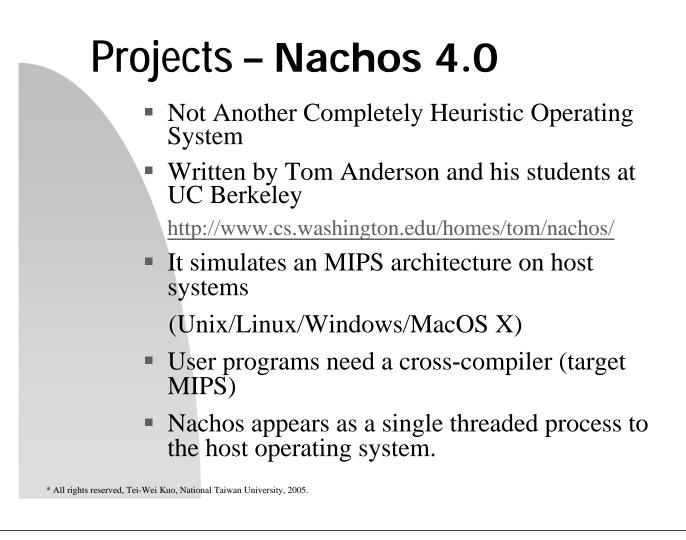
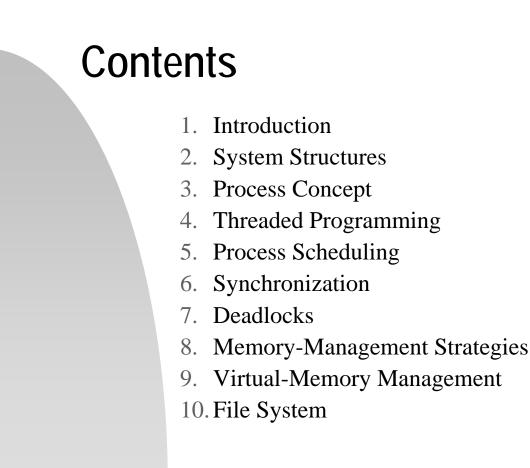
Operating System Concepts

Tei-Wei Kuo

ktw@csie.ntu.edu.tw

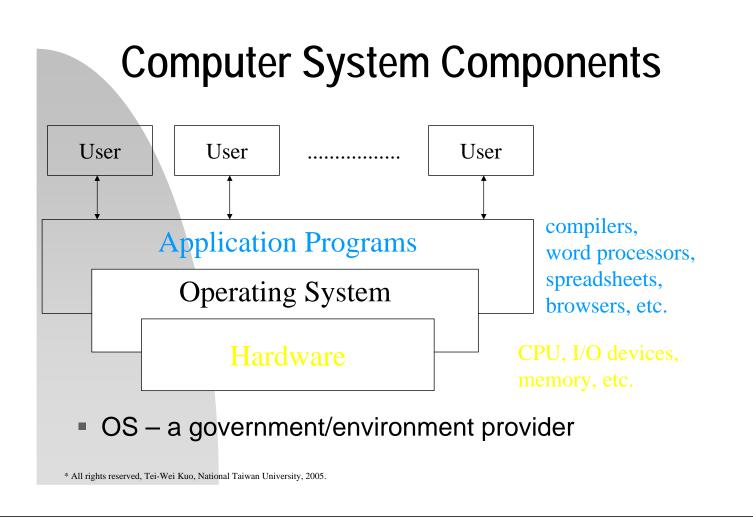

Dept. of Computer Science and Information Engineering National Taiwan University


Syllabus

- 授課教授: 郭大維 @ Room 315.資工系. NTU.TW
- 助教: 陳雅淑 (yashc@mail2000.com.tw)
 張原豪 (d93944006@ntu.edu.tw)
- 上課時間: Wednesday 14:20-17:20
- ▶ 教室:資 103
- 教科書:

Silberschatz, Galvin, and Gagne, "Operating System Principles," 7th Edition, John Wiley & Sons, Inc..

