
Chapter 7 Deadlocks

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlocks

A set of process is in a deadlock state
when every process in the set is waiting
for an event that can be caused by only
another process in the set.
A System Model

Competing processes – distributed?
Resources:

Physical Resources, e.g., CPU, printers,
memory, etc.
Logical Resources, e.g., files,
semaphores, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlocks

A Normal Sequence
1. Request: Granted or Rejected
2. Use
3. Release

Remarks
No request should exceed the
system capacity!
Deadlock can involve different
resource types!

Several instances of the same type!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlocks
void *do_work_one(void *param) {

pthread_mutex_lock(&first_mutex);
pthread_mutex_lock(&second_mutex);
/* Do some work */
pthread_mutex_unlock(&second_mutex);
pthread_mutex_unlock(&first_mutex);
pthread_exit(0); }

void *do_work_two(void *param) {
pthread_mutex_lock(&second_mutex);
pthread_mutex_lock(&first_mutex);
/* Do some work */
pthread_mutex_unlock(&first_mutex);
pthread_mutex_unlock(&second_mutex);
pthread_exit(0); }

…
Pthread_mutex_init(&first_mutex, NULL);
Pthread_mutex_init(&second_mutex, NULL);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Characterization
Necessary Conditions

1. Mutual Exclusion – At least one
resource must be held in a non-
sharable mode!

2. Hold and Wait – Pi is holding at least
one resource and waiting to acquire
additional resources that are currently
held by other processes!

(deadlock conditions or ¬ conditions ¬ deadlock)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Characterization

3. No Preemption – Resources are
nonpreemptible!

4. Circular Wait – There exists a set
{P0, P1, …, Pn} of waiting process
such that P0 P1, P1 P2, …,
Pn-1 Pn, and Pn P0.

Remark:
Condition 4 implies Condition 2.
The four conditions are not
completely independent!

wait

wait wait

wait

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Resource Allocation Graph

P1 P2 P3

R1 R3

R2 R4

Vertices
Processes:

{P1,…, Pn}
Resource Type :

{R1,…, Rm}

Edges
Request Edge:

Pi Rj
Assignment Edge:

Ri Pj

System Resource-Allocation Graph

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Resource Allocation Graph
Example

No-Deadlock
Vertices

P = { P1, P2, P3 }

R = { R1, R2, R3, R4 }

Edges
E = { P1 R1, P2 R3,
R1 P2, R2 P2,
R2 P1, R3 P3 }

Resources
R1:1, R2:2, R3:1, R4:3

results in a deadlock.

P1 P2 P3

R1 R3

R2 R4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Resource Allocation Graph

Observation
The existence of a cycle

One Instance per Resource Type Yes!!

Otherwise Only A Necessary Condition!!

P1

P2

P3

P4

R1

R2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Methods for Handling Deadlocks

Solutions:
1. Make sure that the system never

enters a deadlock state!
Deadlock Prevention: Fail at least one
of the necessary conditions

Deadlock Avoidance: Processes
provide information regarding their
resource usage. Make sure that the
system always stays at a “safe” state!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Methods for Handling Deadlocks

2. Do recovery if the system is
deadlocked.

Deadlock Detection

Recovery

3. Ignore the possibility of deadlock
occurrences!

Restart the system “manually” if the
system “seems” to be deadlocked or
stops functioning.

Note that the system may be “frozen”
temporarily!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

Observation:
Try to fail anyone of the necessary
condition!

∵ ¬ (∧ i-th condition) → ¬ deadlock

Mutual Exclusion
?? Some resources, such as a printer,

are intrinsically non-sharable??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention
Hold and Wait

Acquire all needed resources before its
execution.
Release allocated resources before
request additional resources!

Disadvantage:
Low Resource Utilization
Starvation

Tape Drive & Disk Disk & Printer
Hold Them All

[Tape Drive Disk] [Disk & Printer]

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

No Preemption
Resource preemption causes the release of resources.

Related protocols are only applied to resources whose
states can be saved and restored, e.g., CPU register &
memory space, instead of printers or tape drives.

Approach 1:

Resource
Request

Allocated
resources

are released
Satisfied?

granted

No

Yes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

Approach 2

Resource
Request

Satisfied?

No

Yes

Requested
Resources are

held by “Waiting”
processes?

Preempt
those

Resources.

Yes

No

“Wait” and its
allocated resources
may be preempted.

granted

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention
Circular Wait
A resource-ordering approach:

Type 1 – strictly increasing order of
resource requests.

