Contents

Preface/Introduction
Standardization and Implementation
File 1/10
Standard 1/O Library
Files and Directories
System Data Files and Information
Environment of a Unix Process
Process Control

@ 9. Signals
Inter-process Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

Objectives:
= An overview of signals
» Related function libraries and problems,
e.g., reliability & incompatibility.
What is a signal?
= Software interrupts
A way of handling asynchronous events
e.g., SIGABRT, SIGALRM.

= 15 signals for Version 7, 31 signals for
SVR4 & 4.3+BSD - <signal.h> (# > 0)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

Conditions to generate signals:

* All rights reserved, Tei-Wei Kuo, Nation:

Terminal-generated signals — DELETE
key, *c > SIGINT

Signals from hardware exceptions -
SIGFPE ~ divided-by-0, SIGSEGV ~
illegal memory access, etc.

Function Kill
Owner or superuser
Shell command kill, e.g., kill -9 pid

Signals because of software conditions >
SIGPIPE ~ reader of the pipe terminated,
SIGALRM ~ expiration of an alarm clock

al Taiwan University, 2003.

Signals

* All rights reserved, Tei-Wei Kuo, Natiol

The disposition of a signal (the action)

» |gnore signals

SIGKILL and SIGSTOP can not be
ignored.

There could be undefined behaviors
for ignoring signals, such as SIGFPE.

= Catch signals

Provide a signal handler

= e.g., calling waitpid() when a process
receives SIGCHLD

= Apply the default action — Figure 10.1

nal Taiwan University, 2003.

Signals

Remark — Figure 10.1

= Terminate w/core — not POSIX.1

No core file: Non-owner setuid
process, non-grp-owner setgid
process, no access rights at the
working dir, file is too big
(RLIMIT_CORE)

core.prog
= Hardware faults
Implementation-defined faults

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGABRT - terminate w/core

= Call abort()

SIGALRM — terminate

= Call setitimer()

SIGBUS - terminate w/core

» |mplementation-defined HW fault
SIGCHLD - ignore

» |t was sent whenever a process
terminates or stops

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGCONT - continue/ignore

= Continue a stopped process, e.g., Vi
SIGEMT - terminate w/core

» |mplementation-defined HW fault
SIGFPE - terminate w/core

= Divid-by-0, floating point overflow, etc.
SIGHUP — terminate

= Disconnection is detected by the
terminal interface (no daemons) -
controlling process of a terminal

» Triggering of the rereading of the config
files (daemons)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGILL — terminate w/core

» |llegal hardware instruction (4.3BSD do
it for abort() in the past)

SIGINFO —ignore (BSD4.3+)

= Status request for fg processes ("T)
SIGINT — terminate

= DELETE key or *C

SIGIO - terminate/ignore

» |ndicate an asynchronous I/O event
(SIGIO=SIGPOLL, Terminate on SVR4)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGIOT — terminate w/core

» Implementation-defined HW fault
(System V did it for abort() in the past)

SIGKILL — terminate

= Could not be ignored or caught!
SIGPIPE — terminate

= reader of the pipe/socket terminated
SIGPOLL - terminate (SVR4)

» A specific event happens on a pollable
device.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGPROF - terminate
= A profiling timer expires (setitimer)
SIGPWR - ignore (SVR4)

= System dependent on SVR4
UPS - init shutdowns the system

SIGQUIT — terminate w/core

= M\ triggers the terminal driver to send
the signal to all foreground processes.

SIGSEGV - terminate w/core
= |nvalid memory access

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGSTOP - stop process (like SIGTSTP)
= Can not be caught or ignored

SIGSYS - terminate w/core

= Invalid system call

SIGTERM - terminate

= Termination signal sent by kill command
SIGTRAP — terminate w/core

» Implementation-defined HW fault
SIGTSTP — stop process

= Terminal stop signal (*Z) to all foreground
processes

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGTTIN — stop process

= Generated when gb processes try to
read from the controlling terminal

SIGTTOU — stop process

= Generated when gb processes try to
write to the controlling terminal

= Could be generated by terminal
operations, e.g., tcflush

SIGURG - ignore

= Urgent condition (e.g., receiving of out-
of-band data on a network connection)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGUSR1 - terminate

