
Chapter 9
Virtual-Memory Management

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Memory

Virtual Memory
A technique that allows the execution
of a process that may not be
completely in memory.

Motivation:
An entire program in execution may
not all be needed at the same time!

e.g. error handling routines, a large
array, certain program features, etc

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Memory

Potential Benefits
Programs can be much larger than the
amount of physical memory. Users can
concentrate on their problem programming.
The level of multiprogramming increases
because processes occupy less physical
memory.
Each user program may run faster because
less I/O is needed for loading or swapping
user programs.

Implementation: demand paging,
demand segmentation (more difficult),etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Demand Paging – Lazy
Swapping

Process image may reside on the backing
store. Rather than swap in the entire
process image into memory, Lazy
Swapper only swap in a page when it is
needed!

Pure Demand Paging – Pager vs Swapper
A Mechanism required to recover from the
missing of non-resident referenced pages.

A page fault occurs when a process
references a non-memory-resident
page.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Demand Paging – Lazy
Swapping

CPU p d f d

4 v
i

6 v
i
i

9 v
i
i

Page Table
.

.

.

9 -F

8

7

6 - C

5

4 - A

3

2

1

0

valid-invalid bit

invalid page?
non-memory-
resident page?

A
B
C
D
E
F

Logical Memory

Physical Memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

A Procedure to Handle a Page
Fault

OS

iCPU
Free

Frame

1. Reference

6. Return to
execute the
instruction

5. Reset
the Page
Table

2. Trap
(valid disk-resident page)

3. Issue a ‘read”
instruction & find a
free frame

4. Bring in
the missing
page

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

A Procedure to Handle A
Page Fault

Pure Demand Paging:
Never bring in a page into the
memory until it is required!

Pre-Paging
Bring into the memory all of the
pages that “will” be needed at one
time!
Locality of reference

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Hardware Support for Demand
Paging

New Bits in the Page Table
To indicate that a page is now in
memory or not.

Secondary Storage
Swap space in the backing store

A continuous section of space in the
secondary storage for better
performance.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Crucial issues

Example 1 – Cost in restarting an
instruction

Assembly Instruction: Add a, b, c
Only a short job!

Re-fetch the instruction, decode,
fetch operands, execute, save, etc

Strategy:
Get all pages and restart the
instruction from the beginning!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Crucial Issues

Example 2 – Block-Moving
Assembly Instruction

MVC x, y, 256

IBM System 360/ 370

Characteristics

More expensive

“self-modifying” “operands”

Solutions:

Pre-load pages

Pre-save & recover before
page-fault services

x:

y:
A
B
C
D

A
B
C
D

Page fault!
Return??
X is
destroyed

MVC x, y, 4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Crucial Issues

(R2) +

- (R3)

Page Fault

When the page fault is serviced,
R2, R3 are modified!

- Undo Effects!

Example 3 – Addressing Mode

MOV (R2)+, -(R3)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Performance of Demand Paging

Effective Access Time:
ma: memory access time for paging

p: probability of a page fault

pft: page fault time

(1 - p) * ma + p * pft

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Performance of Demand Paging

Page fault time - major components
Components 1&3 (about 103 ns ~ 105 ns)

Service the page-fault interrupt
Restart the process

Component 2 (about 25ms)
Read in the page (multiprogramming!
However, let’s get the taste!)
pft ≈ 25ms = 25,000,000 ns

Effect Access Time (when ma = 100ns)
(1-p) * 100ns + p * 25,000,000 ns
100ns + 24,999,900ns * p

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Performance of Demand Paging

Example (when ma = 100ns)
p = 1/1000

Effect Access Time ≈ 25,000 ns

→ Slowed down by 250 times

How to only 10% slow-down?
110 > 100 * (1-p) + 25,000,000 * p

p < 0.0000004

p < 1 / 2,500,000

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Performance of Demand Paging

How to keep the page fault rate low?
Effective Access Time ≈ 100ns +
24,999,900ns * p

Handling of Swap Space – A Way to
Reduce Page Fault Time (pft)

Disk I/O to swap space is generally faster
than that to the file system.

