
Chapter 5
Process Scheduling

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

Objective:
Basic Scheduling Concepts

CPU Scheduling Algorithms

Why Multiprogramming?
Maximize CPU/Resources Utilization
(Based on Some Criteria)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

Process Execution
CPU-bound programs tend to have a
few very long CPU bursts.

IO-bound programs tend to have
many very short CPU bursts.

CPU-Burst

I/O-Burst

New

Terminate

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

The distribution can help in selecting
an appropriate CPU-scheduling
algorithms

20

60

100

120

8 16 24

Burst Duration (ms)

frequency

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

CPU Scheduler – The Selection of
Process for Execution

A short-term scheduler

New

Ready Running

Terminated

Waiting

dispatched

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

Nonpreemptive Scheduling
A running process keeps CPU until it
volunteers to release CPU

E.g., I/O or termination

Advantage
Easy to implement (at the cost of service
response to other processes)

E.g., Windows 3.1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling
Preemptive Scheduling

Beside the instances for non-preemptive
scheduling, CPU scheduling occurs
whenever some process becomes
ready or the running process leaves the
running state!

Issues involved:
Protection of Resources, such as I/O
queues or shared data, especially for
multiprocessor or real-time systems.
Synchronization

E.g., Interrupts and System calls

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

Dispatcher
Functionality:

Switching context

Switching to user mode

Restarting a user program

Dispatch Latency:

Start a process
Must be fast

Stop a process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Scheduling Criteria
Why?

Different scheduling algorithms may
favor one class of processes over
another!

Criteria
CPU Utilization

Throughput

Turnaround Time: CompletionT-StartT

Waiting Time: Waiting in the ReadyQ

Response Time: FirstResponseTime

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Scheduling Criteria

How to Measure the Performance of
CPU Scheduling Algorithms?

Optimization of what?

General Consideration
Average Measure

Minimum or Maximum Values

Variance Predictable Behavior

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Scheduling Algorithms

First-Come, First-Served Scheduling
(FIFO)

Shortest-Job-First Scheduling (SJF)

Priority Scheduling

Round-Robin Scheduling (RR)

Multilevel Queue Scheduling

Multilevel Feedback Queue Scheduling

Multiple-Processor Scheduling

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

First-Come, First-Served
Scheduling (FCFS)

The process which requests the
CPU first is allocated the CPU

Properties:
Non-preemptive scheduling

CPU might be hold for an extended
period.

CPU
request

A FIFO ready queue dispatched

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

First-Come, First-Served
Scheduling (FCFS)

Example
Process

P1
P2
P3

CPU Burst Time
24
3
3

P1 P2 P3
0 24 27 30

Average waiting time
= (0+24+27)/3 = 17

P2 P3 P1
0 3 6 30

Average waiting time
= (6+0+3)/3 = 3

*The average waiting time is highly affected by process CPU
burst times !

Gantt
Chart

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example: Convoy
Effect

One CPU-bound
process + many
I/O-bound
processes

First-Come, First-Served
Scheduling (FCFS)

CPU

ready queue

ready queue

I/O device

idle

All other processes wait for it
to get off the CPU!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shortest-Job-First Scheduling
(SJF)

Non-Preemptive SJF
Shortest next CPU burst first

process
P1
P2
P3
P4

CPU burst time
6
8
7
3

P4 P1 P3 P2
0 3 9 16 24

Average waiting time
= (3+16+9+0)/4 = 7

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shortest-Job-First Scheduling
(SJF)

Nonpreemptive SJF is optimal when
processes are all ready at time 0

The minimum average waiting time!

