option is a correlation option that gives the holder the right to exchange
one asset for another. The value of such an option at expiration is

max(S2(71") — 51(1),0), (15.8)

where S1(7") and S;(7") are the prices of the two assets at expiration. The above formula

implies two ways to look at the option: as a call on asset 2 with a strike price equal to the



15.4 Variations and Applications 241

future price of asset 1, or as a put on asset 1 with a strike price equal to the future value
of asset 2. This is an option which can be exercised only at T' when it will yield S5 — Sy
if exercised or nothing if not.

Assume that the two assets do not pay dividends and their prices follow two geometric

Brownian motion processes with correlation p:

as as
S—lzuldt+01dIV1 and bTQI,uzdt—FUQdVVQ
1 2

and p is the correlation between dW; and dW5;. The option then has value
V(S1,8,t) = ;N (2) = $iN (2 = ovT =) (15.9)

at time ¢ where

In(S2/51) + (02/2) (T —1)
oT —t

o? = ol —2poi0y+ 0} (15.10)

r =

This is called Margrabe’s formula [551].

Margrabe’s formula can be derived as follows. First, V(ASy, AS2,t) = AV(Sy, S2,1);
in other words, V(z,y,t) is homogeneous of degree one in z and y. It says that an
exchange option based on A times the prices of the two assets is equal in value to A original

exchange options. Intuitively, this is true because of
max(AS2(T) — AS1(T),0) = XA x max(S2(T") — 51(T'),0)

from (15.8) and the perfect market assumption [571, p. 264]. The price of asset 2 relative
to asset 1is S = S3/S5;. The option sells for V(S1,59,%)/51 = V(1,52/51,t) with asset 1
as the numeraire.! The interest rate on a riskless loan denominated in units of asset 1 is
zero in a perfect market because a lender of one unit of asset 1 demands one unit of asset
1 back as repayment of principal. Since the option to exchange asset 1 for asset 2 is a call
on asset 2 with a strike price equal to unity and the interest rate equal to zero, this is a
special case of the Black-Scholes option pricing model. Thus,

V (S, S2,1)

S =V(1,5t)=SN(z)—1x e (TN (;13—0\/T—t>,
1

where

In(S/1) + (O—I— 02/2) (T —1) B In(Sz/51) + (02/2) (T —1)
oI —t N oI —t

from Theorem 9.3.3, and the proof is complete.

x

The partial differential equation satisfied by the exchange option is easy to derive. Sup-
pose the option holder sells Vi = dV/05S; units of asset 1 short and buys —V, = —0V/0.5,

"Walras (1834-1910) introduced numeraire in his equilibrium analysis, recognizing that only relative prices
matter [25]. Walras was considered by Schumpeter as the greatest economist in his History of Fconomic
Analysis [685].
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units of asset 2. Since V() is homogeneous of degree one in S; and Sz, the hedger’s
investment will be

V-Vi5 —VaSe =0

by Euler’s theorem (see Exercise 15.4.7). Thus, the value of the position is zero. The return
on this investment over a short interval is also zero,

dV —VidS, — VpdS, = 0. (15.11)
From Ito’s lemma (Theorem 14.2.2), the return on the option is

V110252 + 2 Vi90109pS1 5o + VagalS
2

where V3 =9V/dt and V;; = 0?°V/dS;0S;. The above two equations imply

2
AV = V1 dS;y + Vo dSy + Vs dt + 2 dt,

V110757 + 2 Vigo102pS5152 + Vo203 55
5 —

Vs + 0. (15.12)

The initial and boundary conditions are

V(Sl,SQ,T) = maX(O, 52 — Sl)
0 S V(Sl7527t) S 52 if 51752 Z 0

It is easy to verify that (15.12) is satisfied by Margrabe’s formula.
Margrabe’s formula is not much more complicated if S; pays out a continuous dividend
yield of ¢; for i = 1,2. Here, one simply replaces each occurrence of S; with S;e~% (T—%)

to obtain

V(Sy, So,t) = Spe” 2 TN (z) — Sje~n (T-O N (m —oVT - t)
(15.13)

at time ¢t where

IH(SQ/Sl) + (Q1 — {2 —|—0'2/2) (T — t)
oVl —t

— 2 2
o° = o] —2poi03+ 03

x

See [669] for an alternative derivation based on the binomial model.