成績評量: (subject to changes.):
 期中考(40%), 期末考(40%), 作業(20%)



Chapter 1. Introduction

Introduction

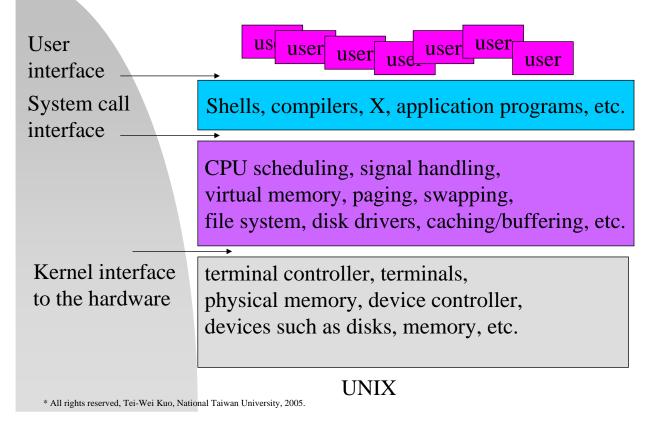
- What is an Operating System?
 - A basis for application programs
 - An intermediary between users and hardware
- Amazing variety
 - Mainframe, personal computer (PC), handheld computer, embedded computer without any user view
 Convenient vs Efficient

User View

- The user view of the computer varies by the interface being used!
- Examples:
 - Personal Computer → Ease of use
 - Mainframe or minicomputer

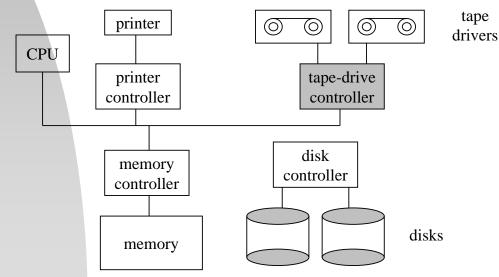
 maximization of resource utilization
 Efficiency and fair share
 - Workstations → compromise between individual usability & resource utilization
 - Handheld computer → individual usability
 - Embedded computer without user view → run without user intervention

System View


- A Resource Allocator
 - CPU time, Memory Space, File Storage, I/O Devices, Shared Code, Data Structures, and more
 - A Control Program
 - Control execution of user programs
 - Prevent errors and misuse
- OS definitions US Dept.of Justice against Microsoft in 1998
 - The stuff shipped by vendors as an OS
 - Run at all time

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Goals


- Two Conflicting Goals:
 - Convenient for the user!
 - Efficient operation of the computer system!
- We should
 - recognize the influences of operating systems and computer architecture on each other
 - and learn why and how OS's are by tracing their evolution and predicting what they will become!

UNIX Architecture

Computer-System Structure

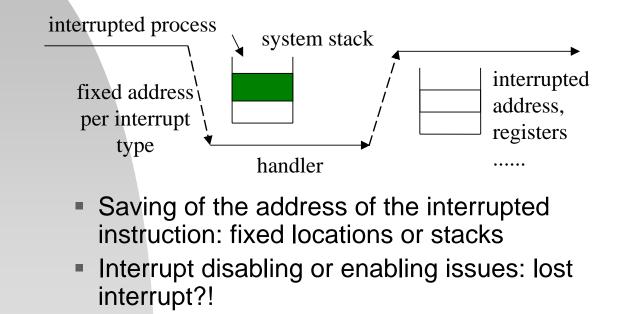
 Objective: General knowledge of the structure of a computer system.

Device controllers: synchronize and manage access to devices.

Booting

- Bootstrap program:
 - Initialize all aspects of the system, e.g., CPU registers, device controllers, memory, etc.
 - Load and run the OS
- Operating system: run *init* to initialize system processes, e.g., various daemons, login processes, after the kernel has been bootstrapped. (/etc/rc* & init or /sbin/rc* & init)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

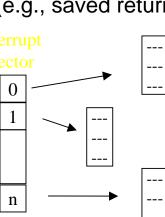

Interrupt

- Hardware interrupt, e.g. services requests of I/O devices
- Software interrupt, e.g. signals, invalid memory access, division by zero, system calls, etc – (trap)

