
Chapter 3
Process Concept

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes

Objective:
Process Concept & Definitions

Process Classification:
Operating system processes
executing system code
User processes executing system
code
User processes executing user code

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes
Example: Special Processes in Unix

PID 0 – Swapper (i.e., the scheduler)
Kernel process

No program on disks correspond to this
process

PID 1 – init responsible for bringing up a Unix
system after the kernel has been
bootstrapped. (/etc/rc* & init or /sbin/rc* & init)

User process with superuser privileges

PID 2 - pagedaemon responsible for paging
Kernel process

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes
Process

A Basic Unit of Work from the Viewpoint of
OS
Types:

Sequential processes: an activity resulted from
the execution of a program by a processor
Multi-thread processes

An Active Entity
Program Code – A Passive Entity
Stack and Data Segments

The Current Activity
PC, Registers , Contents in the Stack and Data
Segments

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes

Process State

new

ready

waiting

terminated

running

admitted

interrupt

scheduled

exit

I/O or event wait

I/O or event completion

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes

Process Control Block (PCB)
Process State

Program Counter

CPU Registers

CPU Scheduling Information

Memory Management Information

Accounting Information

I/O Status Information

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes

PCB: The repository for any information
that may vary from process to process

pointer
process state

pc
register

0
1
2

PCB[]

NPROC-1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes
Process Control Block (PCB) – An Unix
Example

proc[i]
Everything the system must know when the
process is swapped out.

pid, priority, state, timer counters, etc.

.u
Things the system should know when process
is running

signal disposition, statistics accounting, files[], etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes

Example: 4.3BSD

text
structure

proc[i]
entry

page
table Code Segment

Data Segment

PC

heap

user stack
argv, argc,…

sp

.u

per-process
kernel stack

p_textpx_caddr

p_p0br

u_proc

p_addr

Red
Zone

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Processes

Example: 4.4BSD

proc[i]
entry

process grp

…

file descriptors

VM space region lists

page
table Code Segment

Data Segment
heap

user stack
argv, argc,…

.u

per-process
kernel stack

p_p0br

u_proc

p_addr

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Scheduling
The goal of multiprogramming

Maximize CPU/resource utilization!

The goal of time sharing
Allow each user to interact with his/her program!

PCB1 PCB2

head

tail

head

tail

head

tail

PCB3

ready
queue

disk
unit 0

tape
unit 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Scheduling – A
Queueing Diagram

ready queue
dispatch

CPU

I/O I/O queue I/O request

time slice expired

fork a child

wait for an interruptinterrupt occurs

child executeschild terminate

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Scheduling –
Schedulers

Long-Term (/Job) Scheduler

Goal: Select a good mix of I/O-bound and
CPU-bound process

Remarks：
1. Control the degree of multiprogramming

2. Can take more time in selecting processes
because of a longer interval between executions

3. May not exist physically

CPU

Memory
Job pool

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Scheduling –
Schedulers

Short-Term (/CPU) Scheduler
Goal：Efficiently allocate the CPU to
one of the ready processes
according to some criteria.

Mid-Term Scheduler
Swap processes in and out memory to
control the degree of multiprogramming

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Process Scheduling –
Context Switches

Context Switch ~ Pure Overheads
Save the state of the old process and load the
state of the newly scheduled process.

The context of a process is usually reflected in
PCB and others, e.g., .u in Unix.

Issues：
The cost depends on hardware support

e.g. processes with multiple register sets or
computers with advanced memory management.

Threads, i.e., light-weight process (LWP), are

introduced to break this bottleneck！

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operations on Processes

Process Creation & Termination
Restrictions on resource usage

Passing of Information

Concurrent execution

root

pagedaemon swapper init

user1 user2 user3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operations on Processes

Process Duplication
A copy of parent address space +
context is made for child, except the
returned value from fork()：

Child returns with a value 0
Parent returns with process id of child

No shared data structures between
parent and child – Communicate via
shared files, pipes, etc.
Use execve() to load a new program

fork() vs vfork() (Unix)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operations on Processes

A Unix Example:
…
if (pid = fork()) == 0) {

/* child process */
execlp(“/bin/ls”, “ls”, NULL);

} else if (pid < 0) {
fprintf(stderr, “Fork Failed”);
exit(-1);

} else {
/* parent process */
wait(NULL);

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operations on Processes
A Win32 API Example:

STARTUPINFO si; // properties, e.g., window size, handles to infile
PROCESS.INFORMATION pi; // a handle and ID’s to the newly

… // created process & its thread
if (!CreateProcess(NULL, //use command line

“c:\\WINDOWS\\system32\\mspaint.exe”, // command line
NULL, // don’t inherit process handle
NULL, // don’t inherit thread handle
FALSE, // disable handle inheritance
0, // no creation flags
NULL, // use parent’s environment block
NULL, // use parent’s existing directory
&si, &pi)) {
fprintf(stderr, “Create Process Failed”);
return -1;

}
WaitForSingleObject(pi.hProcess, INFINITE);

…
}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operations on Processes

Termination of Child Processes

Reasons:
Resource usages, needs, etc.

