
Chapter 6 Synchronization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Synchronization

Why Synchronization?
To ensure data consistency for
concurrent access to shared data!

Contents:
Various mechanisms to ensure the
orderly execution of cooperating
processes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Synchronization

A Consumer-Producer Example

Consumer:
while (1) {

while (counter == 0)
;

nextc = buffer[out];
out = (out +1) % BUFFER_SIZE;
counter--;
consume an item in nextc;

}

Producer
while (1) {

while (counter == BUFFER_SIZE)

;

produce an item in nextp;

….

buffer[in] = nextp;

in = (in+1) % BUFFER_SIZE;

counter++;
}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Synchronization

counter++ vs counter—
r1 = counter r2 = counter
r1 = r1 + 1 r2 = r2 - 1
counter = r1 counter = r2

Initially, let counter = 5.
1. P: r1 = counter
2. P: r1 = r1 + 1
3. C: r2 = counter
4. C: r2 = r2 – 1
5. P: counter = r1
6. C: counter = r2

A Race Condition!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Synchronization

A Race Condition:
A situation where the outcome of the
execution depends on the particular
order of process scheduling.

The Critical-Section Problem:
Design a protocol that processes can
use to cooperate.

Each process has a segment of code,
called a critical section, whose
execution must be mutually exclusive.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Synchronization

A General Structure for the Critical-
Section Problem

permission request

exit notification

entry section;

critical section;

exit section;

remainder section;

} while (1);

do {

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Three Requirements
1. Mutual Exclusion

a. Only one process can be in its critical section.

2. Progress
a. Only processes not in their remainder section can

decide which will enter its critical section.
b. The selection cannot be postponed indefinitely.

3. Bounded Waiting
a. A waiting process only waits for a bounded

number of processes to enter their critical
sections.

The Critical-Section Problem

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Notation
Processes Pi and Pj, where j=1-i;

Assumption
Every basic machine-language
instruction is atomic.

Algorithm 1
Idea: Remember which process is
allowed to enter its critical section,
That is, process i can enter its
critical section if turn = i.

The Critical-Section Problem –
Peterson’s Solution

while (turn != i) ;

critical section

turn=j;

remainder section

} while (1);

do {

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Algorithm 1 fails the progress requirement:

P0

P1

Time

Time

suspend or
quit!turn=0 exit

turn=1

exit

turn=0
blocked on P1’s
entry section

The Critical-Section Problem –
Peterson’s Solution

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Algorithm 2
Idea: Remember the state
of each process.
flag[i]==true Pi is ready
to enter its critical section.
Algorithm 2 fails the
progress requirement
when
flag[0]==flag[1]==true;

the exact timing of the
two processes?

The Critical-Section Problem –
Peterson’s Solution

flag[i]=true;

while (flag[j]) ;

critical section

flag[i]=false;

remainder section

} while (1);

do {

Initially, flag[0]=flag[1]=false

* The switching of “flag[i]=true” and “while (flag[j]);”.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Algorithm 3
Idea: Combine the
ideas of Algorithms 1
and 2

When (flag[i] &&
turn=i), Pj must wait.

Initially,
flag[0]=flag[1]=false,
and turn = 0 or 1

The Critical-Section Problem –
Peterson’s Solution

flag[i]=true;

turn=j;

while (flag[j] && turn==j) ;

critical section

flag[i]=false;

remainder section

} while (1);

do {

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Properties of Algorithm 3
Mutual Exclusion

The eventual value of turn determines
which process enters the critical section.

Progress
A process can only be stuck in the while
loop, and the process which can keep it
waiting must be in its critical sections.

Bounded Waiting
Each process wait at most one entry by the
other process.

The Critical-Section Problem –
Peterson’s Solution

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Bakery Algorithm
Originally designed for distributed
systems
Processes which are ready to enter
their critical section must take a
number and wait till the number
becomes the lowest.

int number[i]: Pi’s number if it is
nonzero.
boolean choosing[i]: Pi is taking a
number.

