
Chapter 2
System Structures

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating-System Structures

Goals: Provide a way to understand
an operating systems

Services

Interface

System Components

The type of system desired is the
basis for choices among various
algorithms and strategies!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operation-System Services
Goal:

Provide an environment for the execution
of programs.

Services are provided to programs and
their users.

User Interface (UI)
Command Line Interface, Batch Interface,
Graphical User Interface (GUI), etc.

Interface between the user and the
operating system

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operation-System Services
Friendly UI’s

Command-line-based interfaces or
mused-based window-and-menu
interface

e.g., UNIX shell and command.com in
MS-DOS

Program Execution
Loading, running, terminating, etc

Get the next command
Execute the commandUser-friendly?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operation-System Services

I/O Operations
General/special operations for devices:

Efficiency & protection

File-System Manipulation
Read, write, create, delete, etc.
Files and Directories
Permission Management

Communications
Intra-processor or inter-processor
communication – shared memory or
message passing

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operation-System Services

Error Detection
Possible errors from CPU, memory,
devices, user programs Ensure
correct & consistent computing

Resource Allocation
Utilization & efficiency

Accounting
Statistics or Accounting

Protection & Security
• user convenience or system efficiency!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

User OS Interface –
Command Interpreter

Two approaches:
Contain codes to execute commands

Fast but the interpreter tends to be
big!

Painful in revision!

del cd

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

User OS Interface –
Command Interpreter

Implement commands as system
programs Search exec files
which corresponds to commands
(UNIX)

Issues
a. Parameter Passing

Potential Hazard: virtual memory

b. Being Slow
c. Inconsistent Interpretation of

Parameters

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

User OS Interface – GUI

Components
Screen, Icons, Folders, Pointer, etc.

History
Xerox PARC research facility (1970’s)

Mouse – 1968

Mac OS – 1980’s

Windows 1.0 ~ XP

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

User OS Interface – GUI

Unix & Linux
Common Desktop Environment
(CDE), X-Windows, K Desktop
Environment (KDE), GNOME

Trend
Mixture of GUI and command-line
interfaces

Multimedia, Intelligence, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

System calls
Interface between processes & OS

How to make system calls?
Assemble-language instructions or
subroutine/functions calls in high-level
language such as C or Perl?

Generation of in-line instructions or a
call to a special run-time routine.

Example: read and copy of a file!
Library Calls vs System Calls

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Application Programming Interface
(API)

Examples: Win 32 API for Windows,
POSIX API for POSIX-based
Systems, Java API for Java virtual
machines

Benefits (API vs System Calls)

Portability

Ease of Use & Better Functionality

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

How a system call
occurs?

Types and
information

Parameter Passing
Registers
Registers pointing to
blocks

Linux

Stacks

x: parameters
for call

load address x
system call 13

x
register

use parameters
from table x

Code for
System
Call 13

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Process Control

File Management

Device Management

Information Maintenance

Communications

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Process & Job Control
End (normal exit) or abort (abnormal)

Error level or no

Interactive, batch, GUI-supported systems

Load and execute
How to return control?

e.g., shell load & execute commands

Creation and/or termination of processes
Multiprogramming?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Process & Job Control (continued)
Process Control

Get or set attributes of processes

Wait for a specified amount of time
or an event

Signal event

Memory dumping, profiling, tracing,
memory allocation & de-allocation

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Examples: MS-DOS & UNIX

kernel

command
interpreter

process

free memory

kernel

interpreter

process B

free memory

process A

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

File Management
Create and delete

Open and close

Read, write, and reposition (e.g.,
rewinding)

lseek

Get or set attributes of files

Operations for directories

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Device management
Physical or virtual devices, e.g., files.

Request or release
Open and close of special files

Files are abstract or virtual devices.

Read, write, and reposition (e.g.,
rewinding)

Get or set file attributes

Logically attach or detach devices

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Information maintenance
Get or set date or time
Get or set system data, such as the amount
of free memory

Communication
Message Passing

Open, close, accept connections
Host ID or process ID

Send and receive messages
Transfer status information

Shared Memory
Memory mapping & process synchronization

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Calls

Shared Memory
Max Speed & Comm Convenience

Message Passing
No Access Conflict & Easy Implementation

kernel

Process A

Process B

kernel

Process A

Process B
Shared Memory

M

M

M

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Programs
Goal:

Provide a convenient environment for
program development and execution

Types
File Management, e.g., rm.
Status information, e.g., date.
File Modifications, e.g., editors.
Program Loading and Executions, e.g.,
loader.
Programming Language Supports, e.g.,
compilers.
Communications, e.g., telnet.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Design &
Implementation

Design Goals & Specifications:
User Goals, e.g., ease of use

System Goals, e.g., reliable

Rule 1: Separation of Policy & Mechanism
Policy：What will be done?

Mechanism：How to do things?

Example: timer construct and time slice

Two extreme cases:

Microkernel-based OS Macintosh OS

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Design &
Implementation

OS Implementation in High-Level
Languages

E.g., UNIX, OS/2, MS NT, etc.

Advantages:
Being easy to understand & debug

Being written fast, more compact,
and portable

Disadvantages:
Less efficient but more storage for
code

* Tracing for bottleneck identification, exploring of excellent algorithms, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure – MS-DOS

MS-DOS Layer Structure

Application program

Resident system program

MS-DOS device drivers

ROM BIOS device drivers

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure – UNIX

terminal controller, terminals,
physical memory, device controller,
devices such as disks, memory, etc.

