
Chapter 6 Synchronization
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Process Synchronization

Why Synchronization?
To ensure data consistency for 
concurrent access to shared data!

Contents: 
Various mechanisms to ensure the 
orderly execution of cooperating 
processes
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Process Synchronization

A Consumer-Producer Example

Consumer:
while (1) {

while (counter == 0)
;

nextc = buffer[out];
out = (out +1) % BUFFER_SIZE;
counter--;
consume an item in nextc;

} 

Producer
while (1) {

while (counter == BUFFER_SIZE)

; 

produce an item in nextp;

….

buffer[in] = nextp;

in = (in+1) % BUFFER_SIZE;

counter++;
}
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Process Synchronization

counter++ vs counter—
r1 = counter r2 = counter
r1 = r1 + 1 r2 = r2 - 1
counter = r1 counter = r2

Initially, let counter = 5.
1. P: r1 = counter
2. P: r1 = r1 + 1
3. C: r2 = counter
4. C: r2 = r2 – 1
5. P: counter = r1
6. C: counter = r2

A Race Condition!
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Process Synchronization

A Race Condition:
A situation where the outcome of the 
execution depends on the particular 
order of process scheduling.

The Critical-Section Problem:
Design a protocol that processes can 
use to cooperate.

Each process has a  segment of  code, 
called a critical section,  whose 
execution  must be mutually exclusive.
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Process Synchronization

A General Structure for the Critical-
Section Problem

permission request

exit notification

entry section;

critical section;

exit section;

remainder section;

} while (1);

do {
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Three Requirements
1. Mutual Exclusion

a. Only one process can be in its critical section.

2. Progress
a. Only processes not in their remainder section can 

decide which will enter its critical section.
b. The selection cannot be postponed indefinitely.

3. Bounded Waiting
a. A waiting process only waits for a bounded 

number of processes to enter their critical 
sections.  

The Critical-Section Problem
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Notation
Processes Pi and Pj, where j=1-i;

Assumption
Every basic machine-language 
instruction is atomic.

Algorithm 1
Idea: Remember which process is 
allowed to enter its critical  section, 
That is, process i can enter its 
critical section if turn = i.

The Critical-Section Problem –
Peterson’s Solution

while (turn != i) ;

critical section

turn=j;

remainder section

}  while (1);

do {
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Algorithm 1 fails the progress requirement:

P0

P1

Time

Time

suspend or 
quit!turn=0 exit

turn=1

exit

turn=0
blocked on P1’s 
entry section

The Critical-Section Problem –
Peterson’s Solution
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Algorithm 2
Idea: Remember the state 
of each process.
flag[i]==true Pi is ready 
to enter its critical section.
Algorithm 2 fails the 
progress requirement 
when   
flag[0]==flag[1]==true; 

the exact timing of the 
two processes?

The Critical-Section Problem –
Peterson’s Solution

flag[i]=true;

while (flag[j]) ;

critical section

flag[i]=false;

remainder section

}  while (1);

do {

Initially, flag[0]=flag[1]=false

* The switching of “flag[i]=true” and “while (flag[j]);”.
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Algorithm 3
Idea: Combine the 
ideas of Algorithms 1 
and 2

When (flag[i] && 
turn=i), Pj must wait.

Initially, 
flag[0]=flag[1]=false, 
and turn = 0 or 1

The Critical-Section Problem –
Peterson’s Solution

flag[i]=true;

turn=j;

while (flag[j] && turn==j) ;

critical section

flag[i]=false;

remainder section

}  while (1);

do {
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Properties of Algorithm 3 
Mutual Exclusion

The eventual value of turn determines 
which process enters the critical section.

Progress
A process can only be stuck in the while 
loop, and the process which can keep it 
waiting must be in its critical sections.

Bounded Waiting
Each process wait at most one entry by the 
other process.

The Critical-Section Problem –
Peterson’s Solution
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Bakery Algorithm
Originally designed for distributed 
systems
Processes which are ready to enter 
their critical section must take a 
number and wait till the number 
becomes the lowest. 

int number[i]: Pi’s number if it is 
nonzero.
boolean choosing[i]: Pi is taking a 
number.