The Critical-Section Problem –
A Multiple-Process Solution

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

• An observation: If Pi is in its
critical section, and Pk (k != i) has
already chosen its number[k],
then (number[i],i) < (number[k],k).

choosing[i]=true;

number[i]=max(number[0], …number[n-1])+1;

choosing[i]=false;

for (j=0; j < n; j++)

while choosing[j] ;

while (number[j] != 0 && (number[j],j)<(number[i],i)) ;

critical section

number[i]=0;

remainder section

} while (1);

do {

The Critical-Section Problem –
A Multiple-Process Solution

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Synchronization Hardware

Motivation:
Hardware features make programming
easier and improve system efficiency.

Approach:
Disable Interrupt No Preemption

Infeasible in multiprocessor environment
where message passing is used.

Potential impacts on interrupt-driven system
clocks.

Atomic Hardware Instructions
Test-and-set, Swap, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

boolean TestAndSet(boolean &target) {

boolean rv = target;

target=true;

return rv;

}

while (TestAndSet(lock)) ;

critical section

lock=false;

remainder section

} while (1);

do {

Synchronization Hardware

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a=b;

b=temp;

}

key=true;

while (key == true)

Swap(lock, key);

critical section

lock=false;

remainder section
} while (1);

do {

Synchronization Hardware

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

waiting[i]=true;

key=true;

while (waiting[i] && key)

key=TestAndSet(lock);

waiting[i]=false;

critical section;

j= (i+1) % n;

while(j != i) && (not waiting[j])

j= (j+1) % n;

If (j=i) lock=false;

else waiting[j]=false;

remainder section

} while (1);

do {

Synchronization Hardware
Mutual Exclusion

Pass if key == F
or waiting[i] == F

Progress

Exit process
sends a process in.

Bounded Waiting

Wait at most n-1
times

Atomic TestAndSet is
hard to implement in a
multiprocessor
environment.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Semaphores

Motivation:
A high-level solution for more
complex problems.

Semaphore
A variable S only accessible by two
atomic operations:

signal(S) { /* V */
S++;

}

wait(S) { /* P */

while (S <= 0) ;
S—;

}
•Indivisibility for “(S<=0)”, “S—”, and “S++”

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Semaphores – Usages

Critical Sections

do {

wait(mutex);

critical section

signal(mutex);

remainder section

} while (1);

Precedence Enforcement

P1:
S1;
signal(synch);

P2:
wait(synch);
S2;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Semaphores

Implementation
Spinlock – A Busy-Waiting Semaphore

“while (S <= 0)” causes the wasting of
CPU cycles!

Advantage:
When locks are held for a short time,
spinlocks are useful since no context
switching is involved.

Semaphores with Block-Waiting
No busy waiting from the entry to the
critical section!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Semaphores

Semaphores with Block Waiting
typedef struct {

int value;
struct process *L;

} semaphore ;

void signal(semaphore S);
S.value++;
if (S.value <= 0) {

remove a process P form S.L;
wakeup(P);

}
}

void wait(semaphore S) {
S.value--;
if (S.value < 0) {

add this process to S.L;
block();

}
}

* |S.value| = the # of waiting processes if S.value < 0.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Semaphores
The queueing strategy can be arbitrary,
but there is a restriction for the bounded-
waiting requirement.

Mutual exclusion in wait() & signal()
Uniprocessor Environments

Interrupt Disabling

TestAndSet, Swap

Software Methods, e.g., the Bakery Algorithm,
in Section 7.2

Multiprocessor Environments

Remarks: Busy-waiting is limited to only
the critical sections of the wait() & signal()!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deadlocks and Starvation
Deadlock

A set of processes is in a deadlock state when
every process in the set is waiting for an event
that can be caused only by another process in the
set.