Initially, order any # of instances of Ri
Following requests of any # of instances
of Rj must satisfy F(Rj) > F(Ri), and so on.

* A single request must be issued for all
needed instances of the same resources.

F : R N
Resource requests must be made in
an increasing order of enumeration.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Prevention

Type 2
Processes must release all Ri’s when
they request any instance of Rj if F(Ri) ≥
F(Rj)

F : R N must be defined according to
the normal order of resource usages in a
system, e.g.,

F(tape drive) = 1

F(disk drive) = 5

F(printer) = 12

?? feasible ??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance
Motivation:

Deadlock-prevention algorithms can cause
low device utilization and reduced system
throughput!

Acquire additional information about how
resources are to be requested and have
better resource allocation!

Processes declare their maximum
number of resources of each type that it
may need.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance
A Simple Model

A resource-allocation state

<# of available resources,

of allocated resources,

max demands of processes>

A deadlock-avoidance algorithm dynamically
examines the resource-allocation state and
make sure that it is safe.

e.g., the system never satisfies the circular-
wait condition.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance
Safe Sequence

A sequence of processes <P1,
P2, …, Pn> is a safe sequence if

Safe State

The existence of a safe sequence

Unsafe

∑
<

+≤∀
ij

PjallocatedAvailablePineedPi)()(,

safe unsafe

deadlock

Deadlocks are avoided if the system can
allocate resources to each process up to its
maximum request in some order. If so, the
system is in a safe state!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

Example:

29P2

24P1

3510P0

AvailableAllocatedmax needs

• The existence of a safe sequence <P1, P0, P2>.
• If P2 got one more, the system state is unsafe.

How to ensure that the system will always
remain in a safe state?

))2,(),3,2(),2,1(),5,0((availablePPPQ

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

P1 P2

R1

R2

•Request Edge

Pi Rj

Pi Rj

PiRj

•Assignment Edge

•Claim Edge

resource
allocated

resource
release

request
made

Deadlock Avoidance – Resource-
Allocation Graph Algorithm

One Instance per Resource Type

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance – Resource-
Allocation Graph Algorithm

P1 P2

R1

R2

A cycle is detected!
The system state is unsafe!

• R2 was requested & granted!

Safe state: no cycle

Unsafe state: otherwise

Cycle detection
can be done
in O(n2)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance – Banker’s
Algorithm

Available [m]
If Available [i] = k, there are k instances of
resource type Ri available.

Max [n,m]
If Max [i,j] = k, process Pi may request at most k
instances of resource type Rj.

Allocation [n,m]
If Allocation [i,j] = k, process Pi is currently
allocated k instances of resource type Rj.

Need [n,m]
If Need [i,j] = k, process Pi may need k more
instances of resource type Rj.

Need [i,j] = Max [i,j] – Allocation [i,j]

n: # of
processes,
m: # of
resource
types

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance – Banker’s
Algorithm

Safety Algorithm – A state is safe??
1. Work := Available & Finish [i] := F, 1≦ i≦ n
2. Find an i such that both

1. Finish [i] =F
2. Need[i] ≦ Work
If no such i exist, then goto Step4

3. Work := Work + Allocation[i]
Finish [i] := T; Goto Step2

4. If Finish [i] = T for all i, then the system is in
a safe state.

Where Allocation[i] and Need[i] are the i-th row of
Allocation and Need, respectively, and
X≦ Y if X[i] ≦ Y[i] for all i,
X < Y if X ≦ Y and Y≠ X

n: # of
processes,
m: # of
resource
types

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

1. If Requesti ≦ Needi, then Goto Step2; otherwise, Trap
2. If Requesti ≦ Available, then Goto Step3; otherwise, Pi

must wait.
3. Have the system pretend to have allocated resources to

process Pi by setting
Available := Available – Requesti;
Allocationi := Allocationi + Requesti;
Needi := Needi – Requesti;

Execute “Safety Algorithm”. If the system state is safe,
the request is granted; otherwise, Pi must wait, and the
old resource-allocation state is restored!

Deadlock Avoidance – Banker’s
Algorithm

Resource-Request Algorithm
Requesti [j] =k: Pi requests k instance of resource type Rj

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

134334200P4

110222112P3

006209203P2

221223002P1

233347357010P0

CBACBACBACBA

AvailableNeedMaxAllocation

• A safe state
∵ <P1,P3,P4,P2,P0> is a safe sequence.