Prediction of the next CPU burst time?
Long-Term Scheduler

A specified amount at its submission
time

Short-Term Scheduler

Exponential average (0<= α <=1)

τn+1 = α tn + (1-α) τn

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shortest-Job-First Scheduling
(SJF)

Preemptive SJF
Shortest-remaining-time-first

Process
P1
P2
P3
P4

CPU Burst Time
8
4
9
5

Arrival Time
0
1
2
3

P1 P2 P4 P1 P3

0 1 5 10 17 26

Average Waiting
Time = ((10-1) +
(1-1) + (17-2) +
(5-3))/4 = 26/4
= 6.5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shortest-Job-First Scheduling
(SJF)

Preemptive or Non-preemptive?
Criteria such as AWT (Average
Waiting Time)

0 10

1 10 11

Non-preemptive
AWT = (0+(10-1))/2
= 9/2 = 4.5

or

0

1 2

11 Preemptive AWT
= ((2-1)+0) = 0.5

* Context switching cost ~ modeling & analysis

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Priority Scheduling

CPU is assigned to the process
with the highest priority – A
framework for various scheduling
algorithms:

FCFS: Equal-Priority with Tie-
Breaking by FCFS

SFJ: Priority = 1 / next CPU burst
length

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Priority Scheduling

Process
P1
P2
P3
P4
P5

CPU Burst Time
10
1
2
1
5

Priority
3
1
3
4
2

Gantt Graph

P2 P5 P1 P3 P4

0 1 6 16 18 19

Average waiting time
= (6+0+16+18+1)/5 = 8.2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Priority Scheduling

Priority Assignment
Internally defined – use some
measurable quantity, such as the #
of open files,

Externally defined – set by criteria
external to the OS, such as the
criticality levels of jobs.

Average CPU Burst
Average I/O Burst

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Priority Scheduling

Preemptive or Non-Preemptive?
Preemptive scheduling – CPU
scheduling is invoked whenever a
process arrives at the ready queue,
or the running process relinquishes
the CPU.

Non-preemptive scheduling – CPU
scheduling is invoked only when the
running process relinquishes the
CPU.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Priority Scheduling

Major Problem
Indefinite Blocking (/Starvation)

Low-priority processes could starve
to death!

A Solution: Aging
A technique that increases the
priority of processes waiting in the
system for a long time.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Round-Robin Scheduling (RR)

RR is similar to FCFS except that
preemption is added to switch between
processes.

Goal: Fairness – Time Sharing

ready running

Interrupt at every time quantum (time slice)

FIFO…CPU

The quantum is used up!

New process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Round-Robin Scheduling (RR)

Process
P1
P2
P3

CPU Burst Time
24
3
3

Time slice = 4

P1 P2 P1P3 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

AWT = ((10-4) + (4-0) + (7-0))/3
= 17/3 = 5.66

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Round-Robin Scheduling (RR)
Service Size and Interval

Time quantum = q Service interval <= (n-
1)*q if n processes are ready.

IF q = ∞, then RR FCFS.

IF q = ε, then RR processor sharing. The
of context switchings increases!

0 10

0 6 10

0 10

process quantum

12

6

1

context switch #

0

1

9

If context switch cost
time quantum = 10% => 1/11 of CPU is wasted!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Round-Robin Scheduling (RR)

Turnaround Time

0 10 20 30

0 10 20 30

0 10 20 30

process (10ms)

P1

P2

P3
20 30

10 20

0 10

quantum = 10 quantum = 1

Average Turnaround Time
= (10+20+30)/3 = 20

ATT = (28+29+30)/3 = 29

=> 80% CPU Burst < time slice

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Queue Scheduling

Partition the ready queue into
several separate queues =>
Processes can be classified into
different groups and permanently
assigned to one queue.

…

System Processes

Interactive Processes

Batch Processes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Queue Scheduling

Intra-queue scheduling
Independent choice of scheduling
algorithms.

Inter-queue scheduling
a. Fixed-priority preemptive scheduling

a. e.g., foreground queues always have absolute
priority over the background queues.

b. Time slice between queues
a. e.g., 80% CPU is given to foreground processes,

and 20% CPU to background processes.

c. More??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Feedback Queue
Scheduling

Different from Multilevel Queue
Scheduling by Allowing Processes to
Migrate Among Queues.