Preload processes into the swap space
before they start up.

Demand paging from file system but do page
replacement to the swap space. (BSD UNIX)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Copy-on-Write

Rapid Process Creation and Reducing
of New Pages for the New Process

fork(); execve()
Shared pages copy-on-write pages

Only the pages that are modified
are copied!

3

4

6

1

3

4

6

1

*
data1

*
*

ed1

*
*

ed2

*
*

ed3
?? ::

Page
Table 1

Page
Table 2

P1

P2

page 0 1 2 3 4 5 6 7 n

* Windows 2000, Linux, Solaris 2 support this feature!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Copy-on-Write

zero-fill-on-demand
Zero-filled pages, e.g., those for the
stack or bss.

vfork() vs fork() with copy-on-write
vfork() lets the sharing of the page
table and pages between the parent
and child processes.

Where to keep the needs of copy-on-
write information for pages?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement

Demand paging increases the
multiprogramming level of a system by
“potentially” over-allocating memory.

Total physical memory = 40 frames
Run six processes of size equal to 10
frames but with only five frames. => 10
spare frames

Most of the time, the average memory
usage is close to the physical memory
size if we increase a system’s
multiprogramming level!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement

Q: Should we run the 7th processes?
How if the six processes start to ask
their shares?

What to do if all memory is in use, and
more memory is needed?
Answers

Kill a user process!
But, paging should be transparent to
users?

Swap out a process!
Do page replacement!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement

A Page-Fault Service
Find the desired page on the disk!
Find a free frame

Select a victim and write the victim
page out when there is no free
frame!

Read the desired page into the
selected frame.
Update the page and frame tables, and
restart the user process.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

B

M

0

E7

A6

J5

M/B4

H3

D2

1

OS

v5

i

v4

v3

v2

v7

i

v6

3

2

1

0

J

Load
M

H

3

2

1

0

E

D

B

A

P1

P2

PC

Page Replacement
Page TableLogical Memory

OS

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Two page transfers per page fault if
no frame is available!

YV7

YV3

NV4

NV6

Modify (/Dirty) Bit! To
“eliminate” ‘swap out” =>
Reduce I/O time by one-half

Page Replacement

Page Table

Valid-Invalid Bit

Modify Bit is set by the
hardware automatically!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement

Two Major Pieces for Demand Paging
Frame Allocation Algorithms

How many frames are allocated to a
process?

Page Replacement Algorithms
When page replacement is required,
select the frame that is to be
replaced!

Goal: A low page fault rate!

Note that a bad replacement choice
does not cause any incorrect execution!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement Algorithms

Evaluation of Algorithms
Calculate the number of page faults on
strings of memory references, called
reference strings, for a set of algorithms

Sources of Reference Strings
Reference strings are generated artificially.

Reference strings are recorded as system
traces:

How to reduce the number of data?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement Algorithms

Two Observations to Reduce the Number
of Data:

Consider only the page numbers if the
page size is fixed.

Reduce memory references into page
references

If a page p is referenced, any immediately
following references to page p will never
cause a page fault.

Reduce consecutive page references of
page p into one page reference.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Replacement Algorithms

Does the number of page faults decrease when the
number of page frames available increases?

XX XX

page# offset

0100, 0432, 0101, 0612, 0103, 0104, 0101, 0611

01, 04, 01, 06, 01, 01, 01, 06

01, 04, 01, 06, 01, 06

Example

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

FIFO Algorithm

A FIFO Implementation
1. Each page is given a time stamp when it

is brought into memory.

2. Select the oldest page for replacement!

reference
string

page
frames

FIFO
queue

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

3

1

4

3

0

2

3

0

4

2

0

4

2

3

0

2

3

7 7
0

7
0
1

0
1
2

1
2
3

2
3
0

3
0
4

0
4
2

4
2
3

2
3
0

0

1

3

0

1

2

7

1

2

7

0

2

7

0

1

3
0
1

0
1
2

1
2
7

2
7
0

7
0
1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

FIFO Algorithm

The Idea behind FIFO
The oldest page is unlikely to be used
again.