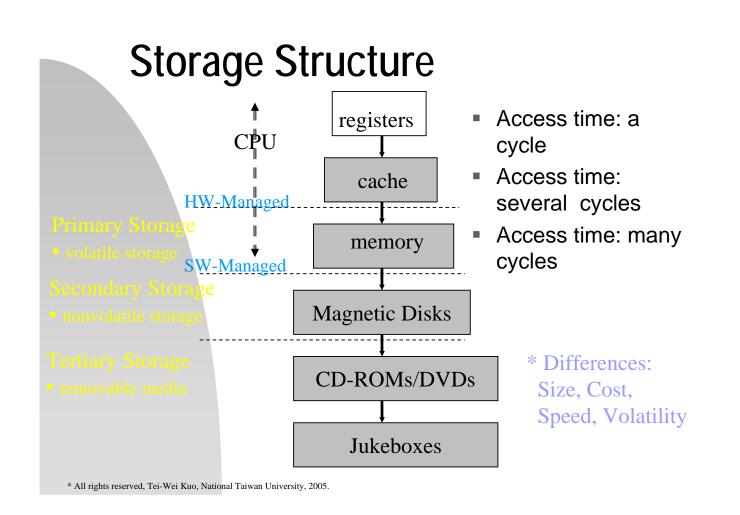
handler / return

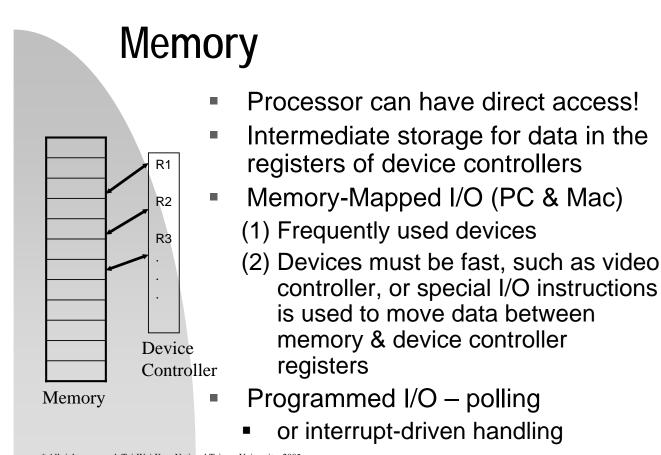
 Procedures: generic handler or interrupt vector (MS-DOS,UNIX)

