
Chapter 8
Memory-Management
Strategies

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Memory Management
Motivation

Keep several processes in memory
to improve a system’s performance

Selection of different memory
management methods

Application-dependent

Hardware-dependent

Memory – A large array of words or
bytes, each with its own address.

Memory is always too small!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Memory Management

The Viewpoint of the Memory Unit
A stream of memory addresses!

What should be done?
Which areas are free or used (by
whom)

Decide which processes to get memory

Perform allocation and de-allocation

Remark:
Interaction between CPU scheduling
and memory allocation!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Background
Address Binding – binding of instructions and data
to memory addresses

source program

object module

load module

in-memory binary
memory image

compiling

linking

loading

other object
modules

system library

dynamically
loaded system

library

Binding Time
Known at compile time,
where a program will be in
memory - “absolute code”
MS-DOS *.COM

At load time:
- All memory reference by a
program will be translated
- Code is relocatable
- Fixed while a program runs

At execution time
- binding may change
as a program run

symbolic address
e.g., x

Relocatable
address

Absolute
address

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Background

• Binding at the Compiling
Time

•A process must execute at a
specific memory space

• Binding at the Load Time

• Relocatable Code

• Process may move from a
memory segment to another →
binding is delayed till run-time

Main
Memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Logical Versus Physical Address

Memory

+

Relocation
Register

14000

Physical
Address

14346
CPU

Logical
Address

346

Memory Management
Unit (MMU) –
“Hardware-Support”

The user program
deals with logical
addresses
- Virtual Addresses
(binding at the run time)

Memory
Address
Register

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Logical Versus Physical Address

A logical (physical) address space is the set of
logical (physical) addresses generated by a
process. Physical addresses of a program is
transparent to any process!

MMU maps from virtual addresses to physical
addresses. Different memory mapping
schemes need different MMU’s that are
hardware devices. (slow down)

Compile-time & load-time binding schemes
results in the collapsing of logical and physical
address spaces.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Dynamic Loading
A routine will not be loaded until it is
called. A relocatable linking loader
must be called to load the desired
routine and change the program’s
address tables.

Advantage
Memory space is better utilized.

Users may use OS-provided
libraries to achieve dynamic loading

Dynamic Loading

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Dynamic Linking

Dynamic Linking Static Linking

A small piece of code, called
stub, is used to locate or load
the appropriate routine

language library
+

program object module

binary program image

Advantage
SimpleSave memory space by sharing

the library code among
processes Memory
Protection & Library Update!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Overlays
Motivation

Keep in memory only those instructions and data
needed at any given time.

Example: Two overlays of a two-pass assembler

overlay driver

common routines

Symbol table

10KB

30KB

20KB

Pass 170KB Pass 2 80KB

Certain relocation &
linking algorithms are
needed!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Memory space is saved at the cost of
run-time I/O.

Overlays can be achieved w/o OS
support:

⇒ “absolute-address” code

However, it’s not easy to program a
overlay structure properly!
⇒ Need some sort of automatic

techniques that run a large program in a
limited physical memory!

Overlays

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping

OS

User
Space

swap out

swap in

Process
p1

Process
p2

Should a process be put back into the same
memory space that it occupied previously?
↔ Binding Scheme?!

Main Memory Backing Store

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping

A Naive Way

Dispatcher
checks whether

the process is
in memory

Dispatch CPU to
the process

Pick up
a process
from the

ready queue

Swap in
the process

Yes

No

Potentially High Context-Switch Cost:

2 * (1000KB/5000KBps + 8ms) = 416ms
Transfer Time Latency Delay

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping
The execution time of each process should
be long relative to the swapping time in
this case (e.g., 416ms in the last example)!

Only swap in what is actually used. ⇒
Users must keep the system informed of
memory usage.

Who should be swapped out?
“Lower Priority” Processes?

Any Constraint?