??Should we save the page which will be
used in the near future??

Belady’s anomaly
For some page-replacement algorithms,
the page fault rate may increase as the
number of allocated frames increases.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

FIFO Algorithm

Run the FIFO algorithm on the following reference:

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 2 3 4 1 1 1 2 5 5
2 2 3 4 1 2 2 2 5 3 3

3 4 1 2 5 5 5 3 4 4

1 1 1 1 1 1 2 3 4 5 1 2
2 2 2 2 2 3 4 5 1 2 3

3 3 3 3 4 5 1 2 3 4
4 4 4 5 1 2 3 4 5

Push out pages
that will be used later!

string:

3 frames

4 frames

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Optimal Algorithm (OPT)

Optimality
One with the lowest page fault rate.

Replace the page that will not be used for the
longest period of time. Future Prediction

reference
string

page
frames

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

2

4

3

2

0

3

2

0

1

7

0

1

next 7
next 0

next 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Least-Recently-Used Algorithm
(LRU)

The Idea:
OPT concerns when a page is to be used!
“Don’t have knowledge about the future”?!

Use the history of page referencing in the
past to predict the future!

S ? SR (SR is the reverse of S !)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

LRU Algorithm

reference
string

page
frames

LRU
queue

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7

0

7

0

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

0 0
7

1
0
7

2
1
0

3
0
2

0
3
2

4
0
3

2
4
0

3
2
4

0
3
2

1

3

2

1

0

2

7

0

7

1
2
3

2
1
3

1
0
2

7
1
0

0
7
1

0
2
1

3
0
2

2
3
0

0
2
1

1
0
7

a wrong prediction!

Remark: LRU is like OPT which “looks backward” in time.

Example

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

LRU Implementation – Counters

CPU p d f d

frame # v/i
time
tag

p

f

cnt++

Time of Last
Use!

…
…

…

Page
Table
for Pi

Logical
Address

Physical
Memory

Disk

Update the
“time-of-use”
field

A Logical Clock

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

LRU Implementation – Counters

Overheads
The logical clock is incremented for
every memory reference.

Update the “time-of-use” field for each
page reference.

Search the LRU page for replacement.

Overflow prevention of the clock & the
maintenance of the “time-of-use” field
of each page table.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

LRU Implementation – Stack

CPU p d f d

frame # v/i

p

f

…
…

…
Page Table

Logical
Address

Physical
Memory

Disk

…

Head

Tail
(The LRU page!)

A LRU
Stack

move

Overheads: Stack maintenance per memory
reference ~ no search for page replacement!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

A Stack Algorithm

Need hardware support for efficient
implementations.

Note that LRU maintenance needs to
be done for every memory reference.

memory-
resident
pages

memory-
resident
pages

⊆
n frames
available

(n +1) frames
available

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

LRU Approximation Algorithms

Motivation
No sufficient hardware support

Most systems provide only “reference bit”
which only indicates whether a page is
used or not, instead of their order.

Additional-Reference-Bit Algorithm

Second-Chance Algorithm

Enhanced Second Chance Algorithm

Counting-Based Page Replacement

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Additional-Reference-Bits Algorithm

Motivation

Keep a history of reference bits

1 01101101
0 10100011

0 11101010
1 00000001

… …

OS shifts all
history registers right
by one bit at each
regular interval!!

reference
bit

one byte per page in memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

History Registers

But, how many bits per history register
should be used?

Fast and cost-effective!

The more bits, the better the approximation is.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1

LRU
(smaller value!)

MRU

Not used for 8 times

Used at least once
every time

Additional-Reference-Bits Algorithm

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Second-Chance (Clock) Algorithm

Motivation
Use the reference bit
only

Basic Data Structure:
Circular FIFO Queue

Basic Mechanism
When a page is selected

Take it as a victim if its
reference bit = 0
Otherwise, clear the bit
and advance to the
next page

0

0

1

1

1

1

0

…

Reference
Bit

Page

…

0

0

0

0

1

1

0

…

Reference
Bit

Page

…

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Enhanced Second-Chance
Algorithm

Motivation:
Consider the cost in swapping out pages.

