Contents

Preface/Introduction
Standardization and Implementation
File 1/10
Standard 1/O Library

Q Files and Directories
System Data Files and Information
Environment of a Unix Process
Process Control
Signals
Inter-process Communication

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Files and Directories

Objectives
» Additional Features of the File System
= Properties of a File.

Three major functions:
#include <sys/types.h>
#include <sys/stat.h>

int stat(const char *pathname, struct stat *buf);
int fstat(int filedes, struct stat *buf);
Int Istat(const char *pathname, struct stat *buf);

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Files and Directories

Differences on stat(), fstat(), Istat():

= [stat() returns info regarding the symbolic link,
instead of the referenced file, if it happens.
struct stat {
mode_t st_mode; /* type & mode */
ino_t st_ino; /* i-node number */
dev_t st_dev; /* device no (filesystem) */
dev_t st_rdev; /* device no for special file */
nlink_t st _nlink; /* # of links */
uid_t st_uid; gid_t st gid;
off_t st_size; /* sizes in byes */
time_t st _atime; /* last access time */
time_t st_mtime; /* last modification time */
time_t st_ctime; /* time for last status change */
long st_blk_size; /* best I/O block size */
long st_blocks; /* number of 512-byte blocks allocated */
b

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

File Types

Regular Files: text, binary, etc.

Directory Files: Only Kernel can update
these files — { (filename, pointer) }.

Character Special Files, e.g., tty, audio, etc.
Block Special Files, e.g., disks, etc.

FIFO — named pipes

Sockets — not POSIX.1 or SVR4

= SVR4 uses library of socket functions,
instead. 4.3+BSD has a file type of socket.

Symbolic Links — not POSIX.1 or SVR4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

File Types

Program 4.1 — Page 76

= |stat() and Figure 4.1

» <gys/stat.h>
#define S_IFMT OxFO00 /* type of file */
#define S_IFDIR 0x4000 /* directory */

#define S_ISDIR(mode) (((mode)&0xF000)
== 0x4000)

= st mode

Percentage of Files in a Medium-Sized
System — Figure 4.2

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Access Permissions & UID/GID

All files have access permissions
» st_ mode mask — owner, group, other

#define S_IRWXU 00700 /* read, write, execute: owner */
#define S_IRUSR 00400 /* read permission: owner */
#define S_IWUSR 00200 [* write permission: owner */
#define S_IXUSR 00100 /* execute permission: owner */
#define S_IRWXG 00070 /* read, write, execute: group */
#define S_IRGRP 00040 /* read permission: group */
#define S_IWGRP 00020 [* write permission: group */
#define S_IXGRP 00010 [* execute permission: group */
#define S_IRWXO 00007 /* read, write, execute: other */
#define S_IROTH 00004 /* read permission: other */
#define S_IWOTH 00002 /* write permission: other */
#define S_IXOTH 00001 [* execute permission: other */

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Access Permissions & UID/GID

Operations vs Permissions
= Directory

X — pass through the dir (search bit), e.g.,
/usr/dict/words and PATH env var.

R — list of files under the dir.

W — update the dir, e.g., delete or create a
file.

» File
X — execute a file (which must be a regular
file)
R - O_RDONLY or O_RDWR
W — O_WRONLY, O_RDWR, or O_TRUNC

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Access Permissions & UID/GID

Files
= st_uid, st_gid in stat
= S ISUID, S_ISGID - set st_uid/gid bit in st_mode

E.g., Command “passwd” updates /etc/passwd or
/etc/shadow

Process UID/GID — optional with POSIX.1
= sysconf(_ SC_SAVED IDS)
» Real User/Group ID (from /etc/passwd)

= Effective User/Group ID, Supplementary GID’s
Check for file access permissions

» Saved Set-User/Group-ID — saved by exec()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Access Permissions & UID/GID

File Access Test — each time a process
creates/opens/deletes a file

» |f the effective UID == 0 - superuser!

» |f the effective UID == UID of the file
Check appropriate access permissions!

» |f the effective GID == GID of the file
Check appropriate access permissions!

= Check appropriate access permissions for
others!

Related Commands: chmod & umask

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Ownership of a New File

Rules:

= UID of a file = the effective UID of the
creating process
= GID of a file — options under POSIX

GID of the file = the effective GID of the
process

GID of the file = the GID of the residing dir

» 4.3BSD and FIPS 151-1 always do it.

= SVR4 needs to set the set-group-ID bit
of the residing dir (mkdir)!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — access

#include <unistd.h>

Int access(const char *pathname, int
mode);

= Check the real UID/GID!
* R OK, W _OK, X OK, F OK

» Program 4.2 — Page 83
access function

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — umask

#include <sys/types.h>

#include <sys/stat.h>

mode_t umask(mode_t cmask);
» Turn off the file mode

cmask = bitwise-OR S_I[[RWX]USR,
etc (Figure 4.4).

= The mask goes with the process only.
Inheritance from the parent!