15.4.7 Options on foreign currency and assets

Foreign exchange options were introduced in §11.6. This subsection covers additional cor-
relation options involving foreign currency and assets. Analysis of such options can either
take place in the domestic market or the foreign market before being converted back into
the domestic currency [639].

In the following, S(t¢) denotes the spot exchange rate in terms of the domestic value of
one unit of foreign currency and follows the geometric Brownian motion process,

d
?S = (r—rg)dt+o,dW(t),
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in a risk-neutral economy. We knew from §11.6.1 that foreign currency is analogous to a
stock paying a continuous dividend yield equal to the foreign riskless interest rate ry in
foreign currency. The foreign asset will be assumed to pay a continuous dividend yield of

qs, and its price follows
dG'y
Gy

in foreign currency. The correlation between the rate of return of the exchange rate and

= (pf —qp)dt +opdWy(t)

that of the foreign asset price is denoted by p. More precisely, p is the correlation between
dW, and dWy.
Foreign equity options

By (9.28), European options on the foreign asset Gy with the terminal payoffs S(7") x
max(G¢(T) — X¢,0) and S(7') x max(X; — Gf(T),0) are worth

Cy = Gpe Y N(z)— Xge N (z — 04/7)
P = Xpe /"N (—z +op/T) — Gre Y N(—2)

in foreign currency, where

In(Gy/Xp)+ (ry —ap +02/2) 7
oT

and X is the strike price in foreign currency. Hence, they will fetch SCy and SP,

x

respectively, in domestic currency. These options are called foreign equity options struck

in foreign currency.

Foreign domestic options

Foreign equity options concern themselves with values in foreign currency. A foreign equity
call, for instance, may allow the holder to participate in a foreign market rally, but the profits
might be wiped out if the foreign currency depreciates against the domestic currency. Let
the desired payoff be max(S (1) G4(T) — X,0), which is a call in domestic currency. Such
an option is called a foreign domestic option or foreign equity option struck in domestic
currency. Observe that SG is the value of the foreign asset in domestic currency.

To foreign investors, this call is an option to exchange X units of domestic currency
(foreign currency to them) for one share of foreign asset (domestic asset to them)—an

exchange option, in short. By (15.13), its price equals

Gee " N(z) — %e_”N (Jc — U\/F)

in foreign currency, where
In(GfS/X)+ (r—qs+02/2) T
o\T

g° = Uf + 2posof + UJ%




244 Continuous-Time Derivative Pricing

2

(The sign in front of 2posof in o is a plus rather than a minus because the correlation

between Gy and 1/S is —p.) Its price in domestic currency is then
C'=5SGe Y N(z)— Xe "N (z — /7).
Similarly, a put has a price of

P=Xe "N (-2 +01) - SGre Y N(—z).

Cross-currency options

A cross-currency option, we recall, is an option in which the currency of the strike price
is different from the currency in which the underlying asset is priced [674]. An option to
buy 100 yen at a strike price of 1.18 Canadian dollars provides one example. It would be
a conventional foreign exchange option if the price of yen were in Canadian dollars. More
complicated examples are clearly possible. Usually, a third currency, usually the U.S. dollar,
is involved in pricing because of the lack of relevant exchange-traded options for the two
currencies in question (yen and Canadian dollars in the above example) in order to calculate
the needed volatility. For this reason, the notation below will be slightly different.

Let S4 denote the price of the foreign asset and S¢ the price of currency C' that the
strike price X is based on. Both S4 and S¢ are in, say, U.S. dollars. If S is the price of
the foreign asset as measured in currency C, then

S
Sc

(15.14)

to avoid arbitrage. Assume S4 and S¢ follow the geometric Brownian motion processes
dS4/Ss=padt+o4dW, and dSc/Sec = po dt + o dWe, respectively. Parameters o4,
oc, and p can be inferred from exchange-traded options. By Exercise 14.3.9,

dS
< = (pa — poc — poaoc)dt + o4 dWy — o dWe,
where p is the correlation between dW, and dW. Hence, (UZ1 — 2posoc + U%)UQ is the
volatility of dS/S.

