Chapter 7 Deadlocks

* All rights rese

Deadlocks

= A set of process is in a deadlock state
when every process in the set is waiting
for an event that can be caused by only
another process in the set.

= A System Model
= Competing processes — distributed?

= Resources:

» Physical Resources, e.g., CPU, printers,
memory, etc.

» | ogical Resources, e.g., files,
semaphores, etc.

rved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlocks

= A Normal Sequence
1. Request: Granted or Rejected

2. Use
3. Release
= Remarks

= No request should exceed the
system capacity!

» Deadlock can involve different
resource types!

» Several instances of the same type!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlocks

void *do_work_one(void *param) {
pthread_mutex_lock(&first_mutex);
pthread_mutex_lock(&second_mutex);
/* Do some work */
pthread_mutex_unlock(&second_mutex);
pthread_mutex_unlock(&first_mutex);
pthread_exit(0); }

void *do_work_two(void *param) {
pthread_mutex_lock(&second_mutex);
pthread_mutex_lock(&first_mutex);
[* Do some work */
pthread_mutex_unlock(&first_mutex);
pthread_mutex_unlock(&second_mutex);
pthread_exit(0); }

Pthread_mutex_init(&first_mutex, NULL);
Pthread_mutex_init(&second_mutex, NULL);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Characterization

= Necessary Conditions

(deadlock - conditions or = conditions = - deadlock)

1. Mutual Exclusion — At least one
resource must be held in a non-
sharable mode!

2. Hold and Wait — Pi is holding at least
one resource and waiting to acquire
additional resources that are currently
held by other processes!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

* All rights rese

Deadlock Characterization

3.

4.

No Preemption — Resources are
nonpreemptible!

Circular Wait — There exists a set
{Po, Py, ..., P} of waiting process
such that Py— P, P,— P,, ...,

IDn-lﬁ I:)n’ an an 0-
Remark:
= Condition 4 implies Condition 2.

» The four conditions are not
completely independent!

rved, Tei-Wei Kuo, National Taiwan University, 2005.

Resource Allocation Graph

System Resource-Allocation Graph

R1 R3
. . Vertices
A\ Processes:
\ N\ Py
Resource Type :
o
/ Edges
Request Edge:
/ 0 { Pi > R
E o Assignment Edge:
RD R4 Ri 2 Pj

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Resource Allocation Graph

= Example

R1 R3 = No-Deadlock
= \ertices

\ A\
\ / \ « P={P1,P2 P3}
* R={R1, R2,R3, R4}
/’/ » E={P1>R1, P2>R3,
R1>P2, R2>P2,

(]

J : R2->P1, R3>P3}
° ° = Resources
R2 R4 = R1:1, R2:2, R3:1, R4:3

= = results in a deadlock.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Resource Allocation Graph

= Observation

* The existence of a cycle
= One Instance per Resource Type - Yesl!!
» Otherwise - Only A Necessary Condition!!

Rl//>
O o @

@

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Methods for Handling Deadlocks

= Solutions:

1. Make sure that the system never
enters a deadlock state!

= Deadlock Prevention: Fail at least one
of the necessary conditions

» Deadlock Avoidance: Processes
provide information regarding their
resource usage. Make sure that the
system always stays at a “safe” state!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Methods for Handling Deadlocks

2. Do recovery if the system is
deadlocked.
= Deadlock Detection
= Recovery

3. Ignore the possibility of deadlock
occurrences!

= Restart the system “manually” if the
system “seems” to be deadlocked or
stops functioning.

= Note that the system may be “frozen
temporarily!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

= Observation:

= Try to fail anyone of the necessary
condition!

"." = (A I-th condition) —» — deadlock

= Mutual Exclusion

?? Some resources, such as a printer,
are intrinsically non-sharable??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

= Hold and Wait

= Acquire all needed resources before its
execution.

= Release allocated resources before
request additional resources!
[Tape Drive - Disk] [Disk & Printer]

| |
! Hold Them All !

I Tape Drive & Disk I Disk & Printer I

» Disadvantage:
= | ow Resource Utilization
= Starvation

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

= No Preemption

= Resource preemption causes the release of resources.

» Related protocols are only applied to resources whose
states can be saved and restored, e.g., CPU register &
memory space, instead of printers or tape drives.

= Approach 1:

Resource Allocated
Request
are released

granted

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

= Approach 2

Yes

Resource

e o
Request Satisfied?

granted

Requested
Preempt
Resources are those
eld by “Waiting Resources.

“Wait” and its
allocated resources
may be preempted.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

= Circular Wait
A resource-ordering approach:

F:R>N
Resource requests must be made in
an increasing order of enumeration.