Starvation (or Indefinite Blocking)
E.g., a LIFO queue

P0: wait(S); P1: wait(Q);

wait(Q); wait(S);

… …

signal(S); signal(Q);

signal(Q); signal(S);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Binary Semaphore

Binary Semaphores versus Counting
Semaphores

The value ranges from 0 to 1 easy
implementation!

wait(S)
wait(S1); /* protect C */
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

signal(S)
wait(S1);
C++;
if (C <= 0)

signal (S2); /* wakeup */
else

signal (S1);

* S1 & S2: binary semaphores

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – The Bounded Buffer

Producer:
do {

produce an item in nextp;
…….
wait(empty); /* control buffer availability */
wait(mutex); /* mutual exclusion */
……
add nextp to buffer;
signal(mutex);
signal(full); /* increase item counts */

} while (1);

Initialized to n
Initialized to 1

Initialized to 0

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – The Bounded Buffer

Consumer:
do {

wait(full); /* control buffer availability */
wait(mutex); /* mutual exclusion */
…….
remove an item from buffer to nextp;
……
signal(mutex);
signal(empty); /* increase item counts */
consume nextp;

} while (1);

Initialized to n

Initialized to 1
Initialized to 0

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – Readers and Writers

The Basic Assumption:
Readers: shared locks
Writers: exclusive locks

The first reader-writers problem
No readers will be kept waiting unless a
writer has already obtained permission to
use the shared object potential hazard
to writers!

The second reader-writers problem:
Once a writer is ready, it performs its write
asap! potential hazard to readers!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – Readers and Writers

semaphore wrt, mutex;

(initialized to 1);

int readcount=0;

Writer:

wait(wrt);

……

writing is performed

……

signal(wrt)

Reader:
wait(mutex);
readcount++;
if (readcount == 1)

wait(wrt);
signal(mutex);
…… reading ……
wait(mutex);
readcount--;
if (readcount== 0)

signal(wrt);
signal(mutex);

First R/W
Solution

Queueing
mechanism

Which is awaken?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – Dining-Philosophers

Each philosopher must pick up one
chopstick beside him/her at a time

When two chopsticks are picked up,
the philosopher can eat.

thinking hungry

deadeating

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – Dining-Philosophers

semaphore chopstick[5];

do {

wait(chopstick[i]);

wait(chopstick[(i + 1) % 5]);

… eat …

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

…think …

} while (1);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Classical Synchronization
Problems – Dining-Philosophers

Deadlock or Starvation?!

Solutions to Deadlocks:
At most four philosophers appear.

Pick up two chopsticks “simultaneously”.

Order their behaviors, e.g., odds pick up their
right one first, and evens pick up their left one
first.

Solutions to Starvation:
No philosopher will starve to death.

A deadlock could happen??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Critical Regions
Motivation:

Various programming errors in using
low-level constructs,e.g., semaphores

Interchange the order of wait and signal
operations

Miss some waits or signals

Replace waits with signals

etc

The needs of high-level language
constructs to reduce the possibility of
errors!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Critical Regions

Region v when B do S;
Variable v – shared among processes
and only accessible in the region

struct buffer {
item pool[n];
int count, in, out;

};

B – condition
count < 0

S – statements

Example: Mutual Exclusion
region v when (true) S1;
region v when (true) S2;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Critical Regions – Consumer-
Producer

Producer:

region buffer when

(count < n) {

pool[in] = nextp;

in = (in + 1) % n;

count++;

}

Consumer:
region buffer when
(count > 0) {

nextc = pool[out];
out = (out + 1) % n;
count--;

}

struct buffer {
item pool[n];
int count, in, out;

};

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Critical Regions –
Implementation by Semaphores

Region x when BB do SS;

wait(mutex);
while (!BB) {

/* fail B */
first-count++;
if (second-count > 0)

/* try other processes waiting
on second-delay */

signal(second-delay);
else signal(mutex);

/* block itself on first-delay */
wait(first-delay);

/* to protect the region */
semaphore mutex;
/* to (re-)test B */
semaphore first-delay;
int first-count=0;
/* to retest B */
semaphore second-delay;
int second-count=0;

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Critical Regions –
Implementation by Semaphores

first-count--;
second-count++;
if (first-count > 0)

signal(first-delay);
else signal(second-delay);