The Critical-Section Problem –
A Multiple-Process Solution
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• An observation: If Pi is in its 
critical section, and Pk (k != i) has 
already chosen its number[k], 
then (number[i],i) < (number[k],k).

choosing[i]=true;

number[i]=max(number[0], …number[n-1])+1;

choosing[i]=false;

for (j=0; j < n; j++)

while choosing[j] ;

while (number[j] != 0 && (number[j],j)<(number[i],i)) ;

critical section

number[i]=0;

remainder section

} while (1);

do {

The Critical-Section Problem –
A Multiple-Process Solution
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Synchronization Hardware

Motivation: 
Hardware features make programming 
easier and improve system efficiency.

Approach:
Disable Interrupt No Preemption

Infeasible in multiprocessor environment 
where message passing is used.

Potential impacts on interrupt-driven system 
clocks.

Atomic Hardware Instructions
Test-and-set, Swap, etc.
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boolean TestAndSet(boolean &target) {

boolean rv = target;

target=true;

return rv;

}

while (TestAndSet(lock)) ;

critical section

lock=false;

remainder section

} while (1);

do {

Synchronization Hardware
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void Swap(boolean &a, boolean &b) {

boolean temp = a;

a=b;

b=temp;

}

key=true;

while (key == true) 

Swap(lock, key);

critical section

lock=false;

remainder section
} while (1);

do {

Synchronization Hardware
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waiting[i]=true;

key=true;

while (waiting[i] && key) 

key=TestAndSet(lock);

waiting[i]=false;

critical section;

j= (i+1) % n;

while(j != i) && (not waiting[j])

j= (j+1) % n;

If (j=i) lock=false;

else waiting[j]=false; 

remainder section

} while (1);

do {

Synchronization Hardware
Mutual Exclusion

Pass if key == F 
or waiting[i] == F

Progress

Exit process 
sends a process in.

Bounded Waiting

Wait at most n-1 
times

Atomic TestAndSet is 
hard to implement in a 
multiprocessor 
environment.
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Semaphores

Motivation: 
A high-level solution for more 
complex problems.

Semaphore
A variable S only accessible by two 
atomic operations:

signal(S) {     /* V */
S++;

}

wait(S) {        /* P */

while (S <= 0) ;
S—;

}
•Indivisibility for “(S<=0)”, “S—”, and “S++”
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Semaphores – Usages 

Critical Sections

do {

wait(mutex);

critical section

signal(mutex);

remainder section

} while (1);

Precedence Enforcement

P1:
S1;
signal(synch);

P2:
wait(synch);
S2;
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Semaphores

Implementation
Spinlock – A Busy-Waiting Semaphore

“while (S <= 0)” causes the wasting of 
CPU cycles!

Advantage: 
When locks are held for a short time, 
spinlocks are useful since no context 
switching is involved. 

Semaphores with Block-Waiting 
No busy waiting from the entry to the 
critical section!
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Semaphores

Semaphores with Block Waiting               
typedef struct {

int value;
struct process *L;

} semaphore ;

void signal(semaphore S);
S.value++;                
if (S.value <= 0) {

remove a process P form S.L;
wakeup(P);

}
}

void wait(semaphore S) {
S.value--;
if (S.value < 0) {

add this process to S.L;
block();                           

}
}

* |S.value| = the # of waiting processes if S.value < 0.
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Semaphores
The queueing strategy can be arbitrary, 
but there is a restriction for the bounded-
waiting requirement.

Mutual exclusion in wait() & signal()
Uniprocessor Environments

Interrupt Disabling

TestAndSet, Swap

Software Methods, e.g., the Bakery Algorithm, 
in Section 7.2

Multiprocessor Environments

Remarks: Busy-waiting is limited to only 
the critical sections of the wait() & signal()!
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Deadlocks and Starvation
Deadlock

A set of processes is in a deadlock state when 
every process in the set is waiting for an event 
that can be caused only by another process in the 
set.

