Chapter 5
Process Scheduling

CPU Scheduling

= Objective:
= Basic Scheduling Concepts
» CPU Scheduling Algorithms

= Why Multiprogramming?
» Maximize CPU/Resources Utilization
(Based on Some Criteria)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




CPU Scheduling

= Process Execution

» CPU-bound programs tend to have a
few very long CPU bursts.

» |O-bound programs tend to have
many very short CPU bursts.

- /N

Terminate @

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

» The distribution can help in selecting
an appropriate CPU-scheduling

algorithms
= 120
e _
& 100
@ _
< 60

20 T

8 16 24

Burst Duration (ms)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




CPU Scheduling

= CPU Scheduler — The Selection of
Process for Execution

= A short-term scheduler

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

= Nonpreemptive Scheduling

= A running process keeps CPU until it
volunteers to release CPU

» E.g., I/O or termination
» Advantage

= Easy to implement (at the cost of service
response to other processes)

» E.g., Windows 3.1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




CPU Scheduling

= Preemptive Scheduling

» Beside the instances for non-preemptive
scheduling, CPU scheduling occurs
whenever some process becomes
ready or the running process leaves the
running state!

» |ssues involved:

= Protection of Resources, such as I/O
gueues or shared data, especially for
multiprocessor or real-time systems.

= Synchronization
» E.g., Interrupts and System calls

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

CPU Scheduling

= Dispatcher

» Functionality:
= Switching context
= Switching to user mode
» Restarting a user program

» Dispatch Latency:

Must be fast
Stop a process  « ~ Start a process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Scheduling Criteria

= Why?
» Different scheduling algorithms may

favor one class of processes over
another!

= Criteria
= CPU Utilization
= Throughput
» Turnaround Time: CompletionT-StartT
» Waiting Time: Waiting in the ReadyQ
= Response Time: FirstResponseTime

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Scheduling Criteria

= How to Measure the Performance of
CPU Scheduling Algorithms?

= Optimization of what?

= General Consideration
= Average Measure
= Minimum or Maximum Values

= VVariance - Predictable Behavior

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Scheduling Algorithms

» First-Come, First-Served Scheduling
(FIFO)

» Shortest-Job-First Scheduling (SJF)

= Priority Scheduling

» Round-Robin Scheduling (RR)

= Multilevel Queue Scheduling

= Multilevel Feedback Queue Scheduling
= Multiple-Processor Scheduling

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

First-Come, First-Served
Scheduling (FCFS)

» The process which requests the
CPU first is allocated the CPU

» Properties:
= Non-preemptive scheduling

= CPU might be hold for an extended
period.

CPU . i
request

A FIFO ready queue dispatched

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




First-Come, First-Served
Scheduling (FCFS)

= Example
Process CPU Burst Time
P1 24
P2 3
P3 3
ntt P1 po| p3 | Average waiting time
gﬁan 0 o4 27 30 - (0+24+27)[3=17
P2 [ P3 P1 Average waiting time
0 3 6 30 — (610+3)/3=3

*The average waiting time is highly affected by process CPU
burst times !

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

First-Come, First-Served
Scheduling (FCFS)

= Example: Convoy |<I<I<I9I2L|i|<|<|<|<| /O device
Effect ready queue idle

= One CPU-bound
process + many
/0-bound T
prOCeSSGS ‘-——--__________________“-:-:—__

e fe oo <]

ready queue
\ All other processes wait for it
to get off the CPU!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Shortest-Job-First Scheduling
(SJF)

= Non-Preemptive SJF
» Shortest next CPU burst first

process CPU burst time
P1 6
Average waiting time P2 8
= (3+16+9+0)/4 =7 P3 7
P4 3
P4 Pl P3 P2
0 3 9 16 24

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shortest-Job-First Scheduling
(SJF)

= Nonpreemptive SJF is optimal when
processes are all ready at time 0

= The minimum average waiting time!
* Prediction of the next CPU burst time?
* Long-Term Scheduler
= A specified amount at its submission
time
= Short-Term Scheduler
» Exponential average (0<= o <=1)
Ther = & tn + (1'(1) Th

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Shortest-Job-First Scheduling
(SJF)

* Preemptive SJF
= Shortest-remaining-time-first

Process CPU Burst Time Arrival Time

P1 8 0
P2 4 1
P3 9 2
P4 5 3

Average Waiting

Time = ((10-1) +
Pl P2 | P4 P1 P3 (1-1) + (17-2) +
0 1 5 10 17 26 (5-3))/4 = 26/4

=6.5

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Shortest-Job-First Scheduling
(SJF)

= Preemptive or Non-preemptive?