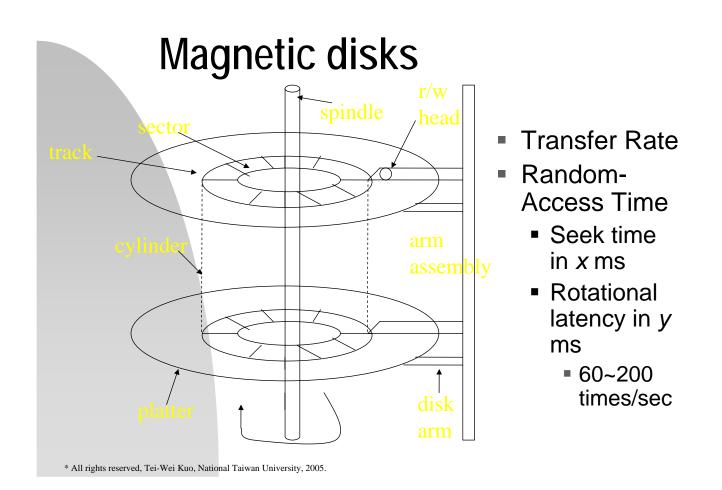
Interrupt Handling Procedure


* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

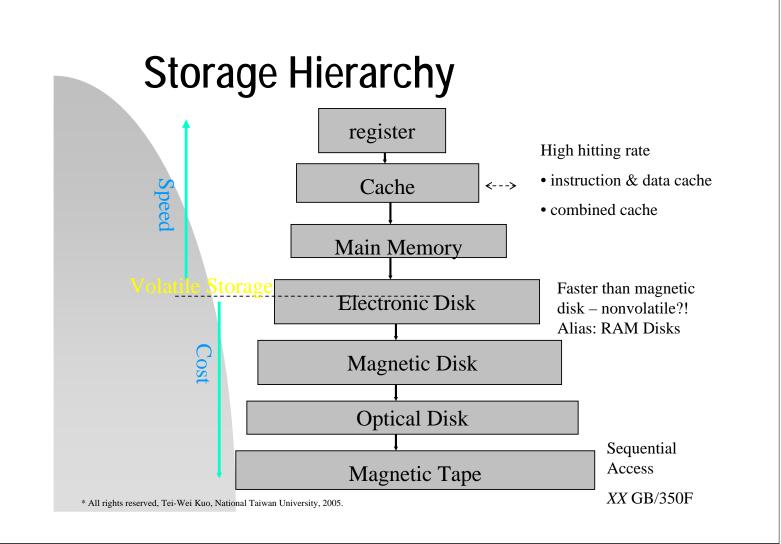
Interrupt Handling Procedure

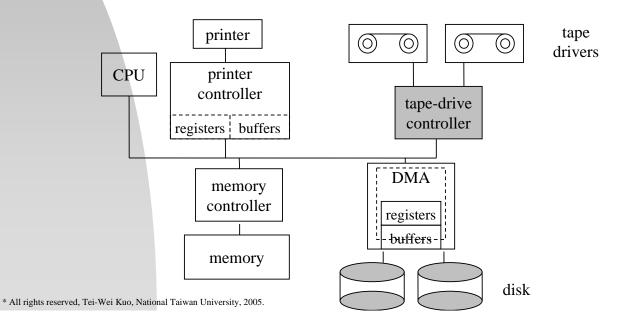

prioritized interrupts \rightarrow masking


- Interrupt Handling
 - Save interrupt information
 - → OS determine the interrupt type (by polling)
 - → Call the corresponding handlers
 - → Return to the interrupted job by the restoring important information (e.g., saved return addr. → program counter)


indexed by a unique device number

Interrupt Handlers (Interrupt Service Routines)

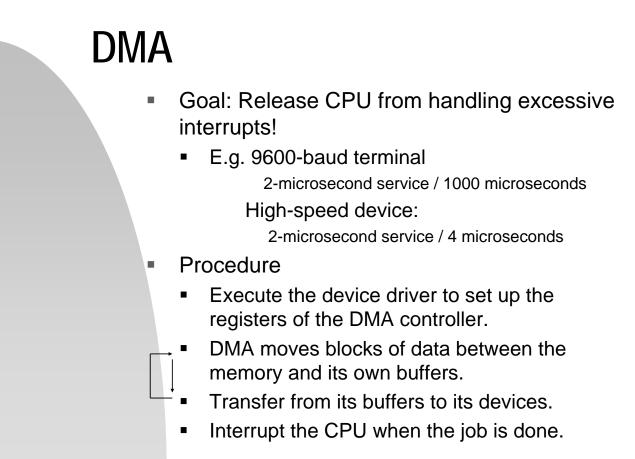



Magnetic Disks

- Disks
 - Fixed-head disks:
 - More r/w heads v.s. fast track switching
 - Moving-head disks (hard disk)
 - Primary concerns:
 - Cost, Size, Speed
 - Computer → host controller → disk controller
 → disk drives (cache ← → disks)
- Floppy disk
 - slow rotation, low capacity, low density, but less expensive
 - Tapes: backup or data transfer bet machines

I/O Structure

Device controllers are responsible of moving data between the peripheral devices and their local buffer storages.



I/O Structure

- I/O operation
 - a. CPU sets up specific controller registers within the controller.
 - b. Read: devices → controller buffers → memory

Write: memory \rightarrow controller buffers \rightarrow devices

c. Notify the completion of the operation by triggering an interrupt

Single-Processor Systems

- Characteristics: One Main CPU
 - Special-Purpose Processors, e.g., Disk-Controller Microprocessors.
- Examples:
 - Personal Computers (Since 1970's), Mainframes.
- Operating Systems
 - Batching → Multiprogramming → Time-Sharing

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Parallel Systems

- Tightly coupled: have more than one processor in close communication sharing computer bus, clock, and sometimes memory and peripheral devices
- Loosely coupled: otherwise
- Advantages
 - Speedup Throughput
 - Lower cost Economy of Scale
 - More reliable Graceful Degradation → Fail Soft (detection, diagnosis, correction)

