Chapter 8
Memory-Management
Strategies

Memory Management

= Motivation

= Keep several processes in memory
to improve a system’s performance

= Selection of different memory
management methods

= Application-dependent
» Hardware-dependent

= Memory — A large array of words or
bytes, each with its own address.

= Memory is always too small!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Memory Management

* The Viewpoint of the Memory Unit
= A stream of memory addresses!
= What should be done?

= Which areas are free or used (by
whom)

= Decide which processes to get memory
= Perform allocation and de-allocation
= Remark:

» |nteraction between CPU scheduling
and memory allocation!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Background

= Address Binding — binding of instructions and data
to memory addresses

symbolic address
. c . source program e.g., X
Binding Time .

Known at compile time, | compiling
where a program will be in
memory - “absolute code” object module aR(i;‘r’g:Stab'e
MS-DOS *.COM other object
) modules linking
At load time:

- All memory reference by a
. load module

program will be translated
- Code is relocatable system library

. . loading
- Fixed while a program runs

in-memory binary
memory image Absolute
address

At execution time
- binding may change
as a program run

dynamically
loaded system
library

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Main

Background

* Binding at the Compiling

Memory

Time

A process must execute at a
specific memory space

* Binding at the Load Time

» Relocatable Code

* Process may move from a

memory segment to another —»

binding is delayed till run-time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Logical Versus Physical Address

CPU

Logical
Address

Physical |

@ Address Memory

The user program
deals with logical
addresses

- Virtual Addresses

346

(binding at the run time)

\

Address
Relocation 14346 |Register

Register

\

Memory

14000

Memory Management
Unit (MMU) -
“Hardware-Support”

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Logical Versus Physical Address

= A logical (physical) address space is the set of
logical (physical) addresses generated by a
process. Physical addresses of a program is
transparent to any process!

= MMU maps from virtual addresses to physical
addresses. Different memory mapping
schemes need different MMU’s that are
hardware devices. (slow down)

= Compile-time & load-time binding schemes
results in the collapsing of logical and physical
address spaces.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Dynamic Loading

= Dynamic Loading

= A routine will not be loaded until it is
called. A relocatable linking loader
must be called to load the desired
routine and change the program’s
address tables.

= Advantage
= Memory space is better utilized.

= Users may use OS-provided
libraries to achieve dynamic loading

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Dynamic Linking

*» Dynamic Linking < Static Linking
a 4

A small piece of code, called 1 2n9Uage library

stub, is used to locate or load programJBbject module
the appropriate routine |
binary program image
Advantage
Save memory space by sharing Simple
the library code among

processes - Memory
Protection & Library Update!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Overlays

= Motivation

= Keep in memory only those instructions and data
needed at any given time.

= Example: Two overlays of a two-pass assembler

Symbol table | 20KB

common routines| 30KB Certain relocation &
linking algorithms are

overlay driver | 10KB needed!

20KB | Pass 1 —Pass2| 80KB

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Overlays

= Memory space is saved at the cost of
run-time 1/O.

= Qverlays can be achieved w/o OS
support:
— “absolute-address” code

= However, it’s not easy to program a
overlay structure properly!
— Need some sort of automatic

techniques that run a large program in a
limited physical memory!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping

Swap out > Process
User pl
Space _
SWwap 1n Process
p2
Main Memory Kin

Should a process be put back into the same
memory space that it occupied previously?
<> Binding Scheme?!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping
= A Naive Way

Pick up Dispatcher
a process checks whether Yes | pispatch CPU to
from the the process is the process
ready queue i

Swap in
the process

Potentially High Context-Switch Cost:

2 * (1000KB/5000KBps + 8ms) = 416ms
Transfer Time Latency Delay

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping

= The execution time of each process should
be long relative to the swapping time in
this case (e.g., 416ms in the last example)!

= Only swap in what.is.actually used. =

1000k per sec

Users must keep the system iInformed of
memory usage. oo ISRROrY
= Who should be swapped out? 0S _
I/D bufferi

= “Lower Priority” Processes?
= Any Constraint?

: Pi 1/D bufferi
= System Design

?1/07?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping

» Separate swapping space from the
file system for efficient usage

= Disable swapping whenever possible
such as many versions of UNIX —
Swapping is triggered only if the
memory usage passes a threshold,
and many processes are running!