Program 4.3 — Page 85
» umask

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — chmod & fchmod

#include <sys/types.h>
#include <sys/stat.h>
int chmod(const char *pathname, mode _t
mode);
Int fchmod(int filedes, mode _t mode);
= fchmod() is not in POSIX.1, but in
SVR4/4.3+BSD
= Callers must be a superuser or effective
UID = file UID.
= Mode = bitwise-OR S_I[[RWX]JUSR,
S ISVTX (sticky bit), S _IS[UG]ID, etc
(Fig 4.6).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — chmod & fchmod

Program 4.4 — Page 87
» chmod — updates on i-nodes
set-group-ID
= |f the GID of a newly created file is
not equal to the effective GID of the
creating process (or one of the
supplementary GID’s), or the process
IS not a superuser, clear the set-
group-ID bit!
» Clear up set-user/group-ID bits if a
non-superuser process writes to a
set-uid/gid file.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — chmod & fchmod

= Sticky Bit (S_ISVTX) — saved-text bit
= Not POSIX.1 — by SVR4 & 4.3+BSD
= Only superusers can set it!

S _ISVTX executable file

= Used to save a copy of a S_ISVTX
executable in the swap area to speed up
the execution next time.

S_ISVTX directory file, e.g., /tmp

= Remove/rename its file only if w
permission of the dir is set, and the
process is belonging to
superusers/owner of the file/dir

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — chown, fchown,
Ichown

#include <sys/types.h>

#include <unistd.h>

Int chown(const char *pathname, uid_t owner,
gid_t, grp);

int fchown(int filedes, uid_t owner, gid_t, grp);

Int Ichown(const char *pathname, uid_t owner,
gid_t, grp);
= Ichown() is unique to SVR4. Under non-SVR4

systems, if the pathname to chown() is a

symbolic link, only the ownership of the symbolic
link is changed.

= -1 for owner or grp if no change is wanted.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Function — chown, fchown,
lchown

» POSIX_CHOWN_RESTRICTED is in
effect (check pathconf())

Superuser = the UID of the file can
be changed!

The GID of the file can be changed if
= the process owns the file, and

= Parameter owner = UID of the file
& Parameter grp = the process

GID or is in supplementary GID’s

= set-user/group-ID bits would be cleared
if chown is called by non-super users.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

File Size

File Sizes — st_size
= Regular files — 0~max (off t)
» Directory files — multiples of 16/512
= Symbolic links — pathname length
= /[* apipe’s file size for SVR4 */
File Holes
» st_blocks vs st_size (st_blksize)
= Commands:
“Is -l file.hole” == “wc —c file.hole”
du —s file.hole = actual size
cat file.hole > file.hole.copy

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions - truncate &
ftruncate

#include <sys/types.h>

#include <unistd.h>

Int truncate(const char *pathname, off t
length);

Int ftruncate(int filedes, off t length);
» Not POSIX.1
» SVR4 creates a hole if length > fsize.

fcntl with F_FREESP to free any part of a
file.

» 4.3+BSD only truncates files.
= Portability?

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Filesystems

A hierarchical arrangement of directories
and files — starting in root /

Several Types, e.g.,.SVR4: Unix System V
Filesystems (S5), Unified File System
(UFS) — Figure 2.6 (Page 39)

System V:

partition partition partition

KT] i [didatablocks]

| i—node| i—node| | |node|

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Filesystems

[is [ST [&] [&] [&]]
, // -
|i-node| |i-nocje| |i-node| e
|filename
i-node:

= Version 7: 64B, 4.3+BSD:128B, S5:64B, UFS:128B
= File type, access permission, file size, data blocks, etc.

Link count — hard links
= st nlink in stat, LINK_MAX in POSIX.1
= Unlink/link a file

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Filesystem — 4.4BSD I-node

mode » 4KB block size

owner * 12 direct pointers
timestamp » 48K Bp
size block | data | » 1 single indirect
ref-count * 4-byte block ptr
* 1K * 4KB =4MB
direct blocks * >> 4GB for the largest file!

32
| d A (offset = 32de§| 4G=2%2)
singleindirect T—

double indirect w B: data

triple indirect

* “Operating system concept”, Silberschatz and Galvin, Addison Wesley, pp. 380.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Sharing of Files

lusr/joe
foo
Filei-node:
lusr/sue Reference = 2
bar -
lusr/joe
File i-node:
. foo +—— |Reference=1
lusr/sue Filei-node:
S —— |Reference= 1
datafile:
/usr/joe/foo

* All rights reserved, Tei-Wei Kuo, National Talwan URIVErSity, Z003:

Hard Link
= Each directory entry creates a
hard link of a filename to the i-
node that describes the file's
contents.

Symbolic Link (Soft Link)
» |tis implemented as a file that
contains a pathname.
» Filesize = pathname length

= Example: Shortcut on
Windows

* Problem — infinite loop in tracing a path name
with symbolic links — 4.3BSD, no 8 passings of
soft links

* Dangling pointers

Filesystem

dir
block

dir
block

| idist |

'

i-node

i-node
2549

1267

" 1267

Example
2549
(testdir)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

— 2549
| i-node 1267 .
N |

S—a N —
2549 | testdir

= Ati-node 1267, mkdir testdir = i-node 2549
= The link counts of testdir is at least 2

Command mv only modify dir entries!

No directory entry points at any i-node
residing at other filesystems.