• A Tandem or HP-NonStop fault-tolerance solution

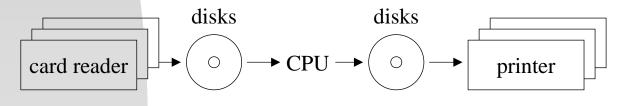
Parallel Systems

- Symmetric multiprocessing model: each processor runs an identical copy of the OS
- Asymmetric multiprocessing model: a masterslave relationship
 - ~ Dynamically allocate or pre-allocate tasks
 - ~ Commonly seen in extremely large systems
 - ~ Hardware and software make a difference?
- Trend: the dropping of microporcessor cost
 OS functions are offloaded to slave processors (back-ends)

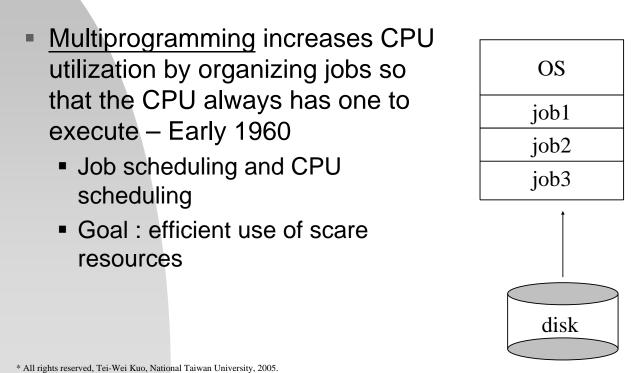
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Parallel Systems

- The Recent Trend:
 - Hyperthreading Processors
 - Multiple Cores over a Single Chip
 - N Standard Processors!
- Loosely-Coupled Systems
 - Processors do not share memory or a clock
 - Blade Servers
 - Each blade-processor board boots independently and runs its own OS.

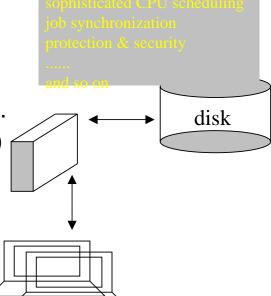

Clustered Systems

- Definition: Clustered computers which share storage and are closely linked via LAN networking.
- Advantages: high availability, performance improvement, etc.
- Types
 - Asymmetric/symmetric clustering
 - Parallel clustering multiple hosts that access the same data on the shared storage.
- Distributed Lock Manager (DLM)
 - Oracle


* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Operating-System Structure

- Simple batch systems
 - Resident monitor Automatically transfer control from one job to the next
- Spooling (Simultaneous Peripheral Operation On-Line)
 - Replace sequential-access devices with random-access device



Operating-System Structure

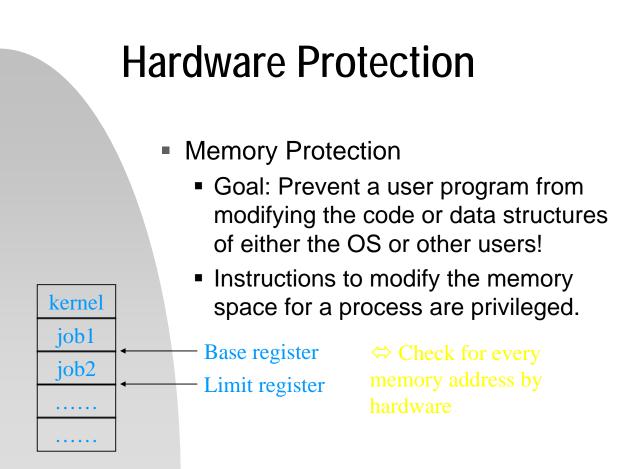
Operating-System Structure

- <u>Time sharing</u> (or <u>multitasking</u>) is a logical extension of multiprogramming!
 - Started in 1960s and become common in 1970s.
 - An <u>interactive</u> (or <u>hand-on</u>) computer system
 - Multics, IBM OS/360
- Virtual Memory
 - Physical Address

Operating-System Operations

- An Interrupt-Driven Architecture for Modern OS's
 - Events are almost always signaled by the occurrence of an interrupt or a trap (or an exception).
- Protection of User Programs and OS
 - Multiprogramming
 - Sharing of Hardware and Software