= User-defined

SIGUSR2 — terminate

» User-defined

SIGVTALRM — terminate

= A virtual timer expires (setitimer)
SIGWINCH - ignore

= Changing of a terminal window size

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signals

SIGXCPU — terminate w/core

= Exceed the soft CPU time limit
SIGXFSZ — terminate w/core

= Exceed the soft file size!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signal

#include <signal.h>

void (*signal(int signo, void
(*func)(int)))(int);
» signo — Figure 10.1
» func: SIG_ING, SIG_DFL, the

address of the signal handler/
signal-catching function

SIGKILL & SIGSTOP

» Returned value: the address of
the previous handler.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signal

Remark:

» SVR4: signal function — unreliable
signal semantics
» 4.3+BSD: defined in terms of sigaction
function — reliable signal semantics
» typedef void Sigfunc(int)
Sigfunc *signal(int, sigfunc *);
= Constants:
#define SIG_ERR (void (*)())-1
#define SIG_DFL (void (*)())0
#define SIG_IGN (void (*)())1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signal

Program 10.1 — Page 272
= Program to catch SIGUSR[12]
Program Start-Up

= All signals are set to their default actions
unless some are ignored.
The exec functions change the
disposition of any signals that are being
caught to their default action.
= Fork()

» The shells automatically set the
disposition of the interrupt and quit
signals of background processes to
“ignored”.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

signals

int sig_int();

if (signal(SIGINT, SIG_IGN) I= SIG_IGN)
signal(SIGINT, sig_int);

= Not able to determine the current
disposition of a signal without changing it.

= fork() lets the child inherits the
dispositions of the parent!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Unreliable Signals

Def:. Unreliable Signals
» Signals could get lost!
Why?
= The action for a signal
was reset to its default

each time the signal
? occurred.

» The process could only
ignore signals, instead of
turning off the signals.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Unreliable Signals

Example:

= A process could
sleep forever!

= pause() puts the
5 process to sleep until
— a signal is caught.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupted System Calls

Traditional Approach

= “Slow” system calls could be interrupted
- ermo = EINTR

“Slow” System Calls (not disk 1/0):

= Reads from or writes to files that can
block the caller forever (e.g., pipes,
terminal devices, and network devices)

= Opens of files (e.g., terminal device)
that block until some conditions occurs.

» pause, wait, certain ioctl operations
= Some IPC functions

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupted System Calls

A typical code sequence

Restarting of interrupted system calls —
since 4.2BSD
= joctl,read, readv, write, writev, wait,
waitpid
= 4.3BSD allows a process to disable the
restarting on a per-signal basis.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Interrupted System Calls

Figure 10.2 — Page 277
= Summary of signal implementations

» SV & 4.3+BSD: sigaction() with
SA RESTART

» 4.3+BSD: sigvec or sigaction() with
SA RESTART

Programs 10.12 and 10.13 are
iImplementations of signals
with/without restarting.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reentrant Functions

Potential Problem:

» |n the signal handler, we can't tell
where the process was executing
when the signal was caught!

Examples: malloc, getpwnam

Occurrence Time: Anytime, e.g., by
timer...

Figure 10.3 — reentrant functions

= *marked functions — not in POSIX.1,
but in SVR4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reentrant Functions

Non-Reentrant Functions
= Those which use static data structures
= Those which call malloc or free

» Those which are part of the standard 1/O
library — usage of global data structures

Restoring of errno inside a handler

= wait() and SIGCHLD

Updating of a data structure — longjmp()
Program 10.2 — Page 280

» getpwnam(), SIGALRM, SIGSEGV

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

SIGCLD Semantics

SIGCLD (SV) vs SIGCHLD (BSD,
POSIX)

= SIGCHLD

Handling is similar to those of other
signals.

» SIGCLD: Use signal() or sigset() to set
its disposition -
The children of the calling process
which sets its disposition to SIG_IGN
will not generate zombie processes (not
for BSD).