= |n Windows 3.1, a swapped-out
process is not swapped in until the
user selects the process to run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation - Single User

0000
0S relocation register

d

d
b <[User
limit register

Unused b

8888

= A single user is allocated as much memory as
needed

= Problem: Size Restriction — Overlays (MS/DOS)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation — Single User

= Hardware Support for Memory Mapping
and Protection

relocation

limit register

register l
CPU C< Yes :® hysi I:

: PRysicalt — memory
logical No address
address
trap

Disadvantage: Wasting of CPU and Resources
"." No Multiprogramming Possible

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation — Multiple Users

= Fixed Partitions
= Memory is divided into
fixed partitions, e.g.,

OS/360 (or MFT)
Partition 1{ K proc 1 = A process 5 gl.located on
45K an entire partition
Partition 2 proc 7 = An OS Data Structure:
Ty Partitions
Partition 3 proc 5 4 size location status
90k 1 |25KB| 20k | Used
Partition 4 100k]-—| > | 15xB| 25K oot
“fragmentation” 3 |30KB| 60k | Used
4 |10KB| 90k | Free

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation — Multiple Users

= Hardware Supports
» Bound registers

= Each partition may have a

protection key (corresponding to a
key in the current PSW)

= Disadvantage:

* Fragmentation gives poor memory
utilization !

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation — Multiple Users

= Dynamic Partitions

» Partitions are dynamically created.
= OS tables record free and used partitions

0S Base = 20k Base = 70k
20k size = 20KB /\/size = 20KB
Process 1 user = 1 user = 2 _—IT—
40k
free
70k Base = 40k Base = 90k
ook Process 2 size _ 30kB[Ulsize = 20KB L
free)
110k

Input Queue

P3 with a 40KB
A" memory request !

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation — Multiple Users

Better
in Time

and Storage

Usage

» Solutions for dynamic storage allocation :

= First Fit — Find a hole which is big enough

» Advantage: Fast and likely to have large chunks

of memory in high memory locations
< = Best Fit — Find the smallest hole which is big
enough. — It might need a lot of search time
and create lots of small fragments !

\ = Advantage: Large chunks of memory available

= Worst Fit — Find the largest hole and create a
new partition out of it!

= Advantage: Having largest leftover holes with

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

lots of search time!

Contiguous Allocation Example — First Fit

(RR Scheduler with Quantum =1) A job queue

400k 0S
2560k :
Time=0

400k OBt

P1
1000k

P4
1700k
2000k
2300k P3
2560k L—

Time = “14”

400k

1000k

2000k
2300k

2560k

400k

1000k

1700k

2000k
2300k

2560k

OS 400k
P1 1000k
P2
2000k
P3 2300k
2560k
Time = “0”
OS
P4
1300
P3 ®
}260KB
Time =28

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process

Memory Time

P1 600KB 10
P2 1000KB 5
0S P3 300KB 20
P1 P4 700KB 8
P5 500KB 15
17 P2 terminates &
P3 frees its memory
Time =14
400k OS
P5
900k
1000k
1700k P4
2000k
260KB 5350k P3
PS? 2560k

Time = “28”

Fragmentation — Dynamic Partitions

= External fragmentation occurs as small
chunks of memory accumulate as a by-
product of partitioning due to imperfect fits.
= Statistical Analysis For the First-Fit Algorithm:
= 1/3 memory is unusable — 50-percent rule
= Solutions:
a. Merge adjacent free areas.

b. Compaction
Compact all free areas into one contiguous region
- Requires user processes to be relocatable

Any optimal compaction strategy???

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation — Dynamic Partitions

0S 0S 0S 0S
300K 300K 300K 300K

P1 P1 P1 P1
500K 500K 500K 500K

P2 P2 P2 p2
600K 600K 600K 600K

400KB *P3 P4

1000K 800K 1000K
1200K P3 1200K *P4 1200K P3 900K
1500K 3OOKB 1500K

P4 900K 900K P3
1900K 1900K
2100K ZOOKB 2100K 2100K 2100K *P4

MOVE 600KB MOVE 400KB MOVE 200KB

= Cost: Time Complexity O(nH)?!!
= Combination of swapping and compaction
= Dynamic/static relocation

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation — Dynamic Partitions

= |nternal fragmentation:
A small chunk of “unused” memory internal to a

partition.
0S
P3 request 20KB
— /?? give P3 20KB & leave a
20,002 bytes 2-byte free area??
P2

Reduce free-space maintenance cost

- Give 20,002 bytes to P3 and have 2 bytes as an internal
fragmentation!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation — Dynamic Partitions

= Dynamic Partitioning:
= Advantage:
= Eliminate fragmentation to some degree

— Can have more partitions and a higher degree
of multiprogramming

= Disadvantage:

= Compaction vs Fragmentation

» The amount of free memory may not be enough for a
process! (contiguous allocation)

= Memory locations may be allocated but never
referenced.

