
Issues in Building Real-Time 
Applications

郭大維 教授
ktw@csie.ntu.edu.tw

嵌入式系統暨無線網路實驗室

(Embedded Systems and Wireless Networking Laboratory)

國立臺灣大學資訊工程學系

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction to Real-Time Systems

Checklist
⊕ What is a real-time system?
⊕ What is the way usually used to classify real-time 

tasks?
⊕ What are the issues and research for real-time 

systems?
⊕ Is there any misconception about real-time 

computing?
⊕ Is our current software development 

environments suitable to time-critical systems?
⊕ What kinds of software architectures are adopted 

or considered in current time-critical systems?



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Introduction to Real-Time Systems

What is a real-time system?
Any system where a timely response by the 

computer to external stimuli is vital!

Examples:
multimedia systems, virtual reality, games.

avionics, air traffic control, nuclear power 
plant

stock market, trading system, information 
access, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

What is a Real-Time System?

Does the definition make every computer 
a real-time computer?

Yes!  It is if we need some response from a 
computer within a finite time!!

Category of Real-Time Systems:
Hard Real-Time Systems - catastrophic if 
some deadlines are missed.

Soft Real-Time Systems - otherwise.



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues in Real-time Computing

The field of real-time computing is especially rich in 
research problems!

However, real-time computing systems often differ 
from their counterparts in two ways:

More specific in their applications.
More drastic for their failures.

Real-Time Computing

Computing

For example, CPU
scheduling of tasks
with different 
criticality!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Structure of A Real-Time System - An Example

A control system

Rates - sensors & actuators, peripheral, control 
program

Phases - takeoff, cruise, and landing, etc.

sensors

actuators

environment
controlled 
process

Task 
Execution

Clock

Display

operator



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Task Classes

Ways to classify real-time tasks:
Predictability of their arrivals.

Periodic tasks have regular arrival times.
Aperiodic tasks have irregular arrival times.

• bounded inter-arrival time -> Sporadic tasks.

Criticality - consequences of non-timely 
executions.

Critical tasks should have timely executions
• Most of them are hard real-time transactions

Non-critical tasks are usually soft real-time tasks
• minimize miss ratio, minimize response time, maximize 

values contributing to the system, etc. 

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues and Research
Software engineering

System architecture, e.g., event-driven, time-line, time-
driven, object-oriented, etc.

Network architecture, e.g., topology, predictability, and 
controllability.

Fault-tolerance and reliability evaluation, etc.

Tools for prototyping, simulation, code synthesis.

Operating systems
Task assignment and scheduling

Communication protocols

Failure management and recovery

Clock Synchronization, etc.



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues and Research

Programming languages
Better control over timing 
Proper interface to special-purpose devices

Database systems
Concurrency Control
Failure recovery
Availability
Query Optimization, etc.

Specification and verification
Expressiveness and complexity

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues for Programming 
Environments

Loop size, timer granularity, imprecise 
timer, sleep(), multi-programming, etc.

Sequential programs, parallel programs, 
timely programs.

Client-server priority assignments -
priority inversion.

Verification, analysis, and testing.



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues for Programming 
Environments

Potential Timing Hazards:
Loop

…...

Sensor();

……..

computation……

……..

t = time();

SleepTime := ReadyTime + PERIOD - t;

ReadyTime = ReadyTime + PERIOD;

Sleep(SleepTime);

EndLoop;

Loop
Size?

Time
Elapsed
Here?

Timer Granularity?

Real Sleep 
Time?

???Multiprogramming???

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues for Programming 
Environments

The priority assignment for a Server TS?
Processes TH and TL

Priority Inversion

TS

TL

TH

TS

TL

TH



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues for Timer Drifting

Your timer 
settings

Timer 
interrupts

Starts of 
periods

0              1              2               3                4 5                 6

0                 1                   2                    3    4,5                   6

Set the timer resolution to x.

Round off all of timeout intervals to integer 
multiples of x!

Software Architectures and Fault 
Tolerance Issues for Real-Time 
Applications

Source: C. Douglass Locke & Farnam Jahanian, RTCSA’96 Talks Presentation.

郭大維 教授
ktw@csie.ntu.edu.tw

嵌入式系統暨無線網路實驗室

(Embedded Systems and Wireless Networking Laboratory)

國立臺灣大學資訊工程學系



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Software Architectures for 
Real-Time Applications

Popular architectures:
Timeline (i.e., cyclic executive or frame-based)
Event-driven (with both periodic and aperiodic 
activities)
Pipelined
Client-Server

Impacts
Performance and life-cycle cost
Critical design decisions such as synchronization 
and exceptions.

No restriction on parallel processing.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Timeline or Cyclic Executive

A major cycle consists of a non-repeating 
set of minor cycles

Operations are implemented as 
procedures.

The timer calls each procedure in the list.

No concurrency exists.

Very high life-cycle cost but very 
predictable in the run-time behavior!



Timeline or Cyclic Executive

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Event-Driven
Characteristics:

Trigger schedulable tasks by I/O completion and 
timer events.

Task Priority:
Determined by timing constraints, e.g., RMS, or by 
semantic importance.

Ways to avoid synchronization is needed 
for predictable response.
Processor utilization is preserved for 
aperiodic events for response predictability.
Prone to event shower! Good for systems with 
spare computation power!



Event-Driven

Persistent data shared within partitions

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Pipelined

Characteristics:
Trigger schedulable tasks by I/O completion, 
timer events, and inter-task messages.
The system can be described as a set of 
pipelines of task invocations.

Task priority
Increasing task priorities in a unidirectional 
pipeline will minimize the message queue buildup.
Equal task priority setup is normal for bi-
directional pipelines.

Prone to event shower! Good for systems 
with spare computation power!



Pipelined

No shared data -- persistent data in Abstract Data Objects

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Client-Server

Characteristics:
Trigger schedulable tasks by I/O completion, timer 
events, and inter-task messages.

Control flow for an event stays at a node while 
data flow is distributed.

Task priority
Priority inheritance is used ideally. Practically task 
priorities are set equally, and message priorities 
are used instead to avoid bottlenecks.

More messages are exchanged but are 
significantly easier in debugging than pipelined 
systems.



Client-Sever

No shared data--persistent data in Abstract Data Objects

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Fault Tolerance

Definition:
A real-time fault-tolerance system is a 
system that can deliver its service even in 
the presence of faults.

Timeliness versus Fault Tolerance
Possible Faults: Hardware/software errors, 
violation of timing constraints because of 
the “environment”.



Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Fault Tolerance

Use redundancy to detect errors and 
mask failures

Space Redundancy: replication of 
physical devices.

Time Redundancy: repetition of a 
computation or communication.

Information Redundancy: specific 
encoding scheme, e.g., parity bit.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Fault Tolerance

Real-time systems
Time is scare -> methods should trade 
space/information redundancy for time.

Possible Structures:
Active replicas: 

Each request is processed by all replicas, and their 
results are “combined” to mask faults.

Passive replicas:
One primary and several backups.

Once the primary fails, a backup takes over.

Cooperating replicas/objects:
A client makes a request through a “broker” mechanism.