= wait() returns —1 with errno = ECHILD until
all children terminate.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

SIGCLD Semantics

The kernel checks if there is any
child ready to be waited when
SIGCLD is set to be caught - call
SIGCLD handler!

Program 10.3 — Page 282

= The SIGCLD handler which does not
work under SVR2!

= Be aware of any “#define SIGCHLD
SIGCLD”

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reliable Signals

A signal is generated when

» the event that causes the signal
occurs!

» A flag is set in the process table.
A signal is delivered when

» the action for the signal is taken.
A signal is pending during

= the time between its delivery and
generation.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reliable Signals

A signal is blocked until
» the process unblock the signal, or

» The corresponding action become
“ignore”.
= (if the action is either default or a handler)

= A signal mask for each process —
sigpromask()

The system determines which signals are
blocked and pending!

= sigpending()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Reliable Signals

Signals are queued when
» a blocked signal is generated more
than once.
» POSIX.1 (but not over many Unix)

Delivery order of signals

= No order under POSIX.1, but its
Rationale states that signals related
to the current process state, e.g.,
SIGSEGYV, should be delivered first.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Kill and raise

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int signo);
int raise(int signo);
= pid > 0 - to the process

» pid == 0 - to “all” processes with the same
gid of the sender (excluding proc 0, 1, 2)

» pid < 0 - to “all” processes with gid == |pid|

» pid == -1 - broadcast signals under SVR4
and 4.3+BSD

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

kill and raise

Right permissions must be applied!

= Superuser is mighty!

= Real or effective uid of the sender ==
that of the receiver

_POSIX_SAVED_IDS - receiver’s saved
set-uid is checked up, instead of effective

uid
SIGCONT - member of the session
signo ==0 ~ a null signal
= Normal error checking is performed by
kill() to see if a specific process exists.
kill() returns -1, and errno == ESRCH

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause

#include <unistd.h>
unsigned int alarm(unsigned int secs);

» There could be a delay because of
processor scheduling delays.

= A previously registered alarm is
replaced by the new value — the left
seconds is returned!

» alarm(0) resets the alarm.
= Default; termination

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause

#include <unistd.h>
int pause(void);
» Return if a signal handler is executed.
Returns —1 with errno = EINTR
Program 10.4 — Page 286

= Potential problems:
Any previous alarm?
The lost of the previous SIGALRM handler
A race condition (between alarm() &
pause())

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause

Program 10.5 — Page 287
= setjmp() inside sleep()

= When a future SIGALRM occurs, the
control goes to the right point in
sleep2().

Program 10.6 — Page 288

» SIGALRM interrupts SIGINT
handling

» How if SIGALRM interrupts other
signal handlers - they are aborted!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

alarm & pause

Program 10.7 — Page 289
» Timeout a read (on a “slow” device)!

A race condition: (between alarm() &
read())

Automatic restarting of read()?

= No portable way to specifically interrupt
a slow system call under POSIX.1.

Program 10.8 — Page 290
» Timeout & restart a read by longjmp!
Problems with other signal handlers!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signal Sets

= Why?
» The number of different signals could
exceed the number of bits in an integer!

#include <signal.h>

int sigemptyset(sigset_t *set);

Int sigfillset(sigset_t *set);

Int sigaddset(sigset_t *set, int sig_no);
int sigdelset(sigset_t *set, int sig_no);

int sigismember(const sigset_t *set, int
sig_no);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Signal Sets

= A macro Implementation if # of signals
<= bits in an integer:
#define sigemptyset(ptr) (*(ptr) = 0)
#define sigfillset(ptr) (*(ptr) =
~(sigset_1)0, 0)
= Program 10.9

= Not one-line macros because of the
checking requirements for validity and
the setting of errno under POSIX.1.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigprocmask

#include <signal.h>
int sigprocmask(int how, const sigset_t
*set, sigset_t *oset);
= |f set is not null, check how

SIG_BLOCK, SIG_UNBLOCK,
SIGMASK (Figure 10.4.); otherwise,...