Starvation (or Indefinite Blocking)
E.g., a LIFO queue

P0:  wait(S);          P1: wait(Q);

wait(Q);                 wait(S);

… …

signal(S);              signal(Q);

signal(Q);              signal(S); 
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Binary Semaphore

Binary Semaphores versus Counting 
Semaphores

The value ranges from 0 to 1 easy  
implementation!

wait(S)
wait(S1);    /* protect C */
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

signal(S)
wait(S1);
C++;
if (C <= 0)

signal (S2); /* wakeup */
else

signal (S1);

* S1 & S2: binary semaphores
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Classical Synchronization 
Problems – The Bounded Buffer

Producer:
do {

produce an item in nextp;
…….
wait(empty);  /* control buffer availability */
wait(mutex);  /* mutual exclusion */
……
add nextp to buffer;
signal(mutex);
signal(full);  /* increase item counts */

} while (1);

Initialized to n
Initialized to 1

Initialized to 0
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Classical Synchronization 
Problems – The Bounded Buffer

Consumer:
do {

wait(full);  /* control buffer availability */
wait(mutex);  /* mutual exclusion */
…….
remove an item from buffer to nextp;
……
signal(mutex);
signal(empty);  /* increase item counts */
consume nextp;

} while (1);

Initialized to n

Initialized to 1
Initialized to 0
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Classical Synchronization 
Problems – Readers and Writers

The Basic Assumption:
Readers: shared locks
Writers: exclusive locks

The first reader-writers problem
No readers will be kept waiting unless a 
writer has already obtained permission to 
use the shared object potential hazard 
to writers!

The second reader-writers problem:
Once a writer is ready, it performs its write 
asap! potential hazard to readers!
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Classical Synchronization 
Problems – Readers and Writers

semaphore wrt, mutex; 

(initialized to 1);

int readcount=0;

Writer:

wait(wrt);

……

writing is performed

……

signal(wrt)

Reader:
wait(mutex);
readcount++; 
if (readcount == 1)

wait(wrt);
signal(mutex);
…… reading ……
wait(mutex);
readcount--; 
if (readcount== 0)

signal(wrt);
signal(mutex);

First R/W
Solution

Queueing
mechanism

Which is awaken?
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Classical Synchronization 
Problems – Dining-Philosophers 

Each philosopher must pick up one 
chopstick beside him/her at a time

When two chopsticks are picked up, 
the philosopher can eat.

thinking hungry

deadeating
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Classical Synchronization 
Problems – Dining-Philosophers

semaphore chopstick[5];

do {

wait(chopstick[i]);

wait(chopstick[(i + 1) % 5 ]);

… eat …

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

…think …

} while (1);
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Classical Synchronization 
Problems – Dining-Philosophers

Deadlock or Starvation?!

Solutions to Deadlocks:
At most four philosophers appear.

Pick up two chopsticks “simultaneously”.

Order their behaviors, e.g., odds pick up their 
right one first, and evens pick up their left one 
first.

Solutions to Starvation:
No philosopher will starve to death.

A deadlock could happen??
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Critical Regions
Motivation:

Various programming errors in using 
low-level constructs,e.g., semaphores

Interchange the order of wait and signal 
operations

Miss some waits or signals

Replace waits with signals

etc

The needs of high-level language 
constructs to reduce the possibility of 
errors!
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Critical Regions

Region v when B do S;
Variable v – shared among processes 
and only accessible in the region

struct buffer {
item pool[n];
int count, in, out;

};

B – condition 
count < 0

S – statements

Example: Mutual Exclusion
region v when (true) S1;
region v when (true) S2;
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Critical Regions – Consumer-
Producer

Producer:

region buffer when 

(count < n) {

pool[in] = nextp;

in = (in + 1) % n;

count++;

}

Consumer:
region buffer when 
(count > 0) {

nextc = pool[out];
out = (out + 1) % n;
count--;

}

struct buffer {
item pool[n];
int count, in, out;

};
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Critical Regions –
Implementation by Semaphores

Region x when BB do SS;

wait(mutex);
while (!BB) {

/* fail B */
first-count++;
if (second-count > 0) 

/* try other processes waiting
on second-delay */

signal(second-delay); 
else signal(mutex);

/* block itself on first-delay */
wait(first-delay);

/* to protect the region */
semaphore mutex; 
/* to (re-)test B */
semaphore first-delay;
int first-count=0;
/* to retest B */
semaphore second-delay; 
int second-count=0;
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Critical Regions –
Implementation by Semaphores

first-count--;
second-count++;
if (first-count > 0)

signal(first-delay);
else signal(second-delay);