Configurable Parameters:
a. # of queues

b. The scheduling algorithm for each queue

c. The method to determine when to upgrade a
process to a higher priority queue.

d. The method to determine when to demote a
process to a lower priority queue.

e. The method to determine which queue a newly
ready process will enter.

*Inter-queue scheduling: Fixed-priority preemptive?!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Feedback Queue
Scheduling

Example

quantum = 8

quantum = 16

FCFS

*Idea: Separate processes with different CPU-burst

characteristics!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling

CPU scheduling in a system with
multiple CPUs

A Homogeneous System
Processes are identical in terms of their
functionality.

Can processes run on any processor?

A Heterogeneous System
Programs must be compiled for
instructions on proper processors.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling

Load Sharing – Load Balancing!!
A queue for each processor

Self-Scheduling – Symmetric
Multiprocessing

A common ready queue for all processors.
Self-Scheduling

Need synchronization to access common
data structure, e.g., queues.

Master-Slave – Asymmetric Multiprocessing

One processor accesses the system
structures no need for data sharing

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling

Load Balancing
Push migration: A specific task periodically
checks for imbalance and migrate tasks
Pull migration: An idle processor pulls a
waiting task from a busy processor
Linux and FreeBSD do both!

Processor Affinity
The system might avoid process migration
because of the cost in invalidating or re-
populating caches
Soft or hard affinity

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling

Symmetric Multithreading (SMT), i.e.,
Hyperthreading

A feature provided by the hardware

Several logical processors per
physical processor

Each has its own architecture state,
including registers.

Issues: Process Synchronization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling –
SMT

time

unused issue slot

occupied issue slot

SMTSuperscalar

Utilization++Utilization++
Throughput++Throughput++

Performance++Performance++

: 13 : 10 : 11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Thread Scheduling

Two Scopes:
Process Contention Scope (PCS): m:1 or
m:m

Priority-Driven

System-Contention Scope (SCS): 1:1

Pthread Scheduling
PCS and SCS

Pthread_attr_setscope(pthread_attr_t *attr, int scope)

Pthread_attr_getscope(pthread_attr_t *attr, int *scope)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples

Process Local Scheduling
E.g., those for user-level threads

Thread scheduling is done locally to
each application.

System Global Scheduling
E.g., those for kernel-level threads

The kernel decides which thread to
run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Solaris

Priority-Based Process Scheduling
Real-Time

System
Kernel-service processes

Time-Sharing
A default class

Interactive

Each LWP inherits its class from its
parent process

low

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Solaris

Real-Time
A guaranteed response

System
The priorities of system processes are
fixed.

Time-Sharing
Multilevel feedback queue scheduling
– priorities inversely proportional to
time slices

Interactive
Prefer windowing process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples – Solaris

59492059

58454055

58404050

56354045

55304040

54258035

53208030

521512025

521012020

51516015

51016010

5002005

5002000

Return from sleepTime quantum exp.Time quantumpriority

Interactive and tim
e sharing threads

low

high

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Solaris

The selected thread runs until one of
the following occurs:

It blocks.

It uses its time slice (if it is not a
system thread).

It is preempted by a higher-priority
thread.

RR is used when several threads
have the same priority.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Solaris

Two New Classes in Solaris 9
Fixed Priority

Non-adjusted priorities in the range
of the time-sharing class

Fair Sharing
CPU shares, instead of priorities

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Windows XP

Priority-Based Preemptive Scheduling
Priority Class/Relationship: 0..31

Dispatcher: A process runs until
It is preempted by a higher-priority process.

It terminates

Its time quantum ends

It calls a blocking system call

Idle thread

A queue per priority level

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Windows XP

Each thread has a base priority that
represents a value in the priority range of
its class.
A typical class – Normal_Priority_Class
Time quantum – thread

Increased after some waiting
Different for I/O devices.

Decreased after some computation
The priority is never lowered below the base
priority.