⇒ System Design

+
=

disk
100ms

secper 1000k

100k

+
=

disk
100ms

secper 1000k

100k

I/O buffering

I/O buffering

Memory

OS

Pi

?I/O?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Swapping

Separate swapping space from the
file system for efficient usage
Disable swapping whenever possible
such as many versions of UNIX –
Swapping is triggered only if the
memory usage passes a threshold,
and many processes are running!
In Windows 3.1, a swapped-out
process is not swapped in until the
user selects the process to run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation – Single User

A single user is allocated as much memory as
needed
Problem: Size Restriction → Overlays (MS/DOS)

User

OS

Unused

0000

8888

a

b

a

b

limit register

relocation register

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation – Single User

Hardware Support for Memory Mapping
and Protection

CPU < +
memory

relocation
registerlimit

register

logical
address

No
Yes physical

address

trap

Disadvantage: Wasting of CPU and Resources
∵ No Multiprogramming Possible

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation – Multiple Users

Fixed Partitions
Memory is divided into
fixed partitions, e.g.,
OS/360 (or MFT)

A process is allocated on
an entire partition

An OS Data Structure:

proc 1

proc 7

proc 5

20k

45k

60k

90k
100k

Partition 1

Partition 2

Partition 3

Partition 4

“fragmentation”

Partitions
size location status

1

2

3

4

25KB 20k

15KB 45k

30KB 60k

90k10KB

Used

Used

Used

Free

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation – Multiple Users

Hardware Supports

Bound registers

Each partition may have a
protection key (corresponding to a
key in the current PSW)

Disadvantage:

Fragmentation gives poor memory
utilization !

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Dynamic Partitions
Partitions are dynamically created.

OS tables record free and used partitions

Contiguous Allocation – Multiple Users

Used
Base = 20k

size = 20KB
user = 1

Base = 70k
size = 20KB

user = 2

Free
Base = 40k

size = 30KB
Base = 90k

size = 20KB

Input Queue
P3 with a 40KB
memory request !

free

free

OS

Process 1

Process 2

20k

40k

70k

90k

110k

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Contiguous Allocation – Multiple Users

Solutions for dynamic storage allocation :
First Fit – Find a hole which is big enough

Advantage: Fast and likely to have large chunks
of memory in high memory locations

Best Fit – Find the smallest hole which is big
enough. → It might need a lot of search time
and create lots of small fragments !

Advantage: Large chunks of memory available

Worst Fit – Find the largest hole and create a
new partition out of it!

Advantage: Having largest leftover holes with
lots of search time!

Better
in Time
and Storage
Usage

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

P1 600KB 10
P2 1000KB 5
P3 300KB 20
P4 700KB 8
P5 500KB 15

Process Memory Time
A job queue

Contiguous Allocation Example – First Fit
(RR Scheduler with Quantum = 1)

Time = 0 Time = “0” Time = 14

Time = “14” Time = 28 Time = “28”

OS OS OS
400k

2560k 2560k

2300k

400k

2000k

1000k

2560k

2300k

400k

2000k

1000k

OS OS OS

P1

P3

P1

P3

P2
P2 terminates &
frees its memory

2560k

2300k

400k

2000k

1000k

1700k

P1

P3

P4

P3

P4

2560k

2300k

400k

2000k

1000k

1700k
300KB

260KB

+ 560KB

P5? 2560k

2300k

400k

2000k

1000k

1700k

900k

P3

P4

P5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation – Dynamic Partitions

External fragmentation occurs as small
chunks of memory accumulate as a by-
product of partitioning due to imperfect fits.

Statistical Analysis For the First-Fit Algorithm:
1/3 memory is unusable – 50-percent rule

Solutions:
a. Merge adjacent free areas.

b. Compaction
- Compact all free areas into one contiguous region

- Requires user processes to be relocatable

Any optimal compaction strategy???

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation – Dynamic Partitions

Cost: Time Complexity O(n!)?!!
Combination of swapping and compaction

Dynamic/static relocation

OS

P1
P2

400KB
P3

300KB
P4

200KB

0

300K

500K

600K

1000K

1200K

1500K

1900K

2100K

OS

P1
P2

*P3
*P4

900K

0

300K

500K

600K

800K

1200K

2100K

OS

P1
P2

*P4
P3

900K

0

300K

500K

600K

1000K

1200K

2100K

OS

P1
P2

*P4
P3

900K

0

300K

500K

600K

1500K

1900K

2100K

MOVE 600KB MOVE 400KB MOVE 200KB

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation – Dynamic Partitions

Internal fragmentation:
A small chunk of “unused” memory internal to a

partition.