= Relocation Hardware Cost & Slow Down
= Solution: Paged Memory!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging

= Objective
» Users see a logically contiguous address

space although its physical addresses are
throughout physical memory

= Units of Memory and Backing Store

= Physical memory is divided into fixed-sized
blocks called frames.

» The logical memory space of each process
is divided into blocks of the same size
called pages.

= The backing store is also divided into
blocks of the same size if used.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Basic Method

Logical Address | Page Offset 1
CPU o | d .
Physical Address
Page Table Y —
Page Number p
f Base Address of Page p

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Basic Method

= Address Translation

page # page offset
P d max number of pages: 2m™"
__________ m-n-| n- Logical Address Space: 2™
Physical Address Space: ???
m

= A page size tends to be a power of 2
for efficient address translation.

» The actual page size depends on the
computer architecture. Today, it is

from 512B or 16KB.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Basic Method

Page
0 Frame
0 A 0 0
4 0 5 4
[— 1 C 1
. T 6 8 D y)
12 3 2 16 4
3
D Page 20
0 . Table A >
Logical 24 6
Memory 28 7
Logical Address Physical Memory
1*4+1=5 01 01 110 | o1 Physical Address

* All rights rese

rved, Tei-Wei Kuo, National Taiwan University, 2005.

=6*4+1=25

Paging — Basic Method

= No External Fragmentation
» Paging is a form of dynamic relocation.
» The average internal fragmentation is about
one-half page per process
= The page size generally grows over time as
processes, data sets, and memory have
become larger.
= 4-byte page table entry & 4KB per page 2>
232 * 212B = 244B = 16TB of physical memory

Page Table Internal
Maintenance| Fragmentation

Disk 1/0
Efficiency

* Example: 8KB or 4MB for Solaris.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Page Size

Paging — Basic Method

» Page Replacement:
= An executing process has all of its pages
in physical memory.
= Maintenance of the Frame Table

*= One entry for each physical frame
» The status of each frame (free or allocated)
and its owner
* The page table of each process must be
saved when the process is preempted. -
Paging increases context-switch time!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Hardware Support

= Page Tables
= Where: Registers or Memory
= Efficiency is the main consideration!
» The use of registers for page tables
* The page table must be small!
= The use of memory for page tables
» Page-Table Base Register (PTBR)

|
|
a ——1_ | APage
Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Hardware Support

= Page Tables on Memory

» Advantages:
» The size of a page table is unlimited!

» The context switch cost may be low if the
CPU dispatcher merely changes PTBR,
instead of reloading another page table.

» Disadvantages:
= Memory access is slowed by a factor of 2
» Translation Look-aside buffers (TLB)
» Associate, high-speed memory
» (key/tag, value) — 16 ~ 1024 entries
» | ess than 10% memory access time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Hardware Support

» Translation Look-aside Buffers(TLB):

» Disadvantages: Expensive Hardware and
Flushing of Contents for Switching of
Page Tables

» Advantage: Fast — Constant-Search Time

key value

item

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Hardware Support

Logical Address

CPU [p [d |
Page# Frame#
Physical
Memory
B LfldF——7
Physical
Address
TLB Miss
T
* Address-Space ldentifiers . . i |
(ASID) in TLB for process Page Update TLB if a TLB miss occurs!

matching? Protection? Flush? Table * Replacement of TLB entries might

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005. be needed .

Paging — Effective Memory
Access Time

» Hit Ratio = the percentage of times that a
page number is found in the TLB

» The hit ratio of a TLB largely depends
on the size and the replacement
strategy of TLB entries!