4 Classes (reference bit, modify bit)
(0,0) – not recently used and not “dirty”
(0,1) – not recently used but “dirty”
(1,0) – recently used but not “dirty”
(1,1) – recently used and “dirty”

low priority

high priority

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Enhanced Second-Chance
Algorithm

Use the second-chance algorithm to
replace the first page encountered in
the lowest nonempty class.

=> May have to scan the circular queue
several times before find the right page.

Macintosh Virtual Memory
Management

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Counting-Based Algorithms

Motivation:

Count the # of references made to each
page, instead of their referencing times.

Least Frequently Used Algorithm (LFU)
LFU pages are less actively used pages!

Potential Hazard: Some heavily used
pages may no longer be used !

A Solution – Aging

Shift counters right by one bit at each
regular interval.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Counting-Based Algorithms

Most Frequently Used Algorithm (MFU)
Pages with the smallest number of
references are probably just brought in
and has yet to be used!

LFU & MFU replacement schemes can
be fairly expensive!

They do not approximate OPT very well!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Buffering

Basic Idea
a. Systems keep a pool of free frames

b. Desired pages are first “swapped in” some
frames in the pool.

c. When the selected page (victim) is later
written out, its frame is returned to the pool.

Variation 1
a. Maintain a list of modified pages.

b. Whenever the paging device is idle, a
modified page is written out and reset its
“modify bit”.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Buffering

Variation 2
a. Remember which page was in each frame of

the pool.
b. When a page fault occurs, first check

whether the desired page is there already.
Pages which were in frames of the pool must
be “clean”.
“Swapping-in” time is saved!

VAX/VMS with the FIFO replacement
algorithm adopt it to improve the
performance of the FIFO algorithm.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Frame Allocation – Single User
Basic Strategy:

User process is allocated any free frame.
User process requests free frames from the
free-frame list.
When the free-frame list is exhausted, page
replacement takes place.
All allocated frames are released by the
ending process.

Variations
O.S. can share with users some free frames
for special purposes.
Page Buffering - Frames to save “swapping”
time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Frame Allocation – Multiple
Users

Fixed Allocation
a. Equal Allocation

m frames, n processes m/n frames per
process

b. Proportional Allocation
1. Ratios of Frames ∝ Size

S = Σ Si, Ai ∝ (Si / S) x m, where (sum <= m) &
(Ai >= minimum # of frames required)

2. Ratios of Frames ∝ Priority
Si : relative importance

3. Combinations, or others.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Frame Allocation – Multiple
Users

Dynamic Allocation
a. Allocated frames ∝ the

multiprogramming level
b. Allocated frames ∝ Others

The minimum number of frames
required for a process is determined
by the instruction-set architecture.

ADD A,B,C 4 frames needed
ADD (A), (B), (C) 1+2+2+2 = 7
frames, where (A) is an indirect
addressing.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Frame Allocation – Multiple
Users

Minimum Number of Frames
(Continued)

How many levels of indirect
addressing should be supported?

It may touch every page in the logical
address space of a process

=> Virtual memory is collapsing!

A long instruction may cross a page
boundary.
MVC X, Y, 256 2 + 2 + 2 = 6 frames

The spanning of the instruction and
the operands.

address

16 bits

1 indirect
0 direct

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Frame Allocation – Multiple
Users

Global Allocation
Processes can take frames from others. For
example, high-priority processes can
increase its frame allocation at the expense
of the low-priority processes!

Local Allocation
Processes can only select frames from their
own allocated frames Fixed Allocation
The set of pages in memory for a process is
affected by the paging behavior of only that
process.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Frame Allocation – Multiple
Users

Remarks
a.Global replacement generally results

in a better system throughput

b.Processes can not control their own
page fault rates such that a process
can affect each another easily.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Thrashing

Thrashing – A High Paging Activity:
A process is thrashing if it is spending
more time paging than executing.

Why thrashing?
Too few frames allocated to a process!