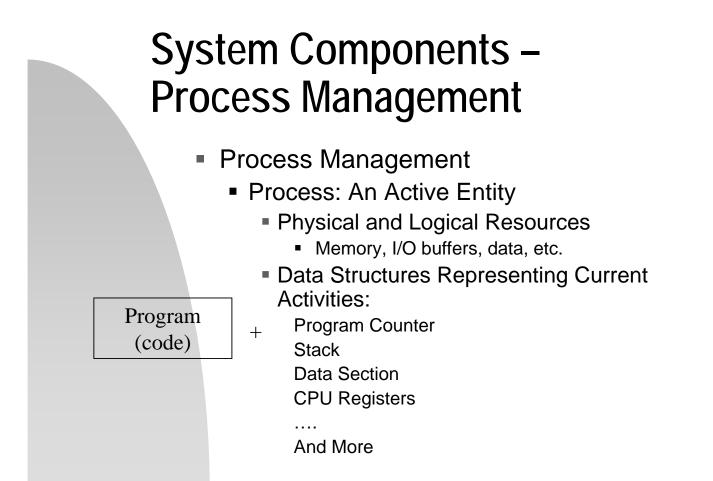
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.


Hardware Protection

- Goal:
 - Prevent errors and misuse!
 - E.g., input errors of a program in a simple batch operating system
 - E.g., the modifications of data and code segments of another process or OS
- Dual-Mode Operations a mode bit
 - User-mode executions except those after a trap or an interrupt occurs.
 - Monitor-mode (system mode, privileged mode, supervisor mode)
 - Privileged instruction:machine instructions that may cause harm

Hardware Protection

- System Calls trap to OS for executing privileged instructions.
- Resources to protect
 - I/O devices, Memory, CPU
- I/O Protection (I/O devices are scare resources!)
 - I/O instructions are privileged.
 - User programs must issue I/O through OS
 - User programs can never gain control over the computer in the system mode.


* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Hardware Protection

- CPU Protection
 - Goal
 - Prevent user programs from sucking up CPU power!
 - Use a timer to implement time-sharing or to compute the current time.
 - Instructions that modify timers are privileged.
 - Computer control is turned over to OS for every time-slice of time!
 - Terms: time-sharing, context switch

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Components – Process Management

- Services
 - Process creation and deletion
 - Process suspension and resumption
 - Process synchronization
 - Process communication
 - Deadlock handling

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Components – Main-Memory Management

- Memory: a large array of words or bytes, where each has its own address
- OS must keep several programs in memory to improve CPU utilization and user response time
- Management algorithms depend on the hardware support
- Services
 - Memory usage and availability
 - Decision of memory assignment
 - Memory allocation and deallocation

System Components – File-System Management

- Goal:
 - A uniform logical view of information storage
 - Each medium controlled by a device
 - Magnetic tapes, magnetic disks, optical disks, etc.
- OS provides a logical storage unit: File
 - Formats:
 - Free form or being formatted rigidly.
 - General Views:
 - A sequence of bits, bytes, lines, records

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

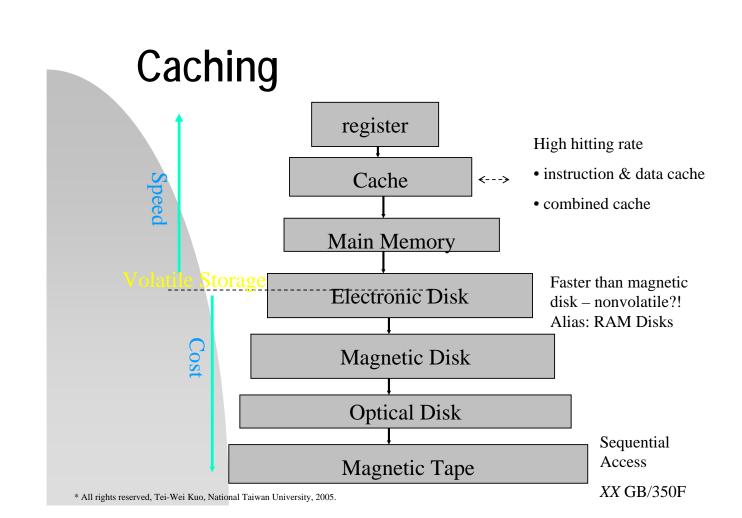
System Components – File-System Management