Favor foreground processes (more time
quantum)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Windows XP

1111116Idle

24681122Lowest

35791223Below
normal

468101324Normal

579111425Above
normal

6810121526Highest

151515151531Time-
critical

Idle
priority

Below
normal

NormalAbove
normal

HighReal-
time

Variable Class (1..15)
Real-Time Class

Base
Priority

A Typical Class

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Linux Ver. 2.5+

Scheduling Algorithm
O(1)

SMP, load balancing,
and processor affinity

Fairness and support
for interactive tasks

Priorities
Real-time: 0..99

Nice: 100..140

Nemeric
Priority

Time
Quantum

0
.
.

99
100

.

.

.
140

200ms
.
.
.
.
.
.
.
.

10ms

Real
Time
Tasks

Other
Tasks

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples –
Linux Ver. 2.5+

Each processor has a runqueue
An active array and an expired array

Switching of the two arrays when all
processes in the active array have their
quantum expired.

Priority-Driven Scheduling
Fixed Priority – Real-Time

Dynamic Priority – nice ± x, for x <= 5
Interactive tasks are favored.

The dynamic priority of a task is recalculated
when its quantum is expired.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Algorithm Evaluation

A General Procedure
Select criteria that may include several
measures, e.g., maximize CPU
utilization while confining the maximum
response time to 1 second
Evaluate various algorithms

Evaluation Methods:
Deterministic modeling
Queuing models
Simulation
Implementation

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deterministic Modeling

A Typical Type of Analytic Evaluation
Take a particular predetermined workload
and defines the performance of each
algorithm for that workload

Properties
Simple and fast
Through excessive executions of a number of
examples, trends might be identified
But it needs exact numbers for inputs, and its
answers only apply to those cases

Being too specific and requires too exact
knowledge to be useful!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deterministic Modeling

process
P1
P2
P3
P4
P5

CPU Burst time
10
29
3
7
12

P3 P5 P2

0 10 20 613

P4 P1

32

Nonpreemptive Shortest Job First

P1 P2

0 10 20 40 50 61

P2

23

P4 P5

30

P2 P5

52

Round Robin (quantum =10)

P1

0 10 39 42 49 61

FCFC

Average Waiting Time (AWT)=(0+10+39+42+49)/5=28

AWT=(10+32+0+3+20)/5=13

AWT=(0+(10+20+2)+20+23+(30+10))/5=23

P2 P3 P4 P5

P3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Queueing Models

Motivation:
Workloads vary, and there is no static set
of processes

Models (~ Queueing-Network Analysis)
Workload:
a. Arrival rate: the distribution of times when

processes arrive.

b. The distributions of CPU & I/O bursts

Service rate

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Queueing Models

Model a computer system as a network
of servers. Each server has a queue of
waiting processes

Compute average queue length, waiting
time, and so on.

Properties:
Generally useful but with limited
application to the classes of algorithms &
distributions
Assumptions are made to make
problems solvable => inaccurate results

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Queueing Models

Example: Little’s formula

n = # of processes in the queue
λ = arrival rate
ω = average waiting time in the queue

If n =14 & λ =7 processes/sec, then w =
2 seconds.

wn ∗= λ

λ
w steady state!

λ

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Simulation
Motivation:

Get a more accurate evaluation.

Procedures:
Program a model of the computer system

Drive the simulation with various data sets
Randomly generated according to some
probability distributions

=> inaccuracy occurs because of only the
occurrence frequency of events. Miss the order &
the relationships of events.

Trace tapes: monitor the real system &
record the sequence of actual events.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Simulation

Properties:
Accurate results can be gotten, but it
could be expensive in terms of
computation time and storage space.

The coding, design, and debugging of
a simulator can be a big job.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Implementation

Motivation:
Get more accurate results than a
simulation!

Procedure:
Code scheduling algorithms

Put them in the OS

Evaluate the real behaviors

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Implementation

Difficulties:
Cost in coding algorithms and
modifying the OS
Reaction of users to a constantly
changing the OS
The environment in which algorithms
are used will change

For example, users may adjust their
behaviors according to the selected
algorithms

=> Separation of the policy and
mechanism!