Kill, exit, wait, abort, signal, etc.

Cascading Termination

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication

Cooperating processes can affect or
be affected by the other processes

Independent Processes

Reasons:
Information Sharing, e.g., files

Computation Speedup, e.g.,
parallelism.

Modularity, e.g., functionality dividing

Convenience, e.g., multiple work

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication

Why Inter-Process Communication
(IPC)?

Exchanging of Data and Control
Information!

Why Process Synchronization?
Protect critical sections!

Ensure the order of executions!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication

Shared Memory
Max Speed & Comm Convenience

Message Passing
No Access Conflict & Easy Implementation

kernel

Process A

Process B

kernel

Process A

Process B
Shared Memory

M

M

M

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Shared Memory

A Consumer-Producer Example:
Bounded buffer or unbounded buffer

Supported by inter-process
communication (IPC) or by hand coding

z

0

1
2

n-1

n-2

in
out

buffer[0…n-1]

Initially,

in=out=0；

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Shared Memory

Producer:
while (1) {

/* produce an item nextp */

while (((in+1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = nextp;

in = (in+1) % BUFFER_SIZE;

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Shared Memory

Consumer:
while (1) {

while (in == out)

; /* do nothing */

nextc = buffer[out];

out = (out+1) % BUFFER_SIZE ;

/* consume the item in nextc */

}

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Message Passing

Logical Implementation of Message
Passing

Fixed/variable msg size,
symmetric/asymmetric communication,
direct/indirect communication,
automatic/explicit buffering, send by
copy or reference, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Message Passing

Classification of Communication by
Naming

Processes must have a way to refer
to each other!

Types

Direct Communication

Indirect Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Direct Communication

Process must explicitly name the
recipient or sender of a communication

Send(P, msg), Receive(Q, msg)

Properties of a Link:
a. Communication links are established

automatically.

b. Two processes per a link

c. One link per pair of processes

d. Bidirectional or unidirectional

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Direct Communication

Issue in Addressing:
Symmetric or asymmetric addressing

Send(P, msg), Receive(id, msg)

Difficulty:
Process naming vs modularity

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Indirect Communication

Two processes can communicate only
if the process share a mailbox (or ports)

Properties:
1. A link is established between a pair of

processes only if they share a mailbox.
2. n processes per link for n >= 1.
3. n links can exist for a pair of processes for

n >=1.
4. Bidirectional or unidirectional

Asend(A, msg)=> =>receive(A, msg)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Indirect Communication

Issues:
a. Who is the recipient of a message?

b. Owners vs Users
Process owner as the sole recipient?
OS Let the creator be the owner?

Privileges can be passed?
Garbage collection is needed?

P1
msgs ?

P2

P3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Synchronization

Blocking or Nonblocking
(Synchronous versus Asynchronous)

Blocking send
Nonblocking send
Blocking receive
Nonblocking receive

Rendezvous – blocking send &
receive

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Buffering

The Capacity of a Link = the # of messages
could be held in the link.

Zero capacity(no buffering)
Msg transfer must be synchronized – rendezvous!

Bounded capacity
Sender can continue execution without waiting till the
link is full

Unbounded capacity
Sender is never delayed!

The last two items are for asynchronous
communication and may need acknowledgement

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Buffering

Special cases:
a. Msgs may be lost if the receiver

can not catch up with msg sending
synchronization

b. Senders are blocked until the
receivers have received msgs and
replied by reply msgs

A Remote Procedure Call (RPC)
framework

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Exception Conditions

Process termination
a. Sender Termination Notify or

terminate the receiver!

b. Receiver Termination
a. No capacity sender is blocked.

b. Buffering messages are
accumulated.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Interprocess Communication –
Exception Conditions

Ways to Recover Lost Messages (due to
hardware or network failure):

OS detects & resends messages.
Sender detects & resends messages.
OS detects & notify the sender to handle it.

Issues:
a. Detecting methods, such as timeout!
b. Distinguish multiple copies if retransmitting is

possible

Scrambled Messages:
Usually OS adds checksums, such as CRC, inside
messages & resend them as necessary!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example – POSIX
Creation of Shared Memory Segment
segment_id = shmget(IPC_PRIVATE, size, S_IRUSR |
S_IWUSR);

IPC_PRIVATE new, size in bytes, rights

Attachment, Detachment, & Deletion
sh_mem = (char *) shmat(segment_id, NULL, 0)

shmdt(sh_mem)

shmctl(segment_id, IPC_RMID, NULL);

Seg_ID, location to attach, mode (0:rw, 1:r)

Access
Sprintf(sh_mem, “Writing to shared mem”);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example – Mach

Mach – A message-based OS from
the Carnegie Mellon University

When a task is created, two special
mailboxes, called ports, are also
created.