- Services
 - File creation and deletion
 - Directory creation and deletion
 - Primitives for file and directory manipulation
 - Mapping of files onto secondary storage
 - File Backup

* Privileges for file access control

System Components – Secondary-Storage Management

- Goal:
 - On-line storage medium for programs & data
 - Backup of main memory
- Services for Disk Management
 - Free-space management
 - Storage allocation, e.g., continuous allocation
 - Disk scheduling, e.g., FCFS


* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

System Components –Tertiary Storage Devices

- Goals:
 - Backups of disk data, seldom-used data, and long-term archival storage
- Examples:
 - Magnetic tape drives and their tapes, CD & DVD drives and platters.
- Services OS Supports or Applications' Duty
 - Device mounting and unmounting
 - Exclusive allocation and freeing
 - Data transfers from tertiary devices to secondary storage devices.

System Components – I/O System Management

- Goal:
 - Hide the peculiarities of specific hardware devices from users
- Components of an I/O System
 - A buffering, caching, and spooling system
 - A general device-driver interface
 - Drivers

Caching

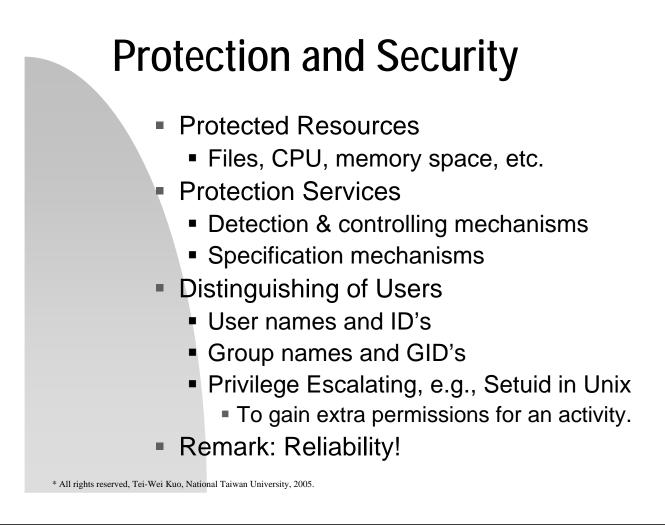
Level	1	2	3	4
Name	Registers	Cache	Memory	Disk
Typical Size	< 1KB	> 16MB	> 16GB	> 100GB
Implementat ion Strategy	Custom memory with multiple ports, CMOS	On-chip or off- chip CMOS SRAM	CMOS DRAM	Magnetic Disks
Access Time (ns)	0.25 – 0.5	0.5 – 2.5	80 – 250	5,000,000
Bandwidth (MB/s)	20,000 – 100,000	5000 — 10,000	1000 – 5000	20 – 150
Managed by	Compiler	Hardware	OS	OS
Backup by	Cache	Memory	Disk	CD/Tape

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Caching

- Caching
 - Information is copied to a faster storage system on a temporary basis
 - Assumption: Data will be used again soon.
 Programmable registers, instr. cache, etc.
- Cache Management
 - Cache Size and the Replacement Policy
- Movement of Information Between Hierarchy
 - Hardware Design & Controlling Operating Systems

Caching


- Coherency and Consistency
 - Among several storage levels (vertical)
 Multitasking vs unitasking
 - Among units of the same storage level, (horizontal), e.g. cache coherency
 - Multiprocessor or distributed systems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

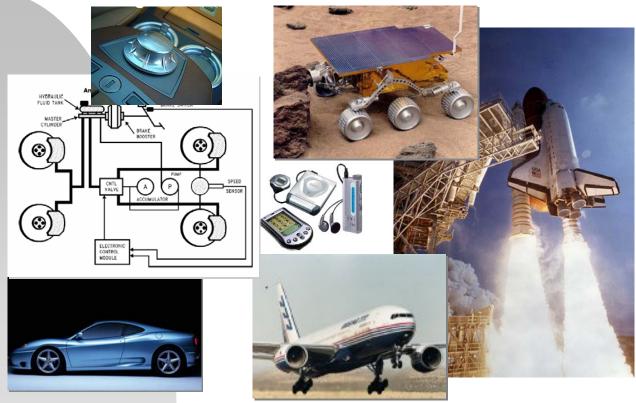
Protection and Security

- Goal
 - Resources are only allowed to be accessed by authorized processes.
- Definitions:
 - Protection any mechanism for controlling the access of processes or users to the resources defined by the computer system.
 - Security Defense of a system from external and internal attacks, e.g., viruses, denial of services, etc.

