Contents

Preface/Introduction

Standardization and Implementation

File 1/10

Standard 1/O Library

Files and Directories

System Data Files and Information
9 Environment of a Unix Process

Process Control

Signals

Inter-process Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

The Environment of a Unix
Process

Objective:
= How a process is executed and terminates?
= What the typical memory layout is?
» Related functions and resource limits.
Int main(int argc, char *argv[])
» A special start-up routine is called to set
things up first before call main()

Set up by the link editor (invoked by the
compiler)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

How a C program is started

'—% user eXIt
_exit | | functions | &\ . handler
3 %”ij?} & Q& :
H { c & Q‘O/ é}\ .
: 5 1= 7 A exit
i : : call
&t | ain exit exit handler
' | function |(doesnot return)| function return
o} D Sy
l 5 & _\ﬁ\\@p‘ /«
= ® R standard 1/0
e N cleanup
routine
””””” exec T
kernel

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

| user
| process

Process Termination

Five ways to terminate:
= Normal termination
Return from main().
= exit(main(argc, argv));
Call exit().
Call _exit()
= Abnormal termination
Call abort()
Be terminated by a signal.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Termination

#include <stdlib.h>
void exit(int status);
= ANSIC
» Perform cleanup processing
Close and flush 1/0 streams (fclose)
#include <unistd.h>
void _exit(int status);
= POSIX.1
Undefined exit status:
» Exit/return without status.
= Main falls off the end.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Process Termination

#include <stdlib.h>
Int atexit(void (*func)(void));

» Up to 32 functions called by exit —
ANSI C, supported by SVR4&4.3+BSD

= The same exit functions can be
registered for several times.

= Exit functions will be called in reverse
order of their registration.

Program 7.1 — Page 165
= Exit handlers

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Command-Line Arguments &
Environment Variables

Command-Line Arguments

» argv[argc] is NULL under POSIX.1 & ANSI C
= Program 7.2 — Page 166

Environment Variables

= int main(int agrc, char **argv, char **envp);

. . environment environment
extern char **environ; list strings
|:|—' ——r— HOME=/home/stevens\0

——+—— PATH=:/bin:/usr/bin\0
———— SHELL=/bin/sh\O
——— USER=stevens\0
——+—— LOGNAME=stevens\0
getenv/putenv NULL

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Layout

Pieces of a process
= Text Segment
ek Read-only usually, sharable
program file o
by exec = |nitialized Data Segment
int maxcount = 10;

» Uninitialized Data Segment — bss
(Block Started by Symbol)

Initialized to O by exec

long sum[1000];
= Stack — return addr, automatic var, etc.
= Heap — dynamic memory allocation

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Layout

4.3BSD

text
structure

| i
proc]i] table
entry

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Red
Zone

OX7FFfffff

S

PC

«—

0x00000000

Memory Layout

4.4BSD

T | process grp

| [t desaptag
procfi] | r—————————w

entry

|

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Layout

> sjze Is1 hole
Is1: 6971 + 876 + 364 = 8211

hole: 6995 + 896 + 368 = 8259

| I |
text data bss

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Shared Library

Why a shared library?

= Remove common library routines
from executable files.

» Have an easy way for upgrading
Problems

» More overheads

Remark:

= compiling options — gcc

= Supported by many Unix systems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Allocation

Three ANSI C Functions:

» malloc — allocate a specified number of
bytes of memory. Initial values are
indeterminate.

= calloc — allocate a specified number of
objects of a specified size. The space is
initialized to all O bits.

» realloc — change the size of a previously
allocated area. The initial value of
increased space is indeterminate.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Allocation

#include <stdlib.h>
void *malloc(size _t size);
void *calloc(size_t nobj, size_t size);
void *realloc(void *ptr, size_t newsize);
= Suitable alignments for any data obj
= Generic void * pointer
free(void *ptr) to release space to a pool.
» Leaking problem

» Free already-freed blocks or blocks not
from alloc().

mallopt(M_GRAINSet, value), mallinfo

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Memory Allocation

Remark

= realloc() could trigger moving of data >
avoid pointers to that area!
prt == NULL = malloc()

= sbrk() is used to expand or contract the
heap of a process — a malloc pool

» Record-keeping info is also reserved for
memory allocation — do not move data
Inside.