Reduce free-space maintenance cost

Give 20,002 bytes to P3 and have 2 bytes as an internal
fragmentation!

OS

P1

20,002 bytes

P2

P3 request 20KB
?? give P3 20KB & leave a

2-byte free area??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Fragmentation – Dynamic Partitions

Dynamic Partitioning:
Advantage:
⇒ Eliminate fragmentation to some degree
⇒ Can have more partitions and a higher degree

of multiprogramming

Disadvantage:
Compaction vs Fragmentation

The amount of free memory may not be enough for a
process! (contiguous allocation)
Memory locations may be allocated but never
referenced.

Relocation Hardware Cost & Slow Down

⇒ Solution: Paged Memory!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging

Objective
Users see a logically contiguous address
space although its physical addresses are
throughout physical memory

Units of Memory and Backing Store
Physical memory is divided into fixed-sized
blocks called frames.
The logical memory space of each process
is divided into blocks of the same size
called pages.
The backing store is also divided into
blocks of the same size if used.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Basic Method

CPU p d f d

..
f

……

Page Table

……Page Number p

d

f

Base Address of Page p

Page Offset

Physical Address

Logical Address

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Basic Method

Address Translation

A page size tends to be a power of 2
for efficient address translation.
The actual page size depends on the
computer architecture. Today, it is
from 512B or 16KB.

p d
page # page offset

m

m-n n

max number of pages: 2m-n

Logical Address Space: 2m

Physical Address Space: ???

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Basic Method

A

B

C

D

Page
0

4

8

12

16

0

1

2

3

Logical
Memory

5
6
1
2

0

1

2

3
Page
Table

01 01

Logical Address
1 * 4 + 1 = 5 110 01 Physical Address

= 6 * 4 + 1 = 25

C
D

A
B

Frame
0

1
2
3
4
5
6
7

Physical Memory

0
4
8

12
16
20
24
28

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Basic Method

No External Fragmentation
Paging is a form of dynamic relocation.
The average internal fragmentation is about
one-half page per process

The page size generally grows over time as
processes, data sets, and memory have
become larger.

4-byte page table entry & 4KB per page
232 * 212B = 244B = 16TB of physical memory

Page Size Disk I/O
Efficiency

Page Table
Maintenance

Internal
Fragmentation

* Example: 8KB or 4MB for Solaris.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Basic Method

Page Replacement:
An executing process has all of its pages
in physical memory.

Maintenance of the Frame Table
One entry for each physical frame

The status of each frame (free or allocated)
and its owner

The page table of each process must be
saved when the process is preempted.
Paging increases context-switch time!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Hardware Support

Page Tables
Where: Registers or Memory

Efficiency is the main consideration!

The use of registers for page tables
The page table must be small!

The use of memory for page tables
Page-Table Base Register (PTBR)

a A Page
Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Hardware Support

Page Tables on Memory
Advantages:

The size of a page table is unlimited!
The context switch cost may be low if the
CPU dispatcher merely changes PTBR,
instead of reloading another page table.

Disadvantages:
Memory access is slowed by a factor of 2

Translation Look-aside buffers (TLB)
Associate, high-speed memory
(key/tag, value) – 16 ~ 1024 entries
Less than 10% memory access time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Hardware Support

Translation Look-aside Buffers(TLB):
Disadvantages: Expensive Hardware and
Flushing of Contents for Switching of
Page Tables

Advantage: Fast – Constant-Search Time

item

key value

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Hardware Support

CPU p d

……..

Page# Frame#

f

Logical Address

f d

Physical
Address

Physical
Memory

• Update TLB if a TLB miss occurs!
• Replacement of TLB entries might

be needed.

TLB Miss

….
TLB

Page
Table

p

* Address-Space Identifiers
(ASID) in TLB for process
matching? Protection? Flush?

TLB Hit

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Effective Memory
Access Time

Hit Ratio = the percentage of times that a
page number is found in the TLB

The hit ratio of a TLB largely depends
on the size and the replacement
strategy of TLB entries!