Quanto options

Consider a call with a terminal payoff S x max(Gf(T)—Xy,0) in domestic currency, where
S is a constant. In other words, the exchange rate is guaranteed to be S independent of
the market. For instance, a call on the Nikkei 225 futures, if it existed, could easily fit into
this framework with S =5 and G'¢ denoting the futures price (see Comment 12.3.7). The
process U = §Gf in a risk-neutral economy can be shown to follow

dU

7= (ry—qp —posog)dt+opdW
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in domestic currency [421]. Hence, it can be treated as a stock paying a continuous dividend
yield of ¢ =r —rf+ qf + posos. Apply (9.28) to obtain

c =5 (Gre " N(z) — Xpe "N (z — 04/7))
P = §(Xfe_”N (-2 +04/7) — Ge " N(-2))
where
In(G¢/Xy) + (7‘ — q—l—a?/Q) T
o '

This kind of guaranteed exchange rate option is called a quanto option or simply a quanto.

x

In general, a quanto derivative has nominal payments in the foreign currency, but
these payments are converted into the domestic currency at a fized exchange rate. A cross-
rate swap, for example, is like a currency swap except that the foreign currency payments
are converted into the domestic currency at a fixed exchange rate. Quanto derivatives form

a rapidly growing segment of international financial markets [11].

15.4.8 Convertible bonds with call provisions

The holder of this kind of security has the right, if the bond is called, either to convert the
bond or to redeem it at the call price. Bonds can be called instantaneously. Assume the
firm and the investor pursue an optimal strategy whereby (a) the investor maximizes the
value of the convertible bond at each instant in time through conversion and (b) the firm
minimizes the value of the convertible bond at each instant in time through call.

Let the market value of the firm’s securities, V (¢), be determined exogenously and
independent of the call and conversion strategies, as justified by the Modigliani-Miller ir-
relevance theorem. The implication is that minimizing the value of the convertible bonds
also maximizes the stockholder value. We shall assume the market value follows

dVv
‘—/:,ud.t—l—ad.W.

The stock may pay dividends, and the bond may pay coupon interests. Assume the firm in
question has only two classes of obligations: n shares of common stock and m convertible
bonds. Suppose the conversion ratio is k. The conversion value per bond is then
Vit)k
C(V,t) = —— =2V (t). 15.15
i) = 22 = v (15.15)
Finally, T" stands for the maturity date.
Let W(V,t) denote the market value at time ¢ of one convertible bond with a par value
of $1,000. From assumption (a), the bond never sells below the conversion value because

W(V,t) > C(V,1). (15.16)

In fact, the uncalled bond can never sell at the conversion value except immediately prior to
a dividend date. This is because, otherwise, its rate of return up to the next dividend will
not fall below the stock’s by (15.15) and (15.16); actually, it will be higher because of the
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higher priority of bondholders if the stock price declines sharply. Therefore, the bond will
sell above the conversion value and the investor will not convert it. As a result, (15.16) holds
with strict inequality between dividend dates, and conversion only needs to be considered
at dividend or call dates.

We proceed to consider the implications of the call strategy. When a bond is called, the
investor has the option either to redeem at the call price P(t) or convert it for C'(V,t),
called forced conversion. The value of the bond if called is hence given by

V.(V,t) = max(P(t),C(V,t)).
There are two cases to consider.

1. C(V,t) > P(t) when the bond is callable: The bond will be called immediately be-
cause, by an earlier argument, an uncalled bond would sell for at least the conversion
value C'(V,t) which is the value if called. Hence,

W(V,t) = C(V,1). (15.17)

2. C(V,t) < P(t) when the bond is callable: Note that the call price equals the value
if called, V.. The bond should be called when its value if not called equals its value if
called. This holds because, in accordance with assumption (b), the firm will call the
bond when the value if not called exceeds V.(V,t) and will not call the bond when
the value if not called is exceeded by V.(V,t). Hence,

W(V,t) < V.(V,t) = P(t), (15.18)
and the bond will be called when its value if not called equals the call price.