/* block itself on first-delay */
wait(second-delay);
second-count--;

}

SS;
if (first-count > 0)

signal(first-delay);
else if (second-count > 0)

signal(second-delay);
else signal(mutex);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor
Components

Variables – monitor state

Procedures
Only access local variables or formal
parameters

Condition variables
Tailor-made sync

x.wait() or x.signal

monitor name {
variable declaration
void proc1(…) {
}
…
void procn(…) {
}

}

………
procedures

initialization
code

shared data

x

entry queue

queue for x

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor

Semantics of signal & wait
x.signal() resumes one suspended
process. If there is none, no effect is
imposed.
P x.signal() a suspended process Q

P either waits until Q leaves the
monitor or waits for another condition
Q either waits until P leaves the
monitor, or waits for another
condition.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor – Dining-Philosophers
monitor dp {

enum {thinking, hungry, eating} state[5];
condition self[5];
void pickup(int i) {

stat[i]=hungry;
test(i);
if (stat[i] != eating)

self[i].wait;
}
void putdown(int i) {

stat[i] = thinking;
test((i+4) % 5);
test((i + 1) % 5);

}

Pi:
dp.pickup(i);
… eat …
dp.putdown(i);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor – Dining-Philosophers
void test(int i) {

if (stat[(i+4) % 5]) != eating &&
stat[i] == hungry &&
state[(i+1) % 5] != eating) {

stat[i] = eating;
self[i].signal();

}
}
void init() {

for (int i=0; i < 5; i++)
state[i] = thinking;

}

No deadlock!
But starvation could occur!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor – Implementation by
Semaphores

Semaphores
mutex – to protect the monitor
next – being initialized to zero, on which
processes may suspend themselves

nextcount

For each external function F
wait(mutex);
…
body of F;
…
if (next-count > 0)

signal(next);
else signal(mutex);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor – Implementation by
Semaphores

For every condition x
A semaphore x-sem

An integer variable x-count

Implementation of x.wait() and x.signal :

x.wait()

x-count++;

if (next-count > 0)

signal(next);

else signal(mutex);

wait(x-sem);

x-count--;

x.signal

if (x-count > 0) {

next-count++;

signal(x-sem);

wait(next);

next-count--;
}

* x.wait() and x.signal() are invoked within a monitor.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor

Process-Resumption Order
Queuing mechanisms for a monitor
and its condition variables.
A solution:

x.wait(c);
where the expression c is evaluated to
determine its process’s resumption
order.

R.acquire(t);
…
access the resource;
R.release;

monitor ResAllc {

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy=true;

}

…

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor

Concerns:
Processes may access resources
without consulting the monitor.

Processes may never release
resources.

Processes may release resources
which they never requested.

Process may even request resources
twice.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Monitor

Remark: Whether the monitor is correctly
used?

=> Requirements for correct computations
Processes always make their calls on the
monitor in correct order.

No uncooperative process can access
resource directly without using the access
protocols.

Note: Scheduling behavior should consult
the built-in monitor scheduling algorithm if
resource access RPC are built inside the
monitor.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Synchronization – Solaris

Semaphores and Condition Variables
Adaptive Mutex

Spin-locking if the lock-holding thread
is running; otherwise, blocking is used.

Readers-Writers Locks
Expensive in implementations.

Turnstile
A queue structure containing threads
blocked on a lock.
Priority inversion priority inheritance
protocol for kernel threads

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Synchronization – Windows XP
General Mechanism

Spin-locking for short code segments in
a multiprocessor platform.
Interrupt disabling when access to
global variables is done in a
uniprocessor platform.

Dispatcher Object
State: signaled or non-signaled
Mutex – select one process from its
waiting queue to the ready queue.
Events – select all processes waiting
for the event.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Synchronization – Linux

Preemptive Kernel After Version 2.6
Spin-locking for short code segments in
a multiprocessor platform.