CPU scheduling, signal handling,
virtual memory, paging, swapping,
file system, disk drivers, caching/buffering, etc.

Shells, compilers, X, application programs, etc.

UNIX

Kernel interface
to the hardware

System call
interface

useruser user useruser user
user

User
interface

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure
A Layered Approach – A Myth

Advantage: Modularity ~ Debugging &
Verification

Difficulty: Appropriate layer definitions, less
efficiency due to overheads！

Layer M

Layer M-1hidden
ops

new
ops

existing
ops

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure

A Layer Definition Example:

L5 User programs

L4 I/O buffering

L3 Operator-console device driver

L2 Memory management

L1 CPU scheduling

L0 Hardware

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure – OS/2

OS/2 Layer Structure

Application Application Application

Subsystem Subsystem Subsystem

Device driver Device driver Device driver

Application-program Interface

‧memory management

System kernel ‧task scheduling
‧device management

* Some layers of NT were from user space to kernel space in NT4.0

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure –
Microkernels

The concept of microkernels was
proposed in CMU in mid 1980s (Mach).

Moving all nonessential components
from the kernel to the user or system
programs!
No consensus on services in kernel

Mostly on process and memory
management and communication

Benefits:
Ease of OS service extensions
portability, reliability, security

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure –
Microkernels

Examples
Microkernels: True64UNIX (Mach
kernel), MacOS X (Mach kernel),
QNX (msg passing, proc scheduling,
HW interrupts, low-level networking)

Hybrid structures: Windows NT

kernel

OS/2
Applications OS/2

Server

POSIX
Applications POSIX

Server

Win32
Applications Win32

Server

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure – Modules

A Modular Kernel
A Set of Core Components

Dynamic Loadable Modules
E.g., Solaris: Scheduling Classes, File
Systems, Loadable System Calls,
Executable Formats, STREAMS
Modules, Miscellaneous, Device and
Bus Drivers

Characteristics:
Layer-Like – Modules

Microkernel-Like – the Primary Module

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

OS Structure – Modules

Example Mac OS X
Application Environments and Common
Services

BSD: Command Line Interface, Support for
Networking and File Systems, an
Implementation of POSIX APIs.

Mach: Memory Management, Support for
Remote Procedure Calls, Interprocess
Communication Facilities

The Kernel Environment: I/O Kit for the
Development of Device Drivers and
Dynamically Loadable Modules.Kernel Environment

BSD

Mach

App. Environ. &
Common Services

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine

Virtual Machines: provide an interface that is
identical to the underlying bare hardware

interface

processes processes processes processes

kernel
kernel kernel

hardware
virtual machine implementation

hardware

kernel

VM1 VM2 VM3

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine

Implementation Issues:
Emulation of Physical Devices

E.g., Disk Systems
An IBM minidisk approach

User/Monitor Modes
(Physical) Monitor Mode

Virtual machine software

(Physical) User Mode
Virtual monitor mode & Virtual user
mode

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine

virtual
user
mode

virtual
monitor
mode

monitor
mode

processes processes processes

kernel 1 kernel 2 kernel 3

virtual machine software

hardware

P1/VM1 system call

Trap

Service for the system call

Set program counter
& register contents,
& then restart VM1

Simulate the
effect of the I/O
instruction

Restart VM1

Finish
service

time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine

Disadvantages:
Slow!

Execute most instructions directly on the
hardware

No direct sharing of resources
Physical devices and
communications

* I/O could be slow (interpreted) or fast (spooling)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine

Advantages:
Complete Protection – Complete
Isolation！

OS Research & Development
System Development Time

Extensions to Multiple Personalities, such
as Mach (software emulation)

Emulations of Machines and OS’s, e.g.,
Windows over Linux

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine – VMware
VMware – The visualization layer abstracts the
physical hardware into isolated virtual
machines running as guest operating systems.

CPU memory I/O devices

Linux/Windows

Guest OS (Windows NT)
Virtual OS

Virtual memory
Virtual devices

applications

Guest OS (free BSD)
Virtual OS

Virtual memory
Virtual devices

applicationsapplications

visualization layer

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine – Java

Sun Microsystems in late 1995
Java Language and API Library

Java Virtual Machine (JVM)

Class loader (for
bytecode .class files)

Class verifier

Java interpreter
An interpreter, a just-in-time (JIT)
compiler, hardware

class loader

verifier

java interpreter

host system

java .class files

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Virtual Machine – Java

JVM
Garbage collection

Reclaim unused objects

Implementation being specific for
different systems

Programs are architecture neutral
and portable

class loader

verifier

java interpreter

host system

java .class files

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Generation
SYSGEN (System Generation)

Ask and probe for information concerning the
specific configuration of a hardware system

CPU, memory, device, OS options, etc.

No recompilation Recompilation
& completely Linking of of a modified
table-driven modules for source code

selected OS

Issues
Size, Generality, Ease of modification

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Boot

Booting
The procedure of starting a computer
by loading the kernel.

The bootstrap program or the
bootstrap loader

Firmware being ROM or EEPROM
resident

Boot/system disk with a boot block