/* block itself on first-delay */
wait(second-delay);
second-count--;

}

SS;
if (first-count > 0)

signal(first-delay);
else if (second-count > 0)

signal(second-delay);
else signal(mutex);
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Monitor
Components

Variables – monitor state 

Procedures
Only access local variables or formal 
parameters

Condition variables
Tailor-made sync

x.wait() or x.signal

monitor name {
variable declaration
void proc1(…) {
} 
…
void procn(…) {
}

}

………
procedures

initialization
code

shared data

x

entry queue

queue for x
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Monitor

Semantics of signal & wait
x.signal() resumes one suspended 
process. If there is none, no effect is 
imposed.
P x.signal() a suspended process Q

P either waits until Q leaves the 
monitor or waits for another condition
Q either waits until P leaves the 
monitor, or waits for another 
condition.
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Monitor – Dining-Philosophers
monitor dp {

enum {thinking, hungry, eating} state[5];
condition self[5]; 
void pickup(int i) {

stat[i]=hungry;
test(i);
if (stat[i] != eating)

self[i].wait;
}
void putdown(int i) {

stat[i] = thinking;
test((i+4) % 5); 
test((i + 1) % 5);

}

Pi:
dp.pickup(i);
… eat …
dp.putdown(i);
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Monitor – Dining-Philosophers
void test(int i) {

if (stat[(i+4) % 5]) != eating &&
stat[i] == hungry &&
state[(i+1) % 5] != eating) {

stat[i] = eating; 
self[i].signal();

}
}
void init() {

for (int i=0; i < 5; i++)
state[i] = thinking;

}

No deadlock!
But starvation could occur!
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Monitor – Implementation by 
Semaphores

Semaphores
mutex – to protect the monitor
next – being initialized to zero, on which 
processes may suspend themselves

nextcount

For each external function F
wait(mutex);
…
body of F;
…
if (next-count > 0)

signal(next);
else signal(mutex);
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Monitor – Implementation by 
Semaphores

For every condition x
A semaphore x-sem

An integer variable x-count

Implementation of x.wait() and x.signal :

x.wait()

x-count++;

if (next-count > 0)

signal(next);

else signal(mutex);

wait(x-sem);

x-count--;

x.signal

if (x-count > 0) {

next-count++; 

signal(x-sem);

wait(next);

next-count--;
}

* x.wait() and x.signal() are invoked within a monitor.
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Monitor

Process-Resumption Order
Queuing mechanisms for a monitor 
and its condition variables.
A solution:

x.wait(c);
where the expression c is evaluated to 
determine its process’s resumption 
order.

R.acquire(t);
…
access the resource;
R.release;

monitor ResAllc {

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy=true;

}

…

}
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Monitor

Concerns:
Processes may access resources 
without consulting the monitor.

Processes may never release 
resources.

Processes may release resources 
which they never requested.

Process may even request resources 
twice.
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Monitor

Remark: Whether the monitor is correctly 
used?

=> Requirements for correct computations
Processes always make their calls on the 
monitor in correct order.

No uncooperative process can access 
resource directly without using the access 
protocols.

Note: Scheduling behavior should consult 
the built-in monitor scheduling algorithm if 
resource access RPC are built inside the 
monitor.
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Synchronization – Solaris

Semaphores and Condition Variables
Adaptive Mutex

Spin-locking if the lock-holding thread 
is running; otherwise, blocking is used.

Readers-Writers Locks
Expensive in implementations.

Turnstile 
A queue structure containing threads 
blocked on a lock.
Priority inversion priority inheritance 
protocol for kernel threads
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Synchronization – Windows XP
General Mechanism

Spin-locking for short code segments in 
a multiprocessor platform.
Interrupt disabling when access to 
global variables is done in a 
uniprocessor platform.

Dispatcher Object
State: signaled or non-signaled
Mutex – select one process from its 
waiting queue to the ready queue.
Events – select all processes waiting 
for the event.
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Synchronization – Linux

Preemptive Kernel After Version 2.6
Spin-locking for short code segments in 
a multiprocessor platform.