Effective Memory Access Time
Hit-Ratio * (TLB lookup + a mapped
memory access) + (1 – Hit-Ratio) *
(TLB lookup + a page table lookup + a
mapped memory access)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Effective Memory
Access Time

An Example
20ns per TLB lookup, 100ns per memory
access

Effective Access Time = 0.8*120ns
+0.2*220ns = 140 ns, when hit ratio = 80%

Effective access time = 0.98*120ns
+0.02*220ns = 122 ns, when hit ratio = 98%

Intel 486 has a 32-register TLB and claims a
98 percent hit ratio.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Protection & Sharing

Protection

Use a Page-Table Length Register (PTLR) to
indicate the size of the page table.

Unused Paged table entries might be ignored
during maintenance.

y v 2
y v 7
y 3

y v
1 0

Page Table

Is the page in memory?
r/w/e protected: 100r, 010w, 110rw,
…

Modified?
Valid Page?

Valid-Invalid Bitmemory r/w/e dirty

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Protection & Sharing

P0

P1

P2

P4

P5

0

2K

4K

8K

10,468
…

12,287

V 2
V 3
V 4
V 7
V 8
V 9
i 0
i 0

0
1
2
3
4
5
6
7

Page Table

p d
Logical address

3

P0
P1
P2

P3

0
1

2
3

4
5

6
7

P4
P5

8
9

11

Example: a 12287-byte Process (16384=214)

(PTLR entries?)

P3
6K

10K

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging – Protection & Sharing

Procedures which are executed often (e.g., editor) can be divided into
procedure + date. Memory can be saved a lot.

Reentrant procedures can be saved! The non-modified nature of saved
code must be enforced

Address referencing inside shared pages could be an issue.

*ed1 3

4

6

1

*ed2

*ed3

* Data 1

3

4

6

7

*
data1

*
*

ed1

*
*

ed2

*
*

ed3

*
data2

::

*ed1

*ed2

*ed3

* Data 2

Page
Table 1

Page
Table 2P1 P2

page 0 1 2 3 4 5 6 7 n

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging

Motivation
The logical address space of a process
in many modern computer system is very
large, e.g., 232 to 264 Bytes.

32-bit address 220 page entries 4MB
4KB per page 4B per entries page table

Even the page table must be divided into
pieces to fit in the memory!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging – Two-Level Paging

dP2P1

Logical Address

Outer-Page Table

A page of page table

P1

P2

d

Physical
Memory

PTBR

Forward-Mapped Page Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging – N-Level Paging

1 + 1 + … + 1 + 1
= n+1 accesses

dPn..P2P1

N pieces

PTBR

P1

P2

Pn

… Physical
Memory

d

Logical Address

Motivation: Two-level paging is not
appropriate for a huge logical address space!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Paging – N-Level Paging

Example
98% hit ratio, 4-level paging, 20ns TLB
access time, 100ns memory access time.

Effective access time = 0.98 X 120ns +
0.02 X 520ns = 128ns

SUN SPARC (32-bit addressing) 3-level
paging

Motorola 68030 (32-bit addressing) 4-
level paging

VAX (32-bit addressing) 2-level paging

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Hashed Page Tables

Objective:
To handle large address spaces

Virtual address hash function a
linked list of elements

(virtual page #, frame #, a pointer)

Clustered Page Tables
Each entry contains the mappings for
several physical-page frames, e.g.,
16.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Inverted Page Table

Motivation
A page table tends to be big and does not
correspond to the # of pages residing in the
physical memory.

Each entry corresponds to a physical frame.
Virtual Address: <Process ID, Page Number, Offset>

CPU dPpid df

pid: p

Logical
Address

Physical
Address

Physical
Memory

An Inverted Page Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Inverted Page Table
Each entry contains the virtual address of the frame.

Entries are sorted by physical addresses.
One table per system.

When no match is found, the page table of the
corresponding process must be referenced.
Example Systems: HP Spectrum, IBM RT, PowerPC,
SUN UltraSPARC

CPU dPpid df

pid: p

Logical
Address

Physical
Address

Physical
Memory

An Inverted Page Table

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Inverted Page Table

Advantage
Decrease the amount of memory needed
to store each page table

Disadvantage
The inverted page table is sorted by
physical addresses, whereas a page
reference is in a logical address.