Finally, the Black-Scholes differential equation implies

ow ow 1 O*wW
Al S 4 —gly? =
5 + rl TG + 2 o“l 912 rWw.

We summarize the boundary conditions for the above differential equation below.

e They include (15.16), (15.17), (15.18) (the latter two when the bond is callable and
under their respective conditions), and the maturity value condition

2V(T) if 2V(T) > 1000
W(V,T)=1{ 1000 1000 x m < V(T) < 1000/2
V(T)/m V(T) < 1000 X m

These three conditions above correspond to the cases when the firm’s total value (1)
is greater than the total conversion value and the bonds are converted, (2) is greater
than the par value but less than the total conversion value and the bonds are redeemed
at par, and (3) is less than the par value and the bondholders take control of the firm.
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e [t must hold that
0<mW(V,t)< V()

since the total value of the bonds cannot exceed that of the firm; in particular,

W(0,1) = 0

e Since a convertible bond is dominated by a portfolio of an otherwise identical straight
bond with value B(V,t) and shares with total value equal to the conversion value,

we have

W(V,t) < B(V,t)+ 2V (t).
Note that B(V,t) is easy to calculate under constant interest rates.

e When the bond is not callable and V'(¢) is high enough to make negligible the possi-
bility of default, it behaves like an option to buy a fraction z of the firm. Hence,

oW
Voo 171% -

e On a dividend date,
W(V,t7) = max(W(V — D, tT), 2V (1)),

where ¢~ denotes the instant before the event and ¢+ the following instant. This

condition takes into account conversion just before the dividend date.

e On a coupon date and when the bond is not callable,
WV, t7) =WV —me,tt) + ¢,
where c¢ is the amount of the coupon.
e On a coupon date and when the bond is callable,

W(V,t7) = min(W(V — me,tt) + ¢, V.(V,1)).

The resulting partial differential equation has to be solved numerically. Section 18.1 will
discuss such numerical methods. We have followed [106].

15.5 A General Approach to Derivative Pricing

This section generalizes the continuous-time approach to derivative pricing. It no longer
require that securities be traded.



248 Continuous-Time Derivative Pricing

15.5.1 The simple case: single source of randomness

We begin with the case of a single source of randomness. Let S follow the Ito process,

g:udt—}—adw,

where p and o may depend only on S and t. Let fi(S,t) and f2(S,t) be the prices of

two derivative securities with the dynamics,

df; .
i:,uid.t—l—aidﬂ/, 1=1,2.

3
Note that they share the same Wiener process as S.

A portfolio consisting of o3 f; units of the first derivative and —oy f; units of the second
derivative is instantaneously riskless. This is because

oy fodfi —o1fidfs = oafafi (i dt+ oy dW) — oy fi fo (po dt + o3 dW)
= (oofofipr — o1 fifopa) dt,

which is devoid of volatilities. It must therefore hold that

(o2fofimn — o1 fifapz) dt = v (02f2f1 — o1 f1f2) dt,

i.e., o2pi1 — o1y = r (02 — 01). After rearranging the terms, we conclude

MI_T:MQ_TE)\ for smoe .
g1 g9

It follows that any derivative whose value depends only on S and ¢ and which follows the
Ito process df/f = pdt + o dW must satisfy

p—=r
o

=Xor pg—r=acgl (15.19)

We call A the market price of risk, which is independent of the specifics of the derivative.
Ito’s lemma can be used to derive the formulae for g and o as
af of 1 0’ f af

_ 9] o5 L 20207 _ 95
,uf—at—}—ubas—l—QoS 592 and of o-SaS.

Substitute the above into (15.19) and get

of 0f 1 5300f _

Note how similar the above equation is to the Black-Scholes differential equation; in fact, it
reduces to the latter when p — Ao = r. This suggests the following risk-neutral valuation
scheme: Discount the expected payoff of f at the riskless interest rate with the revised

process,

g: (p— Ao)dt+ o dV.

