Contents

Preface/Introduction
Standardization and Implementation
File 1/0

Standard 1/O Library

Files and Directories

System Data Files and Information
Environment of a Unix Process
Process Control

. Signals

10. Inter-process Communication

©Coo~NOOAWNE

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Standardization and Implementation

= Why Standardization?
= Proliferation of UNIX versions

= What should be done?

» The specifications of limits that each
implementation must define!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Standardization

= ANSI C
= American National Standards Institute

= |ISO/IEC 9899:1990

= International Organization for
Standardization (ISO)

= Syntax/Semantics of C, a standard library
= Purpose:

= Provide portability of conforming C
programs to a wide variety of OS’s.

» 15 areas: Fig 2.1 — Page 27

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Standardization

= ANSIC C

<assert.h> - verify program assertion
= <ctype.h> - char types
= <errno.h> - error codes
= <float.h> - float point constants
= <limits.h> - implementation constants
= <l|ocale.h> - locale catalogs
= <math.h> - mathematical constants
= <setjmp.h> - nonlocal goto
= <signal.h> - signals
= <stdarg.h> - variable argument lists
= <stddef.h> - standard definitions
= <stdio.h> - standard library
= <stdlib.h> - utilities functions
= <string.h> - string operations

= <time.h> - time and date
* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Standardization

= POSIX.1 (Portable Operating System

Interface) developed by IEEE

= Not restricted for Unix-like systems and no
distinction for system calls and library
functions

= Originally IEEE Standard 1003.1-1988

= 1003.2: shells and utilities, 1003.7: system
administrator, > 15 other communities

= Published as IEEE std 1003.1-1990,
ISO/IEC9945-1:1990

= New: the inclusion of symbolic links

= No superuser notion

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Standardization

= POSIX.1

= <cpio.h> - cpio archive values
<dirent.h> - directory entries
<fcntl.h> - file control

<grp.h> - group file

<pwd.h> - passwd file

<tar.h> tar archieve values
<termios.h> - terminal I/O
<unistd.h> - symbolic constants
<utime.h> file times

<sys/stat.h> - file status
<sys/times.h> - process times
<sys/types.h> - primitive system data types
<sys/utsname.h> - system name
<sys/wait.h> - process control

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Standardization

= X/Open
» An international group of computer
vendors
= Volume 2 of X/Open Portability Guide,
Issue 3 (XPG3)
= XSI System Interface and Headers
= Based on IEEE Std. 1003.1 — 1988
(text displaying in different languages)
= Built on the draft of ANSI C
= Some are out-of-date.
» Solaris 2.4 — compliance to XPG4V2
= man xpg4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Standardization

= FIPS (Federal Information Processing
Standard) 151-1

* |EEE Std. 1003.1-1988 & ANSI C

» For the procurement of computers by the
US government.

» Required Features:
= JOB_CONTROL, SAVED_ID, NO_TRUNC,
CHOWN_RESTRICTED, VDISIBLE,

= NGROUP_MAX >= 8, Group Ids of new files and dir be
equal to their parent dir, env var HOME and LOGNAME
defined for a login shell, interrupted read/write functions
return the number of transferred bytes.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Implementation

First Edition

Sixth Edition (1976)
Seventh Edition (

/ 4.0BSD
SystemV XENIX
/ Release 2,3 // T
|

SUNOS

Chorus ~ UNIX Mach aris 4.3BSD
stem V
gxél ' Solaris 2 4.3BSD Tahoe
ease 4.3BSD Reno
4.4BSD

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Implementation

= System V Release 4 - 1989
» POSIX 1003.1 & X/Open XPG3

» Merging of SVR3.2, SunOS, 4.3BSD,
Xenix

» SVID (System V Interface Definition)

= Issue 3 specifies the functionality qualified
for SVRA4.

= Containing of a Berkley compatibility
library

= For 4.3BSD counterparts

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Implementation

= 4.2BSD - 1983

» DARPA (Defense Advanced Research Projects Agency)
wanted a standard research operating systems
for the VAX.

= Networking support - remote login, file transfer
(ftp), etc. Support for a wide range of hardware
devices, e.g., 10Mbps Ethernet.

= Higher-speed file system.

» Revised virtual memory to support processes
with large sparse address space (not part of the
release).

» Inter-process-communication facilities.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Implementation

= 4.3 BSD - 1986

» Improvement of 4.2 BSD

= Loss of performance because of many new facilities
in 4.2 BSD.

= Bug fixing, e.g., TCP/IP implementation.

= New facilities such as TCP/IP subnet and routing
support.

= Backward compatibility with 4.2 BSD.
= Second Version - 4.3 BSD Tahoe
= support machines beside VAX
= Third Version - 4.3 BSD Reno
= freely redistributable implementation of NFS, etc.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Implementation

= 4.4 BSD - 1992
= POSIX compatibility
» Deficiencies remedy of 4.3 BSD

= Support for numerous architectures such as 68K,
SPARC, MIPS, PC.

= New virtual memory better for large memory and
less dependent on VAX architecture — Mach.

= TCP/IP performance improvement and
implementation of new network protocols.