The use of Hash Table to eliminate
lengthy table lookup time: 1HASH + 1IPT
The use of an associate memory to hold
recently located entries.

Difficult to implement with shared memory

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation

Segmentation is a memory management
scheme that support the user view of memory:

A logical address space is a collection of
segments with variable lengths.

Subroutine

Sqrt

Stack

Symbol
table

Main program

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation

Why Segmentation?
Paging separates the user’s view of
memory from the actual physical
memory but does not reflect the logical
units of a process!

Pages & frames are fixed-sized, but
segments have variable sizes.

For simplicity of representation,

<segment name, offset> <segment-
number, offset>

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation – Hardware Support

Address Mapping

CPU ds

+ Physical
Memory<

s
limit base

yes

no

trap

base

Segment
Table

limit

d

d

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation – Hardware Support

Implementation in Registers – limited size!

Implementation in Memory
Segment-table base register (STBR)

Segment-table length register (STLR)

Advantages & Disadvantages – Paging

Use an associate memory (TLB) to improve the
effective memory access time !

TLB must be flushed whenever a new segment
table is used !

a
Segment tableSTBR STLR

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation – Protection & Sharing

Advantage:
Segments are a semantically defined portion of
the program and likely to have all entries being
“homogeneous”.

Example: Array, code, stack, data, etc.

Logical units for protection !

Sharing of code & data improves memory usage.
Sharing occurs at the segment level.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation – Protection & Sharing

Potential Problems
External Fragmentation
Segments must occupy contiguous memory.
Address referencing inside shared
segments can be a big issue:

How to find the right segment number if the
number of users sharing the segments
increase! Avoid reference to segment #

offsetSeg#

Indirect
addressing?!!!

Should all shared-code segments
have the same segment number?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation – Fragmentation

Motivation:
Segments are of variable lengths!

Memory allocation is a dynamic
storage-allocation problem.

best-fit? first-fit? worst-ft?

External fragmentation will occur!!
Factors, e.g., average segment sizes

A byte

Size External
Fragmentation

Overheads increases substantially!

(base+limit “registers”)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation – Fragmentation

Remark:
Its external fragmentation problem is
better than that of the dynamic
partition method because segments
are likely to be smaller than the
entire process.

Internal Fragmentation??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Segmentation with Paging

Motivation :
Segmentation has external fragmentation.

Paging has internal fragmentation.

Segments are semantically defined
portions of a program.

“Page” Segments !

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Pentium Segmentation

sdpgs

Selector Segment Offset

13 1 2

8K Private Segments + 8K Public Segments
Page Size = 4KB or 4MB (page size flag in the
page directory), Max Segment Size = 4GB

Tables:
Local Descriptor Table (LDT)

Global Descriptor Table (GDT)

6 microprogram segment registers for caching

32

d

10

p2p1

10 12

Logical Address

Linear Address

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Pentium Segmentation

sds+g+p

::

Segment

Base

Segment
Length

::
>-

df

dp2

+

no

Trap

;

f

Physical
Memory

16 32

p2

Segment
table

Physical
address

10 12

*Page table are limited by the segment lengths of their
segments. Consider the page size flag and the invalid
bit of each page directory entry.

Page Table

Logical Address

Descriptor Table

p1

10

;p1

Page Directory

Page Directory
Base Register

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Linux on Pentium Systems
Limitation & Goals

Supports over a variety of machines
Use segmentation minimally – GDT

On individual segment for the kernel code, kernel
data, the user code, the user data, the task state
segment, the default LDT

Protection: user and kernel modes

d

10

p2p1

10 12

Linear Address on Pentium

dp2p13-Level Paging Address

middle directory
global directory page table

offset

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging and Segmentation

To overcome disadvantages of paging or
segmentation alone:

Paged segments – divide segments further into
pages.

Segment need not be in contiguous memory.

Segmented paging – segment the page table.
Variable size page tables.

Address translation overheads increase!
An entire process still needs to be in memory
at once!

Virtual Memory!!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Paging and Segmentation

Considerations in Memory Management
Hardware Support, e.g., STBR, TLB, etc.

Performance

Fragmentation
Multiprogramming Levels

Relocation Constraints?

Swapping: +

Sharing?!

Protection?!