Deadlock Avoidance

An Example

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Avoidance

134200P4

110112P3

006203P2

020203P1

032347010P0

CBACBACBA

AvailableNeedAllocation

Let P1 make a request Requesti = (1,0,2)
Requesti ≦ Available ((1,0,2) ≦ (3,3,2))

• If Request4 = (3,3,0) is asked later, it must be rejected.
• Request0 = (0,2,0) must be rejected because it results in an
unsafe state.

Safe ∵ <P1,P3,P4,P0,P2> is a safe sequence!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection

Motivation:

Have high resource utilization and
“maybe” a lower possibility of deadlock
occurrence.

Overheads:
Cost of information maintenance

Cost of executing a detection algorithm

Potential loss inherent from a deadlock
recovery

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection – Single
Instance per Resource Type

P1 P2

P5

P4

P3

R5R2

R4R3R1

P2P1 P3

P4

P5

A Resource-Allocation Graph A Wait-For Graph

Pi Rq Pj Pi Pj

• Detect an cycle in O(n2).
• The system needs to maintain the wait-for graph

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection – Multiple
Instance per Resource Type

Data Structures
Available[1..m]: # of available resource
instances

Allocation[1..n, 1..m]: current resource
allocation to each process

Request[1..n, 1..m]: the current request of
each process

If Request[i,j] = k, Pi requests k more
instances of resource type Rj

n: # of
processes,
m: # of
resource
types

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection – Multiple
Instance per Resource Type

1. Work := Available. For i = 1, 2, …, n, if
Allocation[i] ≠ 0, then Finish[i] = F;
otherwise, Finish[i] =T.

2. Find an i such that both
a. Finish[i] = F
b. Request[i] ≦ Work

If no such i, Goto Step 4
3. Work := Work + Allocation[i]

Finish[i] := T
Goto Step 2

4. If Finish[i] = F for some i, then the system is
in a deadlock state. If Finish[i] = F, then
process Pi is deadlocked.

Complexity =
O(m * n2)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

200200P4

001112P3

000303P2

202002P1

020000010P0

CBACBACBA

AvailableRequestAllocation

Find a sequence <P0, P2, P3, P1, P4> such that Finish[i]
= T for all i.
If Request2 = (0,0,1) is issued, then P1, P2, P3, and P4 are
deadlocked.

Deadlock Detection – Multiple
Instances per Resource Type

An Example

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Detection – Algorithm
Usage

When should we invoke the detection
algorithm?

How often is a deadlock likely to occur?

How many processes will be affected by a
deadlock?

Time for Deadlock Detection?

CPU Threshold? Detection Frequency? …

Every
rejected
request

∞＋ －
overheads

－ ＋
processes affected

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery

Whose responsibility to deal with
deadlocks?

Operator deals with the deadlock
manually.

The system recover from the
deadlock automatically.

Possible Solutions
Abort one or more processes to
break the circular wait.

Preempt some resources from one or
more deadlocked processes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery – Process
Termination

Process Termination
Abort all deadlocked processes!

Simple but costly!
Abort one process at a time until the deadlock
cycle is broken!

Overheads for running the detection again and
again.
The difficulty in selecting a victim!

But, can we abort any process?
Should we compensate any

damage caused by aborting?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery – Process
Termination

What should be considered in choosing
a victim?

Process priority
The CPU time consumed and to be
consumed by a process.
The numbers and types of resources
used and needed by a process
Process’s characteristics such as
“interactive or batch”
The number of processes needed to be
aborted.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery – Resource
Preemption

Goal: Preempt some resources from processes
and give them to other processes until the
deadlock cycle is broken!

Issues

Selecting a victim:
It must be cost-effective!

Roll-Back
How far should we roll back a process whose resources
were preempted?

Starvation
Will we keep picking up the same process as a victim?

How to control the # of rollbacks per process efficiently?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery –
Combined Approaches

Partition resources into classes that
are hierarchically ordered.

⇒ No deadlock involves more than
one class
Handle deadlocks in each class
independently

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlock Recovery –
Combined Approaches
Examples:

Internal Resources: Resources used by the
system, e.g., PCB

→ Prevention through resource ordering

Central Memory: User Memory

→ Prevention through resource preemption

Job Resources: Assignable devices and files

→ Avoidance ∵ This info may be obtained!

Swappable Space: Space for each user process
on the backing store

→ Pre-allocation ∵ the maximum need is known!