Interrupt disabling and enabling in a
uniprocessor platform.

preempt_disable() and preempt_enable()

Preempt_count

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Synchronization – Pthreads

General Mechanism
Mutex locks – mutual exclusion

Condition variables – Monitor

Read-write locks

Extensions
POSIX SEM extension: semaphores

Spinlocks – portability?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions

Why Atomic Transactions?
Critical sections ensure mutual
exclusion in data sharing, but the
relationship between critical sections
might also be meaningful!

Atomic Transactions

Operating systems can be viewed as
manipulators of data!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
System Model

Transaction – a logical unit of
computation

A sequence of read and write operations
followed by a commit or an abort.

Beyond “critical sections”
1. Atomicity: All or Nothing

An aborted transaction must be rolled
back.
The effect of a committed transaction
must persist and be imposed as a logical
unit of operations.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
System Model

2. Serializability:
The order of transaction executions
must be equivalent to a serial
schedule.

T0 T1
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

Two operations Oi & Oj conflict if
1. Access the same object
2. One of them is write

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
System Model

Conflict Serializable:
S is conflict serializable if S can be
transformed into a serial schedule by
swapping nonconflicting operations.

T0 T1
R(A)
W(A)

R(A)
W(A)

R(B)
W(B)

R(B)
W(B)

T0 T1
R(A)
W(A)
R(B)
W(B)

R(A)
W(A)
R(B)
W(B)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
Concurrency Control

Locking Protocols
Lock modes (A general approach!)

1. Shared-Mode: “Reads”.

2. Exclusive-Mode: “Reads” & “Writes“

General Rule
A transaction must receive a lock of an
appropriate mode of an object before it
accesses the object. The lock may not
be released until the last access of the
object is done.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
Concurrency Control

Lock
Request

Locked?
Request

compatible with the
current lock?

Lock is
granted WAIT

Yes

Yes

No

No

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
Concurrency Control

When to release locks w/o violating
serializability

Two-Phase Locking Protocol (2PL) –
Not Deadlock-Free

How to improve 2PL?
Semantics, Order of Data, Access
Pattern, etc.

Growing
Phase

Shrinking
Phase

serializable
schedules

2PL schedules

R0(A) W0(A) R1(A) R1(B) R0(B) W0(B)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
Concurrency Control

Timestamp-Based Protocols
A time stamp for each transaction TS(Ti)

Determine transactions’ order in a
schedule in advance!

A General Approach:
TS(Ti) – System Clock or Logical Counter

Unique?

Scheduling Scheme – deadlock-free &
serializable

))(()()(iQWT TTSMaxQtimestampW
i −

=−

))(()()(iQRT TTSMaxQtimestampR
i −

=−

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Atomic Transactions –
Concurrency Control

R(Q) requested by Ti check TS(Ti) !

W(Q) requested by Ti check TS(Ti) !

Rejected transactions are rolled back
and restated with a new time stamp.

Time

W-timestamp(Q)

Rejected Granted

Time

R-timestamp(Q)

Rejected Granted

Time

W-timestamp(Q)
Rejected Granted

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Failure Recovery – A Way to
Achieve Atomicity

Failures of Volatile and Nonvolatile Storages!
Volatile Storage: Memory and Cache

Nonvolatile Storage: Disks, Magnetic Tape, etc.

Stable Storage: Storage which never fail.

Log-Based Recovery
Write-Ahead Logging

Log Records
< Ti starts >

< Ti commits >

< Ti aborts >

< Ti, Data-Item-Name, Old-Value, New-Value>

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Two Basic Recovery Procedures:

undo(Ti): restore data updated by Ti
redo(Ti): reset data updated by Ti

Operations must be idempotent!
Recover the system when a failure occurs:

“Redo” committed transactions, and
“undo” aborted transactions.

Failure Recovery

Time
restart crash

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Failure Recovery
Why Checkpointing?

The needs to scan and rerun all log
entries to redo committed transactions.

CheckPoint
Output all log records, Output DB, and Write
<check point> to stable storage!

Commit: A Force Write Procedure

Timecrashcheckpoint