= Type 1 — strictly increasing order of
resource requests.

= |nitially, order any # of instances of Ri

» Following requests of any # of instances
of Rj must satisfy F(R]) > F(Ri), and so on.

* A single request must be issued for all
needed instances of the same resources.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

= Type 2
» Processes must release all Ri's when
they request any instance of Rj if F(Ri) >
F(RI)
» F: R -2 N must be defined according to
the normal order of resource usages in a

system, e.g.,
F(tape drive) = 1
F(disk drive) =5 ?? feasible ??

F(printer) =12

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

= Motivation;:

» Deadlock-prevention algorithms can cause
low device utilization and reduced system
throughput!

=» Acquire additional information about how
resources are to be requested and have
better resource allocation!

» Processes declare their maximum
number of resources of each type that it
may need.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

= A Simple Model
= A resource-allocation state
<# of available resources,
of allocated resources,
max demands of processes>

= A deadlock-avoidance algorithm dynamically
examines the resource-allocation state and
make sure that it is safe.
= e.g., the system never satisfies the circular-
walit condition.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

» Safe Sequence

= A sequence of processes <P1,
P2, ..., Pn>is a safe sequence if

VPi, need (Pi) < Available +) allocated (Pj)

j<i

» Safe State
» The existence of a safe sequence
» Unsafe

safe unsafe

deadlock

Deadlocks are avoided if the system can
allocate resources to each process up to its
maximum request in some order. If so, the
system is in a safe state!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

= Example:
max needs | Allocated | Available
PO 10 5 3
Pl 4 2
P2 9 2

» The existence of a safe sequence <P1, PO, P2>.
* If P2 got one more, the system state is unsafe.

-+ ((P0,5), (PL,2), (P2,3), (available,2))
How to ensure that the system will always
remain in a safe state?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance — Resource-
Allocation Graph Algorithm

= One Instance per Resource Type

*Request Edge

R1

o) 5,

resource
*Assignment Edge allocated

. R2 Rj @] request
made

«Claim Edge resource

release

* All rights rese

rved, Tei-Wei Kuo, National Taiwan University, 2005.

Rj

]

Deadlock Avoidance — Resource-
Allocation Graph Algorithm

R1 A cycle is detected!

=» The system state is unsafe!

@ * R2 was requested & granted!
. R2 /

{ Safe state: no cycle } Cycle detection

can be done

Unsafe state: otherwise © in O(n2?)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance — Banker’s
Algorithm

= Available [m]

= |f Available [i] = k, there are k instances of
resource type Ri available.

= Max [n,m]
n: # of = If Max [i,j] = k, process Pi may request at most k
processes, instances of resource type R;j.
m: # of . Al .
resource ocation [nm] .
types = |f Allocation [i,j] = k, process Pi is currently

allocated k instances of resource type R;.

» Need [n,m]
= [f Need [i,]] = k, process Pi may need k more
instances of resource type R;j.

» Need [i,!J = Max [i,j] — Allocation [i,]]

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance — Banker’s
Algorithm

» Safety Algorithm — A state is safe??

1. Work := Available & Finish [i] :=F, 1= i= n
2. Find an i such that both

n: # of 1. Finish [i] =F

processes, 2. Need[i] = Work

m: # of If no such i exist, then goto Step4
resource 3. Work := Work + Allocation[i]

types Finish [i] :=T; Goto Step2

4. If Finish [i] =T for all i, then the system is in
a safe state.

Where Allocation[i] and Need[i] are the i-th row of
Allocation and Need, respectively, and
X= Yif X[i] = Y]i] for all i,
X<YifX=Yand Y# X

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance — Banker’s
Algorithm

= Resource-Request Algorithm

Request, [j] =k: P, requests k instance of resource type Rj

1. If Request, = Need, then Goto Step2; otherwise, Trap
2. If Request; = Available, then Goto Step3; otherwise, Pi
must wait.
3. Have the system pretend to have allocated resources to
process P, by setting
Available := Available — Request;;
Allocation; := Allocation; + Request;
Need, := Need, — Request;
Execute “Safety Algorithm”. If the system state is safe,
the request is granted; otherwise, Pi must wait, and the
old resource-allocation state is restored!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

= An Example

Allocation Max Need Available
A B C A B C A B C A B C
PO| O 1 0 7 5 3 7 4 3 3 3 2
P1| 2 0 0 3 2 2 1 2 2
P2 | 3 0 2 9 0 2 6 0 0
P3| 2 1 1 2 2 2 0 1 1
P4 | O 0 2 4 3 3 4 3 1

A safe state
"." <P1,P3,P4,P2,P0> is a safe sequence.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

Let P1 make a request Requesti = (1,0,2)
Request; = Available ((1,0,2) = (3,3,2))

Allocation Need Available
A B C A B C B
PO| O 1 0 7 4 3 2 3 0
P1| 3 0 2 0 2 0
P2 | 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 | O 0 2 4 3 1

—> Safe *.' <P1,P3,P4,P0,P2> is a safe sequence!