» Effective Memory Access Time

» Hit-Ratio * (TLB lookup + a mapped
memory access) + (1 — Hit-Ratio) *
(TLB lookup + a page table lookup + a
mapped memory access)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Effective Memory
Access Time

= An Example

» 20ns per TLB lookup, 100ns per memory
access

= Effective Access Time = 0.8*120ns
+0.2*220ns = 140 ns, when hit ratio = 80%

= Effective access time = 0.98*120ns
+0.02*220ns = 122 ns, when hit ratio = 98%

» Intel 486 has a 32-register TLB and claims a
98 percent hit ratio.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Protection & Sharing

= Protection

\Yi 2
x v 7 Page Table
y 3
+ iy
v v
0

1
memory r/w/e dirty valid-invalid Bit

] L. Valid Page?
Is the page in memory? Modified?

r/w/e protected: 100r, 010w, 110rw,

» Use a Page-Table Length Register (PTLR) to
indicate the size of the page table.

» Unused Paged table entries might be ignored
during maintenance.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging — Protection & Sharing

= Example: a 12287-byte Process (16384=214)

0
PO
2K 0 VvV [2 0
P1 1 V 3 1
4K 2 \Y/ 4
P2 3 vV | 7 2 :22
6K A v | 8 3
P3 5 V. | 9 4 P2
8K 6 i 0 5
P4 i
10K ! : 0 6
10,468 P5 Page Table 7 P3
12,287 (PTLR entries?) 8 P4
Logical address 9 P5
Lp [d |

3 11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

3

*edl P2 *edl Page
P1 Page S Table 2 4
*ad?2 Table 1 4 *ed2 6
*ad3 L *ed3 7

1
* Data 1 * Data 2
* * *
* * * * *
datal] ed1 | ed2 ed3 data2,
page O 1 2 3 4 5 6 7 n

Paging — Protection & Sharing

= Procedures which are executed often (e.g., editor) can be divided into
procedure + date. Memory can be saved a lot.

= Reentrant procedures can be saved! The non-modified nature of saved
code must be enforced

= Address referencinqJ inside shared pages could be an issue.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging

= Motivation

» The logical address space of a process
In many modern computer system is very
large, e.g., 232 to 254 Bytes.

32-bit address > 220 page entries > 4MB
4KB per page 4B per entries page table

= Even the page table must be divided into
pieces to fit in the memory!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging — Two-Level Paging

Logical Address

P1P2]|d Physical
P1 ' Memory
P2 I
Outer-Page Table d
PTBR A page of page table
s I 74
— \><
\\\ /
\
Forward-Mapped Page Table \

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging — N-Level Paging

= Motivation: Two-level paging is not
appropriate for a huge logical address space!

Logical Address STBR
PL|P2|.. Pn|d l
N pieces Pl[.
N P2 |
— Physical
Pn Memory
d
1 + 1 +... + 1 + 1

= n+1 accesses

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging — N-Level Paging

= Example

= 98% hit ratio, 4-level paging, 20ns TLB
access time, 100ns memory access time.

= Effective access time = 0.98 X 120ns +
0.02 X 520ns = 128ns

= SUN SPARC (32-bit addressing) - 3-level
paging

= Motorola 68030 (32-bit addressing) - 4-
level paging

= VAX (32-bit addressing) - 2-level paging

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Hashed Page Tables

= Objective:
= To handle large address spaces

= Virtual address = hash function 2 a
linked list of elements

= (virtual page #, frame #, a pointer)
» Clustered Page Tables

= Each entry contains the mappings for
several physical-page frames, e.g.,
16.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Inverted Page Table

= Motivation

» A page table tends to be big and does not

correspond to the # of pages residing in the
physical memory.

= Each entry corresponds to a physical frame.
= Virtual Address: <Process ID, Page Number, Offset>

Logical
Address Physical
CPU |— pd [P |d f d Memory
Physical
Address

pid: p

An Inverted Page Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Inverted Page Table

= Each entry contains the virtual address of the frame.
» Entries are sorted by physical addresses.
= One table per system.

= When no match is found, the page table of the
corresponding process must be referenced.

= Example Systems: HP Spectrum, IBM RT, PowerPC,
SUN UltraSPARC

Logical
Address Physical
CPU |— pid | P d f d Memory
Physical
Address

pid: p

An Inverted Page Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Inverted Page Table

= Advantage

» Decrease the amount of memory needed
to store each page table

= Disadvantage

= The inverted page table is sorted by
physical addresses, whereas a page
reference is in a logical address.

= The use of Hash Table to eliminate
lengthy table lookup time: 1HASH + 1IPT

» The use of an associate memory to hold
recently located entries.