= Support of an object-oriented interface for
numerous filesystem types, e.g., SUN NFS.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

UNIX Implementation - Major UCB
CSRG Distributions

= Major new facilities:
= 3BSD, 4.0BSD, 4.2BSD, 4.4 BSD

= Bug fixes and efficiency improvement:
= 41 BSD, 4.3BSD

= BSD Networking Software, Release 1.0 (from
4.3BSD Tahoe, 1989), 2.0 (from 4.3BSD
Reno, 1991)

= Remark:

= Standards define a subset of any actual
system — compliance and compatibility

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Limits — ANSI C, POSIX, XPG3, FIPS
151-1

= Compiler-time options and limits
(headers)
= Job control?
» Largest value of a short?

= Run-time limits related to file/dir

» pathconf and fpathconf, e.g., the max #
of bytes in a filename

= Run-time limits not related to file/dir

» sysconf, e.g., the max # of opened files
per process

= Remark: implementation-related

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

ANSI C Limits

= All compile-time limits - <limits.h>
= Minimum acceptable values
= E.g., CHAR_BIT, INT_MAX
* Implementation-related
= char (limits.h), float (FLT_MAX in
float.h), open (FOPEN_MAX &
TMP_MAX in stdio.h)
#if defined(_CHAR_IS_SIGNED)
#define CHAR_MAX SCHAR_MAX

#elif defined(_CHAR_IS_UNSIGNED)
#define CHAR_MAX UCHAR_MAX

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

POSIX Limits

= 33 limits and constants

» |Invariant minimum values (POSIX defined
in Figure 2.3 — Page 33, limits.h)
= Corresponding implementation (limits.h)
= |nvariant SSIZE_MAX
= Run-time increasable value NGROUP_MAX
= Run-time invariant values, e.g., CHILD_MAX
= Pathname variable values, e.g., LINK_MAX

= Compile-time symbolic constants, e.g.,
_POSIX_JOB_CONTROL

» Execution-time symbolic constants, e.g.,
_POSIX_CHOWN_RESTRICTED

= Obsolete constant: CLK_TCK

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

POSIX Limits

= Limitation of POSIX

» E.g.,, POSIX_ in
<limits.h>

» sysconf(), pathconf(), fpathconf() at
run-time

» Possibly indeterminate from some
= E.g., OPEN_MAX under SVR4

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

XPG3 Limits

= 7 constants in <limits.h> - invariant
minimum values called by POSIX.1
» Dealing with message catalogs
* NL. MSGMAX — 32767
= PASS_MAX
» <imits.h>
= Run-time invariant value called by POSIX.1
= sysconf()

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Run-Time Limits

#include <unistd.h> (Figure 2.7 — Page 40: compile/run
time limits)

= SC_CHILD_MAX, SC_OPEN_MAX, etc.

= PC_LINK_MAX, PC_PATH_MAX,
_PC_PIPE_BUF, PC_NAME_MAX, etc.

= Various names and restrictions on arguments
(Page 35 and Figure 2.5)

Return —1 and set errno if any error occurs.
= EINVAL if the name is incorrect.

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Run-Time Limits

= Example Program 2.1 — Page 38
» Print sysconf and pathconf valuesb (Fig

2.6 — Page 39)
CHILD_ MAX 133 30 40
OPEN_MAX 64 64 64
LINK_MAX 32767 1000 32767
NAME_MAX 255 14/255 255

_POSIX_NO_TRUC 1 nodef/l 1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

Indeterminate Run-Time Limits —
Two Cases

= Pathname
» 4,.3BSD: MAXPATHLEN in <sys/param.h>,
PATH_MAX in <limits.h>
= Program 2.2 — Page 42
= Allocate space for a pathname vs getcwd
= PC_PATH_MAX is for relative pathnames
= Max # of Open Files — POSIX run-time invariant
» NOFILE (<sys/param.h>), _NFILE (stdio.h>)
» sysconf(_SC_OPEN_MAX) — POSIX.1
= getrlimit() & setrlimit() for SVR4 & 4.3+BSD
= Program 2.3 — Page 43: OPEN_MAX!

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

MISC

= Feature Test Macro

» POSIX only
= cc —-D_POSIX_SOURCE file.c
= Or, #define _POSIX_SOURCE 1

= ANSI C only
ifdef __ STDC__
void *myfunc(const char*, int)
#else
void *myfunc();
#endif

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

MISC

= Primitive System Data Types
» Figure 2.8 — Page 45
= Implementation-dependent data types
= E.g., caddr_t, pid_t, ssize _t, off t, etc.
» <sys/types.h>
= E.g., major_t, minor_t, caddr _t, etc.
= Examples:
= typedef char * caddr_t;
= typedef ulong_t major_t;

(SRV4: 14 bits for major, 18 bits for minor
traditionally they are all short: 8-bits)

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

MISC

= Conflicts Between Standards
= clock() in ANSI C and times() in
POSIX.1

= clock_t divided by CLOCKS_PER_SEC
in <time.h> (while CLK_TCK became
obsolete)

» Implementation of POSIX functions

= No assumption on the host operating
system.

= signal() in SRV4 is different from
sigaction() in POSIX.1

* All rights reserved, Tei-Wei Kuo, National Taiwan University, 2003.