Interrupt disabling and enabling in a 
uniprocessor platform.

preempt_disable() and preempt_enable()

Preempt_count
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Synchronization – Pthreads

General Mechanism
Mutex locks – mutual exclusion

Condition variables – Monitor 

Read-write locks

Extensions
POSIX SEM extension: semaphores

Spinlocks – portability?
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Atomic Transactions

Why Atomic Transactions?
Critical sections ensure mutual 
exclusion in data sharing, but the 
relationship between critical sections 
might also be meaningful!

Atomic Transactions

Operating systems can be viewed as 
manipulators of data!
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Atomic Transactions –
System Model

Transaction – a logical unit of 
computation

A sequence of read and write operations 
followed by a commit or an abort.

Beyond “critical sections”
1. Atomicity: All or Nothing

An aborted transaction must be rolled 
back.
The effect of a committed transaction 
must persist and be imposed as a logical 
unit of operations.
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Atomic Transactions –
System Model

2. Serializability: 
The order of transaction executions 
must be equivalent to a serial 
schedule. 

T0          T1
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

Two operations Oi & Oj conflict if
1. Access the same object
2. One of them is write
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Atomic Transactions –
System Model

Conflict Serializable:
S is conflict serializable if S can be 
transformed into a serial schedule by 
swapping nonconflicting operations.

T0          T1
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

T0          T1
R(A)
W(A)
R(B)
W(B)

R(A)
W(A)
R(B)
W(B)
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Atomic Transactions –
Concurrency Control

Locking Protocols
Lock modes (A general approach!)

1. Shared-Mode: “Reads”.

2. Exclusive-Mode: “Reads” & “Writes“

General Rule
A transaction must receive a lock of an 
appropriate mode of an object before it 
accesses the object. The lock may not 
be released until the last access of the 
object is done.
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Atomic Transactions –
Concurrency Control

Lock
Request

Locked?
Request 

compatible with the
current lock?

Lock is 
granted WAIT

Yes

Yes

No

No
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Atomic Transactions –
Concurrency Control

When to release locks w/o violating 
serializability

Two-Phase Locking Protocol (2PL) –
Not Deadlock-Free

How to improve 2PL?
Semantics, Order of Data, Access 
Pattern, etc.

Growing
Phase

Shrinking
Phase

serializable
schedules

2PL schedules

R0(A) W0(A) R1(A) R1(B) R0(B) W0(B)
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Atomic Transactions –
Concurrency Control

Timestamp-Based Protocols
A time stamp for each transaction TS(Ti)

Determine transactions’ order in a 
schedule in advance!

A General Approach:
TS(Ti) – System Clock or Logical Counter

Unique?

Scheduling Scheme – deadlock-free & 
serializable

))(()( )( iQWT TTSMaxQtimestampW
i −

=−

))(()( )( iQRT TTSMaxQtimestampR
i −

=−
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Atomic Transactions –
Concurrency Control

R(Q) requested by Ti check TS(Ti) !

W(Q) requested by Ti check TS(Ti) !

Rejected transactions are rolled back 
and restated with a new time stamp.

Time

W-timestamp(Q)

Rejected     Granted 

Time

R-timestamp(Q)

Rejected     Granted 

Time

W-timestamp(Q)
Rejected     Granted 
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Failure Recovery – A Way to 
Achieve Atomicity

Failures of Volatile and Nonvolatile Storages!
Volatile Storage: Memory and Cache

Nonvolatile Storage: Disks, Magnetic Tape, etc.

Stable Storage: Storage which never fail.

Log-Based Recovery
Write-Ahead Logging

Log Records
< Ti starts >

< Ti commits >

< Ti aborts >

< Ti, Data-Item-Name, Old-Value, New-Value>
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Two Basic Recovery Procedures:

undo(Ti): restore data updated by Ti
redo(Ti): reset data updated by Ti

Operations must be idempotent!
Recover the system when a failure occurs:

“Redo” committed transactions, and 
“undo” aborted transactions.

Failure Recovery

Time
restart crash
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Failure Recovery
Why Checkpointing?

The needs to scan and rerun all log 
entries to redo committed transactions.

CheckPoint
Output all log records, Output DB, and Write 
<check point> to stable storage!

Commit: A Force Write Procedure

Timecrashcheckpoint