Distributed Systems

- Definition: Loosely-Coupled Systems processors do not share memory or a clock
 - Heterogeneous vs Homogeneous
- Advantages or Reasons
 - Resource sharing: computation power, peripheral devices, specialized hardware
 - Computation speedup: distribute the computation among various sites – load sharing
 - Reliability: redundancy \rightarrow reliability
 - Communication: X-window, email

Distributed Systems


- Distributed systems depend on networking for their functionality.
 - Networks vary by the protocols used.
 TCP/IP, ATM, etc.
 - Types distance
 - Local-area network (LAN)
 - Wide-area network (WAN)
 - Metropolitan-area network (MAN)
 - Small-area network distance of few feet
 - Media copper wires, fiber strands, satellite wireless transmission, infrared communication, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Real-Time Embedded Systems

- Embedded Computers Most Prevalent Form of Computers
 - Have a wide variety ranged from car engines to VCR's.
 - General-purpose computers with standard OS's, HW devices with or without embedded OS's
 - Standalone units or members of networks and the Web
 - Tend to have specific tasks and almost always run real-time operating systems.

Real-Time Embedded Systems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Real-Time Embedded Systems

- Definition: A real-time system is a computer system where a timely response by the computer to external stimuli is vital!
- Hard real-time system: The system has failed if a timing constraint, e.g. deadline, is not met.
 - All delays in the system must be bounded.
 - Many advanced features are absent.

Real-Time Embedded Systems

- Soft real-time system: Missing a timing constraint is serious, but does not necessarily result in a failure unless it is excessive
 - A critical task has a higher priority.
 - Supported in most commercial OS.
- <u>Real-time</u> means <u>on-time</u> instead of fast

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Multimedia Systems

- Multimedia Data
 - Audio and video files and conventional files
 - Multimedia data must be delivered according to certain time restrictions (e.g., 30 frames per second)
- Variety on Platforms
 - Desktop personal computers, Personal Digital Assistant (PDA), cellular telephones, etc.

Handheld Systems

- Handheld Systems
 - E.g., Personal Digital Assistant (PDA) and cellular phones.
- New Challenges convenience vs portability
 - Limited Size and Weight
 - Small Memory Size (e.g., 512KB ~ 128MB)
 No Virtual Memory
 - Slow Processor
 - Battery Power
 - Small display screen
 - Web-clipping

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Computing Environments

- Evolving Environments
 - Transition from the period of scarce resources to the period of ubiquitous access!
 - In the past, portability is achieved by laptops!
 - Remote access is supported in a limited way. Mainframes are prevalent!
 - Now, PC's, PDA, and various equipments are connected!
 - High speed networks are available at home and office! Web-computing is popular (e.g.,portals).

Computing Environments

- Client-Server Systems
 - Trend: The functionality of clients is improved in the past decades.
 - Categories:
 - Compute-server systems
 - File-server systems
 - Network Operating Systems
 - Autonomous computers
 - A distributed operating system a single OS controlling the network.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2005.

Computing Environments

- Peer-to-Peer Systems
 - Characteristics: Client and server roles depend on whether who is requesting or providing a service.
 - Network connectivity is an essential component.
 - Service Availability and Discovery
 - Registration of services: a centralized lookup service or not
 - A discovery protocol
 - Issues:
 - Legal problems in exchanging files.

Computing Environments

- Web-Based Computing
 - Web Technology
 - Portals, network computers, etc.
 - Network connectivity
 - New categories of devices
 - Load balancers
- Embedded Computing
 - Car engines, robots, VCR's, home automation
 - Embedded OS's often have limited features.