= Criteria such as AWT (Average
Waiting Time)

Non-preemptive

10 AWT = (0+(10-1))/2
n —0/2=45
10 11

or

1

1
T_\ | |
0 11 Preemptive AWT
=((2-1)+0) =0.5

12

* All rights reserved, Tei-Wei Kuo, National Taiwa

* Context switching cost ~ modeling & analysis

ersity, 2005.




Priority Scheduling

= CPU is assigned to the process
with the highest priority — A
framework for various scheduling
algorithms:
» FCFS: Equal-Priority with Tie-
Breaking by FCFS
» SFJ: Priority =1/ next CPU burst

length
Priority Scheduling
Process CPU Burst Time Priority
P1 10 3
P2 1 1
P3 2 3
P4 1 4
P5 5 2
Average waiting time
Gantt Graph = (6+0+16+18+1)/5 = 8.2
P2| P5 P1 P3 |P4

0 1 6 16 18 19

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Priority Scheduling

= Priority Assignment

» Internally defined — use some

measurable quantity, such as the #

of open files, Average CPU Burst
Average 1/0 Burst

» Externally defined — set by criteria
external to the OS, such as the
criticality levels of jobs.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Priority Scheduling

= Preemptive or Non-Preemptive?

= Preemptive scheduling — CPU
scheduling is invoked whenever a
process arrives at the ready queue,
or the running process relinquishes
the CPU.

= Non-preemptive scheduling — CPU
scheduling is invoked only when the
running process relinquishes the
CPU.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Priority Scheduling

= Major Problem

» |ndefinite Blocking (/Starvation)

= Low-priority processes could starve
to death!

= A Solution: Aging
= A technique that increases the

priority of processes waiting in the
system for a long time.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Round-Robin Scheduling (RR)

» RR is similar to FCFS except that
preemption is added to switch between
processes.

Interrupt at every time quantum (time slice)

» Goal: Fairness — Time Sharing

CPU -« FIFO... <—— New process

>

The quantum Is used up!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Round-Robin Scheduling (RR)

Process CPU Burst Time

P1 24
P2 3 Time slice =4
P3 3

P1{P2P3|P1|P1/P1|P1|P1
0 4 710 1418 22 26 30

AWT = ((10-4) + (4-0) + (7-0))/3
=17/3=5.66

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Round-Robin Scheduling (RR)

= Service Size and Interval

» Time quantum =g > Service interval <= (n-
1)*q if n processes are ready.

* |[Fq= o, then RR > FCFS.

» |[F g =c¢, then RR = processor sharing. The
# of context switchings increases!

process | quantum context switch #
0 10 12 0
0 ; o 6 1
O|||||||||||10 1 9

If context switch cost _
= 0, = 1
time quantum 10% => 1/11 of CPU is wasted!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Round-Robin Scheduling (RR)

= Turnaround Time

process (10ms) quantum =10 quantum =1
PL A
P2 L | |
10 20 0 10 20 30
P3 L | |
20 30 O 10 20 30

Average Turnaround Time ATT = (28+29+30)/3 = 29
= (10+20+30)/3 = 20

=> 80% CPU Burst < time slice

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Queue Scheduling

= Partition the ready queue into
several separate queues =>
Processes can be classified into
different groups and permanently
assigned to one queue.

- System Processes |™

- Interactive Processes |—™

—_— Batch Processes —_—

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Multilevel Queue Scheduling

= Intra-queue scheduling

» |ndependent choice of scheduling
algorithms.

= [nter-queue scheduling

a. Fixed-priority preemptive scheduling

a. e.g., foreground queues always have absolute
priority over the background queues.

b. Time slice between queues

a. e.g., 80% CPU is given to foreground processes,
and 20% CPU to background processes.

c. More??

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multilevel Feedback Queue
Scheduling

= Different from Multilevel Queue
Scheduling by Allowing Processes to
Migrate Among Queues.

» Configurable Parameters:
a. #of queues
b. The scheduling algorithm for each queue

c. The method to determine when to upgrade a
process to a higher priority queue.

d. The method to determine when to demote a
process to a lower priority queue.

e. The method to determine which queue a newly
ready process will enter.

*Inter-queue scheduling: Fixed-priority preemptive?!