* If Request4 = (3,3,0) is asked later, it must be rejected.
* RequestO = (0,2,0) must be rejected because it results in an
unsafe state.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection

= Motivation:

= Have high resource utilization and
“maybe” a lower possibility of deadlock
occurrence.

= Overheads:
= Cost of information maintenance
= Cost of executing a detection algorithm

= Potential loss inherent from a deadlock
recovery

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection - Single
Instance per Resource Type

o

R1 R3 R4
o e @ o120
R2 }—(pay— RS (Pa)

A Resource-Allocation Graph A Wait-For Graph

@) () — (D

» Detect an cycle in O(n?).
* The system needs to maintain the wait-for graph

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection — Multiple
Instance per Resource Type

= Data Structures
= Available[1..m]: # of available resource

instances
n: # of = Allocation[1..n, 1..m]: current resource
processes, allocation to each process
m: # of = Request[1..n, 1..m]: the current request of
resource each process
types = |If Request[i,j] = k, Pi requests k more

instances of resource type Rj

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection — Multiple
Instance per Resource Type

1. Work := Available. Fori=1, 2, ..., n,if
Allocation[i] # 0, then Finish[i] = F;
otherwise, Finishl[i] =T.
2. Find an i such that both
Complexity = a. Finish[i] = F
O(m * n2) b. Request[i] = Work
If no such i, Goto Step 4
3. Work := Work + Allocation(i]
Finish[i] =T
Goto Step 2

4. If Finish[i] = F for some i, then the system is
in a deadlock state. If Finish[i] = F, then
process Pi is deadlocked.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection — Multiple
Instances per Resource Type

= An Example

Allocation Request Available
A B C A B C A B C
PO | O 1 0 0 0 0 0 2 0
P1L| 2 01| O 2 0 2
P2 | 3 0| 3 0Ol 0] O
P3| 2 1 1 1 0 0
P4 | O 0 2 01| O 2

= Find a sequence <PO0, P2, P3, P1, P4> such that Finish([i]
=T for all i.

If Request2 = (0,0,1) is issued, then P1, P2, P3, and P4 are
deadlocked.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection — Algorithm
Usage

» When should we invoke the detection
algorithm?
» How often is a deadlock likely to occur?
= How many processes will be affected by a

deadlock?
Every overheads
rejected processes affected
request — * >t

= Time for Deadlock Detection?
= CPU Threshold? Detection Frequency? ...

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery

= Whose responsibility to deal with
deadlocks?

» Operator deals with the deadlock
manually.

» The system recover from the
deadlock automatically.
= Possible Solutions

= Abort one or more processes to
break the circular wait.

» Preempt some resources from one or
more deadlocked processes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery — Process
Termination

» Process Termination
» Abort all deadlocked processes!

= Simple but costly!

= Abort one process at a time until the deadlock
cycle is broken!

= Overheads for running the detection again and
again.
» The difficulty in selecting a victim!

But, can we abort any process?
Should we compensate any

damage caused by aborting?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery — Process
Termination

= What should be considered in choosing
a victim?
» Process priority

= The CPU time consumed and to be
consumed by a process.

» The numbers and types of resources
used and needed by a process

= Process’s characteristics such as
“Interactive or batch”

= The number of processes needed to be
aborted.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery — Resource
Preemption

= Goal: Preempt some resources from processes
and give them to other processes until the
deadlock cycle is broken!

= [SsSues

= Selecting a victim;
= |t must be cost-effective!

= Roll-Back

= How far should we roll back a process whose resources
were preempted?

= Starvation
= Will we keep picking up the same process as a victim?
= How to control the # of rollbacks per process efficiently?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery -
Combined Approaches

= Partition resources into classes that
are hierarchically ordered.

— No deadlock involves more than
one class

= Handle deadlocks in each class
independently

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery -
Combined Approaches

Examples:

» [nternal Resources: Resources used by the
system, e.g., PCB

— Prevention through resource ordering
= Central Memory: User Memory

— Prevention through resource preemption
= Job Resources: Assignable devices and files

— Avoidance °." This info may be obtained!

= Swappable Space: Space for each user process
on the backing store

— Pre-allocation °." the maximum need is known!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