Thrashing

low CPU utilizationDispatch a new process

under a global page-
replacement algorithm

degree of multiprogramming

C
P

U
 utilization

thrashing

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Thrashing

Solutions:
Decrease the multiprogramming level

Swap out processes!
Use local page-replacement algorithms

Only limit thrashing effects “locally”
Page faults of other processes also
slow down.

Give processes as many frames as
they need!

But, how do you know the right number
of frames for a process?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Locality Model

A program is composed of several different
(overlapped) localities.

Localities are defined by the program
structures and data structures (e.g., an array,
hash tables)

How do we know that we allocate enough
frames to a process to accommodate its
current locality?

localityi =
{Pi,1,Pi,2,…,Pi,ni}

control flow

localityj =
{Pj,1,Pj,2,…,Pj,nj}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Working-Set Model

The working set is an approximation
of a program’s locality.

Page references

…2 6 1 5 7 7 7 7 5 1 6 2 3 4 1 2 3 4 4 4 3 4 3 4 4 4
Δ

working-set window
t1

working-set(t1) = {1,2,5,6,7}

Δ
working-set window

t2
working-set(t2) = {3,4}

The minimum
allocation

Δ ∞
All touched pages
may cover several
localities.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Working-Set Model

where M is the total number of
available frames.

∑ ≤−−= MsizesetworkingD i

Suspend some
processes and

swap out
their pages.

“Safe”

D>M

Extra frames
are available,
and initiate
new processes.

D>M

D≦M

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Working-Set Model

The maintenance of working sets is expensive!
Approximation by a timer and the reference bit

Accuracy v.s. Timeout Interval!

0
1

1
0

…
…

…
…

…
…

…
…shift or

copy

timer!

reference bit in-memory history

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page-Fault Frequency

Motivation

Control thrashing directly through the
observation on the page-fault rate!

increase # of frames!

decrease # of frames!

upper bound

lower bound

number of frames
*Processes are suspended and swapped out if the number of
available frames is reduced to that under the minimum needs.

page-fault rate

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Memory-Mapped Files

File writes might not cause any disk write!

Solaris 2 uses memory-mapped files for
open(), read(), write(), etc.

1 2 3 4 5 6

2
4

5
1
6
3

2

4
5

1

6

3

2

4
5

1

6

3

Disk File

P1 VM P2 VM

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shared Memory – Win32 API

Producer
1. hfile=CreateFile(“temp,txt”, …);

2. hmapfile=CreateFileMapping(hfi
le, …, TEXT(“Shared Object”));

3. lpmapaddr=MapViewOfFile(hm
apfile, …);

4. sprintf(lpmapaddr,”for
consumer”);

5. UnmapViewOfFile(lpmapaddr);

6. CloseHandle(hfile);

7. CloseHandle(hmapfile);

Consumer

1. hmapfile=OpenFileMapping(
hfile, …, TEXT(“Shared
Object”));

2. lpmapaddr=MapViewOfFile(
hmapfile, …);

3. printf(lpmapaddr,”for
consumer”);

4. UnmapViewOfFile(“Get
%s\n”, lpmapaddr);

5. CloseHandle(hfile);

6. CloseHandle(hmapfile);

* Named shared-memory objects

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Memory-Mapped I/O
Processor can have direct access!
Intermediate storage for data in the
registers of device controllers
Memory-Mapped I/O (PC & Mac)
(1) Frequently used devices
(2) Devices must be fast, such as video

controller, or special I/O instructions
is used to move data between
memory & device controller
registers

Programmed I/O – polling
or interrupt-driven handling

R1

R2

R3

.

.

.

Memory

Device
Controller

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Kernel Memory Allocation

Separation from user-mode memory
allocation

The kernel might request memory of
various sizes, that are often less than
a page in size.