* All rights reserved, Tei-Wei Kuo, National Taiwan Ungersny 2005.




Multilevel Feedback Queue
Scheduling

= Example

—> —>
quantum = 8

L quantum = 16

L FCFS —

*|dea: Separate processes with different CPU-burst
characteristics!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling

» CPU scheduling in a system with
multiple CPUs
= A Homogeneous System
» Processes are identical in terms of their
functionality.
=» Can processes run on any processor?
= A Heterogeneous System

» Programs must be compiled for
instructions on proper processors.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Multiple-Processor Scheduling

= Load Sharing — Load Balancing!!

= A queue for each processor

» Self-Scheduling — Symmetric
Multiprocessing

= A common ready queue for all processors.

» Self-Scheduling

= Need synchronization to access common
data structure, e.g., queues.

= Master-Slave — Asymmetric Multiprocessing

= One processor accesses the system
structures = no need for data sharing

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

* All rights rese

Multiple-Processor Scheduling

» | oad Balancing

= Push migration: A specific task periodically
checks for imbalance and migrate tasks

= Pull migration: An idle processor pulls a
waiting task from a busy processor

= | inux and FreeBSD do both!

= Processor Affinity

» The system might avoid process migration
because of the cost in invalidating or re-
populating caches

= Soft or hard affinity

rved, Tei-Wei Kuo, National Taiwan University, 2005.




Multiple-Processor Scheduling

= Symmetric Multithreading (SMT), i.e.,
Hyperthreading
= A feature provided by the hardware

= Several logical processors per
physical processor

» Each has its own architecture state,
including registers.

» |ssues: Process Synchronization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multiple-Processor Scheduling -
SMT

Superscalar

time

occupied issue slot

unused issue slot

13 B 10 11

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Thread Scheduling

= Two Scopes:
» Process Contention Scope (PCS): m:1 or
m:m
* Priority-Driven
= System-Contention Scope (SCS): 1:1
= Pthread Scheduling
= PCS and SCS

Pthread_attr_setscope(pthread_attr t *attr, int scope)
Pthread_attr_getscope(pthread_attr_t *attr, int *scope)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples

» Process Local Scheduling
» E.g., those for user-level threads

» Thread scheduling is done locally to
each application.

» System Global Scheduling
= E.g., those for kernel-level threads

= The kernel decides which thread to
run.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Operating System Examples -
Solaris

» Priority-Based Process Scheduling
= Real-Time
= System
» Kernel-service processes
» Time-Sharing
= A default class
= |nteractive

= Each LWP inherits its class from its
parent process

low

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples -
Solaris

= Real-Time
= A guaranteed response
= System

» The priorities of system processes are
fixed.

= Time-Sharing
= Multilevel feedback queue scheduling

— priorities inversely proportional to
time slices

» [nteractive
» Prefer windowing process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Operating System Examples — Solaris

priority Time quantum | Time quantum exp. | Return from sleep

= 0 low 200 0 50
g 5 200 0 50
S 10 160 0 51
5 15 160 5 51
53’ 20 120 10 52
5‘ 25 120 15 52
® 30 80 20 53
2 35 80 25 54
= 40 40 30 55
= 45 40 35 56
8 50 40 40 58
@ 55 40 45 58

59 high 20 49 59
Al rightSTesesd T WeT Ko el Tawar Orreersy 2005

Operating System Examples -
Solaris

= The selected thread runs until one of
the following occurs:

= |t blocks.

= |t uses its time slice (if it is not a
system thread).

= |t is preempted by a higher-priority
thread.

= RR is used when several threads
have the same priority.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Operating System Examples -
Solaris

= Two New Classes in Solaris 9
» Fixed Priority

» Non-adjusted priorities in the range
of the time-sharing class

= Fair Sharing
» CPU shares, instead of priorities

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples -
Windows XP

* Priority-Based Preemptive Scheduling
= Priority Class/Relationship: 0..31
» Dispatcher: A process runs until
= |t is preempted by a higher-priority process.
= |t terminates
= |ts time quantum ends
= |t calls a blocking system call

= |dle thread
= A queue per priority level

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Operating System Examples —
Windows XP

» Each thread has a base priority that
represents a value in the priority range of
its class.