Functions - link, unlink,
rename, remove

#include <unistd.h>
Int link(const char *existingpath, const char
*newpath);
Int unlink(const char *pathname);
= Atomic action for link — hard link
POSIX.1 allows linking across filesystems
Only superusers could create a link to a dir
= Error if newpath exists
= Unlink — WX right at the residing dir

Remove the dir entry & delete the file if link
count reaches zero and no one still opens the
file (Remark: sticky bit & dir rights).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions - link, unlink,
rename, remove

Program 4.5 — Page 97
» Open & unlink a file
Unlink a file

» Sticky bits set for a residing dir

Owner of the file or the dir, or super
users

» |f pathname is a symbolic link, unlink
references the symbolic link.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions - link, unlink,
rename, remove

#include <stdio.h>
Int remove(const char *pathname);
Int rename(const char *oldname, const char
*newname);
» remove = rmdir if pathname is a dir. (ANSI C)
= Rename — ANSI C

File: both files, newname is removed first, WX
permission for both residing directories

Directory: both dir, newname must be empty,
newname could not contain oldname.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Symbolic Links

Goal
= Get around the limitations of hard links:
(a) filesystem boundary (b) link to a dir.
/ \ = |nitially introduced by 4.2BSD

a testdir Example — ftw

* In —s ../foo testdir

Figure 4.10 — functions follow slinks
= No functions which take filedes

» Example: unlink(testdir)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Symbolic Links

#include <unistd.h>

int symlink(const char *actualpath, const
char *sympath);

int readlink(const char *pathname, char
*buf, int bufsize);
= actualpath does not need to exist!

= They do not need to be in the same file
system.

» readlink is an action consisting of open,
read, and close — not null terminated.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

= Three Time Fields:

Field Description Example Is-option
st_atime last-access-time read -u

st_mtime last-modification-time write default
st_ctime last-i-node-change-time chmod, chown -C

= Figure 4.13 — Effect of functions on times

= Changing the access permissions, user ID,
link count, etc, only affects the i-node!

= ctime is modified automatically! (stat, access)

= Example: reading/writing a file only affects
the file, instead of the residing dir (Fig4.13).

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

File Times

struct utimbuf {
#include <sys/types.h> mg—i ?ncct)l(;}?r;we;
#include <utime.h> }
Int utime(const char *pathname, const struct
utimbuf *times);
= time values are in seconds since the Epoch
= times = null = set as the current time
= Effective UID = file UID or W right to the file
» times != null - set as requested

= Effective UID = (file UID or superuser) and W
right to the file.

» Program 4.6 — Page 105, utime

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions — mkdir and rmdir

#include <sys/types.h>
#include <sys/stat.h>

int mkdir(const char *pathname, mode_t
mode);

= umask, UID/GID setup (Sec 4.6)
* From 4.2BSD & SVR3 (SVR4 —
inheritance of the S_ISGID bit)
#include <unistd.h>
Int rmdir(const char *pathname);
» An empty dir is deleted.

= Link count reaches zero, and no one still
opens the dir.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions — opendir, readdir,
rewinddir, closedir

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *pathname);
struct dirent *readdir(DIR *dp);
void rewinddir(DIR *dp);
int closedir(DIR *dp);
= Only the kernel can write to a dir!!!
= WX for creating/deleting a file!
» Implementation-dependent!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions — opendir, readdir,
rewinddir, closedir

dirent struct is very implementation-
dependent, e.g.,

struct dirent {
ino_td_ino; /* notin POSIX.1 */
char d_name[NAME_MAX+1];

} I* fpathconf() */

Program 4.7 — Pages 109-111

= ftw/nftw — recursively traversing the
filesys

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions - chdir, fchdir, getcwd

#include <unistd.h>
Int chdir(const char *pathname);
Int fchdir(int filedes);

» fchdir — not POSIX.1

» chdir must be built into shells!

» The kernel only maintains the i-node
number and dev ID for the current working
directory!

= Per-process attribute — working dir!
Program 4.8 — Page 113
= chdir

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions - chdir, fchdir, getcwd

#include <unistd.h>
char *getcwd(char *buf, size_t size);

» The buffer must be large enough, or an
error returns!

» chdir follows symbolic links, and getcwd
has not idea of symbolic links!

Program 4.9 — Page 114
= getcwd

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Special Device Files

Device Number — dev _t
= Major and minor numbers: 8 bit each under
4.3+BSD

» macro definition <sysmacros.h> @ntucsa
#define L_BITSMINOR 18 /* # of SVR4 minor device bits */
#define L_ MAXMAJ Ox3fff /* SVR4 max major value */

#define major(x) (int)((unsigned)((x)>>0O_BITSMINOR) &
O_MAXMAJ)

Program 4.10 — Page 115
» st _dev vs st _rdev

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Functions - sync and fsync

#include <unistd.h>
void sync(void);
int fsync(int filedes);
= sync() queues all kernel modified block
buffers for writing and returns.
» fsync() waits for the 1/O of a referred file
to complete!
fsync vs O_SYNC

= Not POSIX.1, but supported by SVR4
and 4.3+BSD

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

