
Chapter 4
Multithreaded Programming

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threads
Objectives:

Concepts and issues associated with
multithreaded computer systems.

Thread – Lightweight process(LWP)
a basic unit of CPU utilization

A thread ID, program counter, a
register set, and a stack space

Process – heavyweight process
A single thread of control

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threads
Motivation

A web browser
Data retrieval
Text/image displaying

A word processor
Displaying
Keystroke reading
Spelling and grammar
checking

A web server
Clients’ services
Request listening

data segment

code segment

stack stack stack

registers registers registers

filesfiles

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threads
Benefits

Responsiveness
Resource Sharing
Economy

Creation and context switching
30 times slower in process creation
in Solaris 2
5 times slower in process context
switching in Solaris 2

Utilization of Multiprocessor
Architectures

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

User-Level Threads
User-level threads
are implemented by
a thread library at
the user level.

Examples:
POSIX Pthreads,
Mach C-threads,
Solaris 2 UI-threadsAdvantages

Context switching among them is extremely fast

Disadvantages
Blocking of a thread in executing a system call can block the

entire process.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Kernel-Level Threads

Advantage
Blocking of a thread will not block its entire task.

Disadvantage
Context switching cost is a little bit higher because
the kernel must do the switching.

Kernel-level threads
are provided a set of
system calls similar to
those of processes

Examples

Windows 2000, Solaris
2, True64UNIX

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multithreading Models

Many-to-One Model
Many user-level threads to one
kernel thread

Advantage:
Efficiency

Disadvantage:
One blocking system call blocks all.

No parallelism for multiple processors

Example: Green threads for Solaris 2

k

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multithreading Models

One-to-One Model
One user-level thread to one kernel
thread

Advantage: One system call blocks
one thread.

Disadvantage: Overheads in creating
a kernel thread.

Example: Windows NT, Windows
2000, OS/2

k

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multithreading Models

Many-to-Many Model
Many user-level threads to many
kernel threads

Advantage:
A combination of parallelism and
efficiency

Example: Solaris 2, IRIX, HP-
UX,Tru64 UNIX

k k k

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Thread Libraries

Goal: Provide an API for creating and
managing threads!
Two Approaches:

User Thread Library
Kernel-Level Thread Library

Well-Known Examples
POSIX Pthreads – User or Kernel Level
Win32 threads – Kernel Level
Java threads – Level Depending on the
Thread Library on the Host System

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Pthreads

Pthreads (IEEE 1003.1c)
API Specification for Thread Creation
and Synchronization
UNIX-Based Systems, Such As
Solaris 2.

User-Level Library (??)
Header File: <pthread.h>
pthread_attr_init(), pthread_create(),
pthread_exit(), pthread_join(), etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Pthreads
#include <pthread.h>
main(int argc, char *argv[]) {

…
pthread_attr_init(&attr);
pthread_create(&tid, &attr, runner, argv[1]);
pthread_join(tid, NULL);

… }

void *runner(void *param) {
int i, upper = atoi(param), sum = 0;
if (upper > 0)

for(i=1;i<=upper,i++)
sum+=i;

pthread_exit(0);
}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Win32 Threads
Kernel-Level Threads
DWORD Sum; /* shared by threads */
DWORD WINAPI Summation(LPVOID Param) {

DWOR Upper = *(DWORD *) Param;
for (DWORD I = 0; I <= Upper; i++)

Sum += i’;
return 0; }

Int main(int argc, char *argv[]) {
…

Param = atoi(argv[1]);
…

ThreadHandle = CreateThread(
NULL, // default security attributes
0, // default stack size
Summation, // thread function
&Param, // parameter
0, // default creation flags
&ThreadID);

…
WaitForSingleObject(ThreadHandle, INFINITE);

… }

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Java
Thread Support at the Language Level

Mapping of Java Threads to Kernel
Threads on the Underlying OS?

Windows 2000: 1:1 Model

Thread Creation
Create a new class derived from the
Thread class
Run its start method

Allocate memory and initialize a new
thread in the JVM
start() calls the run method, making the
thread eligible to be run by the JVM.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Java
class Summation extends Thread
{ public Summation(int n) {

upper = n; }
public void run() {

int sum = 0;
… }

…}
public class ThreadTester
{ …

Summation thrd = new
Summation(Integer.ParseInt(args[0]));
thrd.start();

…}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threading Issues

Fork and Exec System Calls
Fork: Duplicate all threads or create
a duplicate with one thread?

Exec: Replace the entire process,
including all threads and LWPs.

Fork exec?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threading Issues

Thread Cancellation
Target thread

Two scenarios:
Asynchronous cancellation

Deferred cancellation
Cancellation points in Pthread.

Difficulty
Resources have been allocated to a
cancelled thread.

A thread is cancelled while it is updating
data.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threading Issues

Signal Handling
Signal

Synchronous – delivered to the same
process that performed the operation
causing the signal,

e.g., illegal memory access or division by
zero

Asynchronous
e.g., ^C or timer expiration

Default or user-defined signal handler

Signal masking

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threading Issues
Delivery of a Signal

To the thread to which the signal applies
e.g., division-by-zero

To every thread in the process
e.g., ^C

To certain threads in the process

Assign a specific thread to receive all
threads for the process

Solaris 2

Asynchronous Procedure Calls (APCs)
To a particular thread rather than a process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Threading Issues

Thread Pools
Motivations

Dynamic creation of threads

Limit on the number of active threads

Awake and pass a request to a thread in
the pool

Benefits
Faster for service delivery and limit on the
of threads

Dynamic or static thread pools

Thread-specific data – Win32 & Pthreads

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Scheduler Activations

Definition: A scheme for
communication between the user-
thread library and the kernel

The kernel provides an application
with a set of virtual processors, i.e.,
light weight processes (LWP’s)

An upcall handler to stop or resume
the execution of a thread

User threads on a LWP are blocked if
any of the user threads is blocked!CPU

LWP

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Windows XP

Win32 API
One-to-One Model

Fiber Library for the M:M Model

A Thread Contains
A Thread ID

Context: A Register Set, A User Stack,
A Kernel Stack, A Private Storage
Space for Run-Time Libraries, and
DLL’s

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Windows XP

Data Structures
ETHREAD (executive thread block)

A ptr to the process,a ptr to KTHREAD,
the address of the starting routine

KTHREAD (kernel thread block)
Scheduling and synchronization
information, a kernel stack, a ptr to TEB

TEB (thread environment block)
A user stack, an array for thread-
specific data.

Kernel
Space

User
Space

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Linux

Threads introduced in Version 2.2
clone() versus fork()

Term task for process& thread

Several per-process data structures, e.g.,
pointers to the same data structures for
open files, signal handling, virtual memory,
etc.

Flag setting in clone() invocation.
CLONE_FS, CLONE_VM, CLONE_SIGHAND,
CLONE_FILES

Setting Threads or Processes