= alloca() allocates space from the stack
frame of the current function!

No needs for free with potential portability problems

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Environment Variables

Name=value

= Interpretation is up to applications.
Setup automatically or manually
E.g., HOME, USER, MAILPATH, etc.

setenv FONTPATH $X11R6HOME/lib/X11/fonts\:$OPENWINHOME!/lib/fonts|
#include <stdlib.h>

char *getenv(const char *name);
» Figure 7.4 — environment variables

= ANSI C function, but no ANSI C
environment variable.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Environment Variables

#include <stdlib.h>
int putenv(const char *name-value);
= Remove old definitions if they exist.

int setenv(const char *name, const char
*value, int rewrite);

» rewrite = 0 = no removing of existing
names.

Int unsetenv(const char *name);
» Remove any def of the name
= No error msg if no such def exists.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Environment Variables

Adding/Deleting/Modifying of Existing
Strings
» Modifying
The size of a new value <= the size of
the existing value - overwriting
Otherwise; malloc() & redirect the ptr
= Adding
The first time we add a new name -

malloc of pointer-list's room & update
envron

Otherwise; copying. realloc() if needed.
» The heap segment could be involved.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

setjmp and longjmp

Objective:
= goto to escape from a deeply nested
function call!

= Program 7.3 — Program Skeleton

stack frame = What if cmd_add() suffers a fatal error?
for main How to return to main() to get the next

stack frame line?
for do_line
stack frame
for cmd_add

Note: Automatic variables are allocated
within the stack frames!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

setjmp and longjmp

#include <setjmp.h>
Int setimp(jmp__buf env);
int longimp(jmp_buf env, int val);

= Return O if called directly; otherwise, it
could return a value val from longjmp().

= env tends to be a global variable.

» longjmp() unwinds the stack and affect
some variables.

Program 7.4 — Page 178
» setjmp and longjmp

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

setjmp and longjmp

Automatic, Register, and Volatile
Variables
= Compiler optimization
Register variables could be in memory.
» Values are often indeterminate

Normally no roll back on automatic and
register variables

= Shown in Program 7.5 later

Global and static variables are left alone
when longjmp is executed.

= Portability Issues!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

setjmp and longjmp

Program 7.5 — Page 179
= Effects of longjmp

= Variables stored in memory have their
values unchanged — no optimization...

Potential Problems with Automatic
Variables — Program 7.6 (Page 180)

= Never be referenced after their stack
frames are released.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

getrlimit and setrlimit

struct rlimit {
#include <sys/time.h> rlim_trlim_cur; /* soft limit */
rlim_trlim_max; /* hard limit *
#include <sys/resource.h> }

Int getrlimitint resource, struct rlimit *rlptr);
Int setrlimitint resource, const struct rlimit
*rlptr);
= Not POSIX.1, but supported by SVR4 and
4.3+BSD
» Rules:

= Soft limit <= hard limit, the lowering of
hard limits is irreversible.

= Only a superuser can raise a hard limit.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

getrlimit and setrlimit

= Resources (SVR4&4.3BSD)

» RLIMIT_CORE (both), RLIMIT_CPU (both,
SIGXCPU), RLIMIT_DATA (both),
RLIMIT_FSIZE (both , SIGXFSZ),
RLIMIT_MEMLOCK (4.3+BSD, no
implementation), RLIMIT_NOFILE (SVRA4,
_SC_OPEN_MAX), RLIMIT_NPROC
(4.3+BSD, _SC_CHILD_MAX),
RLIMIT_OFILE
(4.3+BSD=RLIMIT_NOFILE), RLIMIT_RSS
(4.3+BSD, max memory resident size),
RLIMIT_STACK (both), RLIMIT_VMEM
(SVR4)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

getrlimit and setrlimit

Resource Limits = inheritance by
processes
= Built-in commands in shells

umask, chdir, limit (C shall), ulimit —H
and —=S (Bourne shell and KornShell)

Program 7.7 — Page 183

= Resource limits
#define RLIM_NLIMITS 7

» doit(RLIMIT_CORE) =
pr_limits(“RLIMIT_CORE”, RLIMIT_CORE)
#define doit(hame) pr_limits(#name, name)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