If S is a non-dividend-paying stock, then the above process becomes dS/S = rdt 4+ o dW
by (15.19).
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15.5.2 The general case: multiple sources of randomness

We generalize the above method to the case where there is more than one state variable.

Suppose Si,...,S, pay no dividends and follow the processes
ds;
S’Z = p,dt + o; dW;.
k3
Let pj; be the correlation between dW; and dWj, r the instantaneous riskless interest rate
(short rate), and fi,..., fo41 the prices of securities whose values depend on Sy,...,S,
and t.

By Ito’s lemma (Theorem 14.2.2),

d 0 0% f; 0
i = ff+z .S, ff+Z 5 P01k G 4t eisig o aw;

= ,ujfj dt + Z Uijfj dW; (15.20)
Now, maintain a portfolio of k; units of f; such that

> kjoif; =0 for i=1,...,n. (15.21)
j

Since

Yokidfi = | D kiwifi | At kY o fidWi
i i

ij,ujf]‘ dt—i—z ijaijf]‘ dW; = ijﬂjfj dt
J 4 J J

without any randomness, the portfolio is instantaneously riskless. Hence, it must hold that
its return equals the short rate, E ki f; = frz k; f;; in other words,

S kyfy (g — 1) = 0. (15.22
J
Equations (15.21) and (15.22) coupled with the insistence that not all k; be zero imply
fi (,u]- —7“) :Zx\iaijfj for j=1,...,n+1 (15.23)
for some Ay,..., A, which depend only on Si,...,S, and t (see Exercise 15.5.1). Simplify
it to
p; —r = Z’\iaij'
It follows that any derivative whose value depends only on Sy,...,5, and ¢ with the Ito
process
daf

7= pdt+Y " op dWi (15.24)
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must have
p—r=>y X\oi (15.25)

where A; is the market price of risk for 5;.

The term A;o; measures the extent to which the required return on a security is affected
by its dependence on S5;. The above equation links the excess expected return and risk,
a topic to be returned to when we discuss the Capital Asset Pricing Model. Furthermore,
A;0; < 0 would mean the addition of S; has the effect of reducing the risk in the portfolio,
causing the investor to require a lower return than would otherwise be.

Risk-neutral valuation

The p and o;’s in (15.24) equal
*f
‘|‘Z ;S ‘|‘ szka orSiSk 3o Aa 0S:05},

andEaSZaS,

ranging the terms, we obtain

respectively, by virtue of (15.20). Plugging them into (15.25) and rear-

—}—Z - Aio;) 8f—}— ZpkaakSSk 0°f =rf
(?S 05,05 (15.26)

The following risk-neutral valuation scheme is hence applicable: Discount the expected
payoff of f at the riskless interest rate assuming that the S;’s follow

dS;
Si

= (,u,i — /\io'i) dt + o; dW;.

The above equations define the risk-neutral economy with the correlation between the dW;’s
unchanged.

For instance, a derivative security with a payoff fr at time T and nothing before T has
value e_T(T_t)Ef[fT], where F[, we recall, is the expected value taken in a risk-neutral
economy given the information at time ¢. As an application, consider futures price I’ under
constant interest rate r. Note that forward price equals futures price when interest rates are
constant. With a delivery price of X, a futures contract has value f =¢e™" (T_t)Ef[ St—X].
Since F' is the X that makes f zero, we have

0=FEf[St—F]=E[[Sr]-

In other words, F' = EJ[St]. Therefore, as in the binomial model (see Exercise 13.2.10), the
futures price is an unbiased estimator of the expected spot price in a risk-neutral economy.
When the interest rate is one of the stochastic state variables, a derivative security with
a payoff of fr at time T and nothing before has value ET [e‘F(T_t)fT], where 7 is the
average rate over the time interval [¢,7].
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Comment 15.5.1 The presence of p; in (15.26) shows that the investor’s risk preference
is not irrelevant, and we can no longer assume that the derivative security is independent
of the underlying assets’ growth rates and their market prices of risk. Only when the
underlying variables are the prices of a traded security can we assume p; = r in pricing
derivative securities [421]. Interest rate, for instance, is not a traded security, while stocks
and bonds are. |