= A typical class — Normal_Priority Class
= Time quantum — thread
» |ncreased after some waiting
= Different for 1/O devices.
= Decreased after some computation
= The priority is never lowered below the base
priority.
= Favor foreground processes (more time
guantum)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples -

WlndOWS XP lATypicaI Class
Real- | High Above | Normal | Below | Idle
time normal normal | priority

Time- | 37 15 15 15 15 15

critical

Highest | 26 15 12 10 |8 6
Above | 2L 14 11 9 7 5
normal
BEJ}SG_ Normal | 24 13 10 8 6 4
Priority
Below |23 12 e 4 ) 3
normal
Lowest | 99 11 8 6 4 2
de (16 |1 1 1 1
V —

Real-Time Class _
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005. Varlable CIaSS (l . 15)




Operating System Examples -
Linux Ver. 2.5+

= Scheduling Algorithm

Nemeric Time
Priority Quantum = O(1)
200ms = SMP, load balancing,
0 A2 - and processor affinit
Time _ _ P y
- Tasks . = Fairness and support
19090 for interactive tasks
Other | = Priorities
Tasks = Real-time: 0..99
140 10ms = Nice: 100..140

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating System Examples -
Linux Ver. 2.5+

» Each processor has a runqueue
= An active array and an expired array

= Switching of the two arrays when all
processes in the active array have their
guantum expired.

= Priority-Driven Scheduling
» Fixed Priority — Real-Time
» Dynamic Priority — nice * x, for x <=5
» |nteractive tasks are favored.

» The dynamic priority of a task is recalculated
when its quantum is expired.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Algorithm Evaluation

= A General Procedure

= Select criteria that may include several
measures, e.g., maximize CPU
utilization while confining the maximum
response time to 1 second

» Evaluate various algorithms
= Evaluation Methods:

» Deterministic modeling

» Queuing models

= Simulation

» |[mplementation

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Deterministic Modeling

= A Typical Type of Analytic Evaluation

» Take a particular predetermined workload
and defines the performance of each
algorithm for that workload

= Properties
= Simple and fast

= Through excessive executions of a number of
examples, trends might be identified

= But it needs exact numbers for inputs, and its
answers only apply to those cases

= Being too specific and requires too exact
knowledge to be useful!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Deterministic Modeling

FCFC
P1 P2 P3 P4| P5
0 10 3942 49 61
process CPU Burst time Average Waiting Time (AWT)=(0+10+39+42+49)/5=28

E; ;8 Nonpreemptive Shortest Job First
P3 3 P3P4| PL | P5 P2
P4 7
i 5 0310 20 32 61

AWT=(10+32+0+3+20)/5=13

Round Robin (quantum =10)
P1 P2 P3P4| P5 P2 P5 P2

0 10 2023 30 40 5052 61
AWT=(0+(10+20+2)+20+23+(30+10))/5=23

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Queueing Models

= Motivation:

= Workloads vary, and there is no static set
of processes

= Models (~ Queueing-Network Analysis)

= \Workload:

a. Arrival rate: the distribution of times when
processes arrive.

b. The distributions of CPU & I/O bursts
=  Service rate

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Queueing Models

= Model a computer system as a network
of servers. Each server has a queue of
waiting processes
» Compute average queue length, waiting
time, and so on.

= Properties:

» Generally useful but with limited
application to the classes of algorithms &

distributions

= Assumptions are made to make
problems solvable => inaccurate results

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Queueing Models

= Example: Little’s formula
nNn=Axw

w  ___—steady state!
A . —— A

n = # of processes in the queue

A = arrival rate
® = average waiting time in the queue
» [f n =14 & )\ =7 processes/sec, then w =
2 seconds.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Simulation

= Motivation:
» Get a more accurate evaluation.
* Procedures:
= Program a model of the computer system

= Drive the simulation with various data sets

» Randomly generated according to some
probability distributions

=> jnaccuracy occurs because of only the
occurrence frequency of events. Miss the order &
the relationships of events.
» Trace tapes: monitor the real system &
record the sequence of actual events.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Simulation

* Properties:

= Accurate results can be gotten, but it
could be expensive in terms of
computation time and storage space.

* The coding, design, and debugging of
a simulator can be a big job.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




Implementation

= Motivation:

= Get more accurate results than a
simulation!

= Procedure:
» Code scheduling algorithms
= Put them in the OS
= Evaluate the real behaviors

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Implementation

= Difficulties:
= Cost in coding algorithms and
modifying the OS
= Reaction of users to a constantly
changing the OS
» The environment in which algorithms
are used will change

» For example, users may adjust their
behaviors according to the selected
algorithms

=> Separation of the policy and
mechanism!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.