= At least one of the pending, at least one
of unblocking signals will be delivered
when the sigprocmsk() returns.

Program 10.10 — Page 294
= Names of signals!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigpenging

#include <signal.h>
Int sigpending(sigset_t *set);
» Returns the set of pending,
blocked signals
Program 10.11 — Page 295

» SIGQUIT is delivered until the
signal is blocked and before
sigprocmask() returns.

» No queuing of signals.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigaction

#include <signal.h>

Int sigaction(int signo,
const struct sigaction *act,
struct sigaction *oact);

= sa_mask: sigemptyset(), etc.

= Figure 10.5 — sa_flags
No queuing of signals

= Unlike signal(), signal handlers
remain!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

(including the
delivered signal)

sigaction

Program 10.12 — Page 298
» 4.3+BSD: implement signal using

sigaction
» SVR4:

signal() provides the older, unreliable

signal semantics

Program 10.13 — Page 299
= Prevent any interrupted system calls

from being restarted.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsetjmp & siglongjmp

#include <setjmp.h>
int sigsetjmp(sigjmp_buf env, int
savemask);
void siglongjmp(sigjmp_buf env, int val);
» sigsetjmp() saves the current signal
mask of the process in env if
savemask !=0.
= setjmp & longjmp save/restore the
signal mask:
4.3+BSD, but not SVR4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsetjmp & siglongjmp

Program 10.14 — Pages 300-301

» sigsetjmp & siglongjmp
Restoring of the signal mask
_setjmp and _longjmp (4.3+BSD)

» sig_atomic_t — variables of this type

could be accessed with a single
instruction

no extension across the page boundary

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsuspend

#include <signal.h>

Int sigsuspend(const
sigset_t *sigmask);
= Set the signal mask to

sigmsk and suspend until a
CPU Scheduling signal is caught or until a
could occur! signal occurs that

terminates the process.
= Return —1. errno = EINTR

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsuspend

Program 10.15 — Page 304

» When sigsuspend returns, the signal
mask is restored.

Program 10.16 — Page 306

= Setting of a global variable
Program 10.17 — Pages 307-308
= SIGUSRL1: parent - child

» SIGUSR2: child - parent

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sigsuspend

How to call other system calls while
waiting for a signal to occur?

interrupted B
Block SIGINT &
SIGALRM
Test flags
Call select+unblock
as an atomic action
Lost signals
%
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

#include <stdlib.h>

void abort(void);

» Sends SIGABRT to the process!
The SIGABRT won't return if its handler calls
exit, _exit, longjmp, siglongjmp.
= ANSI C requires that if the signal is caught,
and the signal handler returns, then abort
still doesn’t return to its caller.
» Program 10.18 — Page 11
POSIX.1 implementation of abort()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

abort

= ANSIC
The Implementation determines

whether output streams are flushed and
whether temporary files are deleted.

= POSIX.1
POSIX.1 specifies that abort overrides
the blocking or ignoring of the signal by
the process.
If abort() terminates a process, all open
standard I/O streams are closed (by
fclose()); otherwise, nothing happens.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

system

Program 8.12 — Page 223
» The implementation of system()

= Ignoring of SIGINT and SIGCHLD &
blocking of SIGCHLD (POSIX.2)

= Program 10.19 — Page 312

Interactive command executed by
system()

Program 10.20 — Pages 314-315

= Setting of a proper signal mask
before fork()

= Termination status of the shell

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sleep

#include <unistd.h>

unsigned int sleep(unsigned int secs);

= Suspend until (1) the specified time
elapsed, or (2) a signal is caught and the
handler returns - returns the unslept
seconds.

Problems:

= alarm(10), 3 secs, sleep(5)?

Another SIGALRM in 2 seconds? Both
SVR4 & 4.3BSD — not POSIX.1
requirements

= Alarm() & sleep() both use SIGALRM.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

sleep

Under SVR4, alarm(6), 3 secs,
sleep(5) = sleep() returns in 3 secs!
Program 10.21 — Page 318
» Implementation of sleep()
= Program 10.4 — Page 286
Unreliable signals!
= No handling of previously set alarms.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