15.6 Stochastic Volatility

The Black-Scholes model assumes that the volatility is constant. The resulting Black-
Scholes formula is known to display some bias in practice. Besides the “smile” implied
volatility curve mentioned earlier, volatility seems to change greatly from month to month.
Volatility also tends to be mean-reverting in that extreme volatilities tend to return to
average values over time. Volatility furthermore seems to fall as the price of the underlying
asset rises [302, 726]. Finally, out-of-the-money options and options on low-volatility assets
are underpriced.

These facts led people to consider stochastic volatility. That this achieves the first-
order pricing improvement has been empirically documented [37]. It must be emphasized,
however, that the Black-Scholes model has been reasonably supported by empirical research,
and gains from complicated models may be rather limited [462].

Stochastic volatility injects an extra source of randomness if this uncertainty is not
perfectly correlated with the one driving the stock price process. In this case, another
traded security besides stocks and bonds is needed in the replicating portfolio. In fact, if
volatility were the price of a traded security, then there would exist a dynamic self-financing
portfolio strategy consisting of stocks, bonds, and the volatility security that replicates the
option. (See the argument on Page 244 under Number of random sources.) Without

this additional security, pricing would have to resort to a dynamic equilibrium model [129].

15.6.1 Uncorrelated volatility

Hull and White considered the following model,

as
dv
‘—/ Moy dt + Ty dVVQ

where the instantaneous variance is V = o? [422]. Assume that u depends on S, o, and
t, while p, depends on ¢ and ¢ (but not S). The Wiener processes dW; and dW; have

correlation p. The riskless rate r is constant or at least deterministic.
From (15.26), we have

of
85

of
at

2 2 2
+ (o —)\UUU)Va—f—}-% (0252ﬂ+2p0%5‘/ of —+—05V2 ﬂ) =rf.

t=Ao)S av 85?2 550V av?

Since the stock is a traded security (but volatility is not), Comment 15.5.1 says the above
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equation becomes

of of
E‘Frsﬁ‘i‘(ﬂv_)\vav)v

af 1 2& . f a0 OOFY
av 2 (" 5 a5z TSV Gsay TV gy ) =7

After two more assumptions: p = 0 (volatility is uncorrelated with the stock price) and
Ao, = 0 (volatility has zero systematic risk), the equation now boils down to
0 J d 1 0? 0?
/ / —f—|——(0252 f—}—anz f):rf.

— —_— /
o Trogg tmV gy 3

05?

ov?

See [422] for a series solution.

The above assumes that the volatility risk is not priced [506]. To assume otherwise, one
needs to model risk premium on the variance process as in [394]. If the volatility follows
the Ornstein-Uhlenbeck process with an uncorrelated Wiener process, then closed-form
solutions exist [726].

Johnson and Shanno [459] assumed there exists a traded security with a price instan-
taneously perfectly correlated with the stochastic variance. Suppose the stock price and

volatility obey the following stochastic processes,

~

d d
?b:,udt—l—ad.W and —U:uvdt—l—avdﬂ/v,
o

where dW and dW, have correlation p. Suppose further that there is a third security with
price P that follows the stochastic process,

dP
- = pip dt + o, dW,,.

Note that it has the same random term as the volatility of the stock. Then a second-order
partial differential equation can be derived.

Additional Reading

See [181, 362, 398, 763, 784] for more information on partial differential equations, [647,
649, 793] for more information on currency-related options, and [108, 445, 601] for more
information on pricing convertible bonds. Consult [375, 421, 529] for discussions on the
bias of the Black-Scholes option pricing model. Many papers pursue the idea of stochastic
volatility [40, 394, 396, 401, 422, 459, 506, 691, 726]. See [743] for a review of the literature
and [79] for an early empirical work by Black and Scholes. The volatility process does
not need to follow an Ito process; jump processes, for instance, have been proposed
[152]. See [247] for models based on the GARCH (generalized autoregressive conditional
heteroskedastic) process (see §20.2.4).