The Kernel mailbox is used by the
kernel to communication with the
tasks
The Notify mailbox is used by the
kernel sends notification of event
occurrences.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example - Mach

Three system calls for message
transfer:

msg_send:
Options when mailbox is full:

a. Wait indefinitely

b. Return immediately

c. Wait at most for n ms

d. Temporarily cache a message.
a. A cached message per sending thread

for a mailbox

* One task can either own or receive from a mailbox.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example - Mach

msg_receive
To receive from a mailbox or a set of
mailboxes. Only one task can own &
have a receiving privilege of it

* options when mailbox is empty:
a. Wait indefinitely

b. Return immediately

c. Wait at most for n ms

msg_rpc
Remote Procedure Calls

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example - Mach

port_allocate
create a mailbox (owner)
port_status ~ .e.g, # of msgs in a link

All messages have the same priority and are
served in a FIFO fashion.
Message Size

A fixed-length head + a variable-length
data + two mailbox names

Message copying: message copying
remapping of addressing space
System calls are carried out by messages.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example – Windows XP

Local Procedure Call (LPC) – Message
Passing on the Same Processor
1. The client opens a handle to a

subsystem’s connection port object.
2. The client sends a connection request.
3. The server creates two private

communication ports, and returns the
handle to one of them to the client.

4. The client and server use the
corresponding port handle to send
messages or callbacks and to listen for
replies.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Example – Windows XP

Two Types of Message Passing
Techniques

Small messages (<= 256 bytes)
Message copying

Large messages – section object
To avoid memory copy
Sending and receiving of the pointer
and size information of the object

A callback mechanism
When a response could not be
made immediately.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Socket
An endpoint for communication
identified by an IP address
concatenated with a port number

A client-server architecture

Socket
146.86.5.2:1652

Socket
161.25.19.8:80

Web server

Host X

* /etc/services: Port # under 1024 ~ 23-telnet, 21-ftp, 80-web server, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Three types of sockets in Java
Connection-oriented (TCP) – Socket class

Connectionless (UDP) – DatagramSocket class

MulticastSocket class – DatagramSocket subclass

sock = new ServerSocket(5155);
…
client = sock.accept();
pout = new PrintWriter(client.getOutputStream(),

true);
…
Pout.println(new java.util.Date().toString());
pout.close();
client.close();

sock = new Socket(“127.0.0.1”,5155);
…
in = sock.getInputStream();
bin = new BufferReader(new

InputStreamReader(in));
…
sock.close();

Server
Client

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Remote Procedure Call (RPC)
A way to abstract the procedure-call
mechanism for use between systems with
network connection.

Needs:
Ports to listen from the RPC daemon site
and to return results, identifiers of functions
to call, parameters to pack, etc.

Stubs at the client site
One for each RPC

Locate the proper port and marshall parameters.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Needs (continued)
Stubs at the server site

Receive the message
Invoke the procedure and return the results.

Issues for RPC
Data representation

External Data Representation (XDR)
Parameter marshalling

Semantics of a call
History of all messages processed

Binding of the client and server port
Matchmaker – a rendezvous mechanism

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Client Messages Server

Call kernel
to send RPC
msg to
Procedure X

Kernel sends
msg to
matchmaker

Kernel places
port P in usr
RPC msg

Kernel sends
RPC

Kernel receives
reply and passes
to user

Port: matchaker
Re: addr. to X

Port: kernel
Re: port P to X

Port: P
<contents>

Port: kernel
<output>

Matchmaker
receives msg

Matchmaker
replies to client
with port P

Daemon listens
to port P and
receives msg

Daemon processes
request and sends
output

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

An Example for RPC
A Distributed File System (DFS)

A set of RPC daemons and clients

DFS port on a server on which a file
operation is to take place:

Disk operations: read, write,
delete, status, etc –
corresponding to usual system
calls

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Remote Method Invocation (RMI)
Allow a thread to invoke a method on a
remote object.

boolean val = Server.someMethod(A,B)

Implementation
Stub – a proxy for the remote object

Parcel – a method name and its
marshalled parameters, etc.

Skeleton – for the unmarshalling of
parameters and invocation of the method
and the sending of a parcel back

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Communication in Client-
Server Systems

Parameter Passing
Local (or Nonremote) Objects

Pass-by-copy – an object
serialization

Remote Objects – Reside on a
different Java virtual machine (JVM)

Pass-by-reference

Implementation of the interface –
java.io.Serializable