= Difficult to implement with shared memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation

= Segmentation is a memory management
scheme that support the user view of memory:

= A logical address space is a collection of
segments with variable lengths.

Subrouting

Symbol
sqrt table

Main progra

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation

= Why Segmentation?

= Paging separates the user’'s view of
memory from the actual physical
memory but does not reflect the logical
units of a process!

= Pages & frames are fixed-sized, but
segments have variable sizes.

= For simplicity of representation,

<segment name, offset> - <segment-
number, offset>

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation — Hardware Support

= Address Mapping

s |
[..
CPU s |d limit | base
limit Segment
Table base
d < yes (+) .| Physical
d Memory
no

trap

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation — Hardware Support

» Implementation in Registers — limited size!

= |mplementation in Memory
= Segment-table base register (STBR)
= Segment-table length register (STLR)
= Advantages & Disadvantages — Paging

= Use an associate memory (TLB) to improve the
effective memory access time !

= TLB must be flushed whenever a new segment
table is used !

a 4

STBR Segment table STLR

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation — Protection & Sharing

= Advantage:

= Segments are a semantically defined portion of
the program and likely to have all entries being
“*homogeneous”.

= Example: Array, code, stack, data, etc.
—> Logical units for protection !

= Sharing of code & data improves memory usage.
= Sharing occurs at the segment level.

_— =
~ //
[—
—) | R —
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation — Protection & Sharing

= Potential Problems
= External Fragmentation
= Segments must occupy contiguous memory.

» Address referencing inside shared
segments can be a big issue:

Seg# | offset
Indirect Should all shared-code segments
addressing?!!! have the same segment number?

= How to find the right segment number if the
number of users sharing the segments
increase! - Avoid reference to segment #

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation — Fragmentation

= Motivation:
Segments are of variable lengths!

- Memory allocation is a dynamic
storage-allocation problem.

» pest-fit? first-fit? worst-ft?
= External fragmentation will occur!!
» Factors, e.g., average segment sizes

Size External _
Fragmentation
A byte Overheads increases substantially!

(base+limit “registers™)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation — Fragmentation

= Remark:

= |ts external fragmentation problem is
better than that of the dynamic
partition method because segments
are likely to be smaller than the
entire process.

* |nternal Fragmentation??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation with Paging

= Motivation :
= Segmentation has external fragmentation.
» Paging has internal fragmentation.

= Segments are semantically defined
portions of a program.

- “Page” Segments !

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Pentium Segmentation

= 8K Private Segments + 8K Public Segments

» Page Size = 4KB or 4MB (page size flag in the
page directory), Max Segment Size = 4GB

= Tables:
» Local Descriptor Table (LDT)
» Global Descriptor Table (GDT)

= 6 microprogram segment registers for caching

Selector Segment Offset
Logical Address S aglp sd
13 1 2 32
Linear Address pl ‘ p2 ‘ d |
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005. 10 10 12

Pentium Segmentation

Logical Address

— —

16 32
S+g+p sd
Physical
Descriptor Table —_— f d _ el
Segment Segment no Physical
Length Base address
Trap | Page Directory
\Base Register
Segment
table pl | :
/ | ;
10 10 12 / p2
pl p2 | d
| f
*Page table are limited by the segment lengths of their Page Directory

segments. Consider the page size flag and the invalid Page Table
bit of each page directory entry.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Linux on Pentium Systems

= Limitation & Goals

= Supports over a variety of machines

» Use segmentation minimally — GDT

= On individual segment for the kernel code, kernel
data, the user code, the user data, the task state
segment, the default LDT

= Protection: user and kernel modes

middle directory offset
global director ~._ Page tlable 1
3-Level Paging Address pl ‘ ‘ |E>2 d

Linear Address on Pentium pL | pZ | G

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005. 10 10 12

Paging and Segmentation

= To overcome disadvantages of paging or
segmentation alone:

» Paged segments — divide segments further into
pages.
= Segment need not be in contiguous memory.
= Segmented paging — segment the page table.
» Variable size page tables.
= Address translation overheads increase!

= An entire process still needs to be in memory
at once!

- Virtual Memory!!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging and Segmentation

= Considerations in Memory Management
Hardware Support, e.g., STBR, TLB, etc.
Performance

Fragmentation
= Multiprogramming Levels

Relocation Constraints?
Swapping: +

Sharing?!

Protection?!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