Certain hardware devices interact
directly with physical memory, and
the accesses memory must be in
physically contiguous pages!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Kernel Memory Allocation

The Buddy System
A fixed-size segment of
physically contiguous
pages

A power-of-2 allocator

Advantage: quick
coalescing algorithms

Disadvantage: internal
fragmentation

256KB

128KB 128KB

64KB 64KB

32KB 32KB

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Kernel Memory Allocation
Slab Allocation

Slab: one or more physically
contiguous pages

Cache: one or more slabs

Kernel Objects Caches Slabs

• Slab States
• Full
• Empty
• Partial

•

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Kernel Memory Allocation

Slab Allocator
Look for a free object in a partial slab.

Otherwise, allocate a new slab and
assign it to a cache.

Benefits
No space wasted in fragmentation.

Memory requests are satisfied quickly.

Implementations
Solaris 2.4 kernel, Linux version 2.2+

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Other Considerations

Pre-Paging
Bring into memory at one time all the
pages that will be needed!

Issue

Pre-Paging Cost Cost of Page Fault Services

ready
processes

suspended
processesresumed

swapped
out

Do pre-paging if the working set is known!

Not every page in the working set will be used!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Other Considerations

Page Size

Trends - Large Page Size

∵ The CPU speed and the memory capacity
grow much faster than the disk speed!

small largep d

Smaller Page
Table Size &
Better I/O
Efficiency

Better
Resolution
for Locality &
Internal
Fragmentation 512B(29)~16,384B(212)

Page Size

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Other Considerations

TLB Reach
TLB-Entry-Number * Page-Size

Wish
The working set is stored in the TLB!

Solutions
Increase the page size

Have multiple page sizes –
UltraSparc II (8KB - 4MB) + Solaris 2
(8KB or 4MB)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Other Considerations

Inverted Page Table
The objective is to reduce the
amount of physical memory for page
tables, but they are needed when a
page fault occurs!

More page faults for page tables will
occur!!!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Other Considerations
Program Structure

Motivation – Improve the system performance
by an awareness of the underlying demand
paging.

var A: array [1..128,1..128] of integer;

for j:=1 to 128

for i:=1 to 128

A(i,j):=0
A(1,1)
A(1,2)

.

.
A(1,128)

A(2,1)
A(2,2)

.

.
A(2,128)

A(128,1)
A(128,2)

.

.
A(128,128)

……
128
words

128 pages

128x128 page
faults if the
process has
less than 128
frames!!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Other Considerations

Program Structures:
Data Structures

Locality: stack, hash table, etc.

Search speed, # of memory references, # of
pages touched, etc.

Programming Language
Lisp, PASCAL, etc.

Compiler & Loader
Separate code and data

Pack inter-related routines into the same page

Routine placement (across page boundary?)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

I/O Interlock

buffer Drive

• DMA gets the following
information of the buffer:
• Base Address in

Memory
• Chunk Size

• Could the buffer-residing
pages be swapped out?

Physical Memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

I/O Interlock

Solutions
I/O Device System Memory
User Memory

Extra Data Copying!!

Lock pages into memory
The lock bit of a page-faulting page is set
until the faulting process is dispatched!

Lock bits might never be turned off!

Multi-user systems usually take locks as
“hints” only!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Real-Time Processing

Solution:
Go beyond locking hints Allow
privileged users to require pages being
locked into memory!

Predictable
Behavior

Virtual memory
introduces unexpected,
long-term delays in the
execution of a program.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Examples – XP

Virtual Memory – Demand Paging with
Clustering

Clustering brings in more pages
surrounding the faulting page!

Working Set
A Min and Max bounds for a process

Local page replacement when the max
number of frames are allocated.

Automatic working-set trimming reduces
allocated frames of a process to its min
when the system threshold on the
available frames is reached.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Examples – Solaris

Process pageout first clears
the reference bit of all pages
to 0 and then later returns all
pages with the reference bit =
0 to the system (handspread).

4HZ 100HZ when desfree
is reached!

Swapping starts when
desfree fails for 30s.

pageout runs for every
request to a new page when
minfree is reached.

lotsfree

100
slowscan

8192
fastscan

desfreeminfree

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Demand Segmentation

Motivation
Segmentation captures better the logical
structure of a process!

Demand paging needs a significant
amount of hardware!

Mechanism
Like demand paging!

However, compaction may be needed!
Considerable overheads!

