Issues in Building Real-Time
Applications

LR s

ktw@csie.ntu.edu.tw
], %2 e = = 2 L B .
% 3(\‘ /ﬁ‘ “é’t‘.ﬁ— ‘;J:R'\ ‘4ﬂ‘l¥ﬁ)\;—? '%E x

(Embedded Systems and Wireless Networking Laboratory)
SRR R SRR X &

Introduction to Real-Time Systems

= Checklist
® What is a real-time system?

® What is the way usually used to classify real-time
tasks?

® What are the issues and research for real-time
systems?

@ Is there any misconception about real-time
computing?

® Is our current software development
environments suitable to time-critical systems?

® What kinds of software architectures are adopted
or considered in current time-critical systems?

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Copyright: All rights reservel

Introduction to Real-Time Systems

= What is a real-time system?

Any system where a timely response by the
computer to external stimuli is vital!

» Examples:
¢ multimedia systems, virtual reality, games.

avionics, air traffic control, nuclear power
plant

& stock market, trading system, information
access, etc.

d, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Copyright: All rights reservel

What is a Real-Time System?

= Does the definition make every computer
a real-time computer?

Yes! lItis if we need some response from a
computer within a finite time!!

= Category of Real-Time Systems:

¢ Hard Real-Time Systems - catastrophic if
some deadlines are missed.

¢ Soft Real-Time Systems - otherwise.

d, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues in Real-time Computing

» The field of real-time computing is especially rich in
research problems!

For example, CPU
scheduling of tasks
with different
criticality!

Real-Time Compulti

» However, real-time computing systems often differ
from their counterparts in two ways:

¢ More specific in their applications.
& More drastic for their failures.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Structure of A Real-Time System - An Example

= A control system

controlled | [sensors Clock

environment — Drocess
T l l operator
Task
actuators | ~—— i
Execution]
Display

= Rates - sensors & actuators, peripheral, control
program
= Phases - takeoff, cruise, and landing, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Task Classes

= Ways to classify real-time tasks:

¢ Predictability of their arrivals.
& Periodic tasks have regular arrival times.
& Aperiodic tasks have irregular arrival times.
* bounded inter-arrival time -> Sporadic tasks.
¢ Criticality - consequences of non-timely
executions.

& Critical tasks should have timely executions
* Most of them are hard real-time transactions

% Non-critical tasks are usually soft real-time tasks

* minimize miss ratio, minimize response time, maximize
values contributing to the system, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues and Research

» Software engineering

¢ System architecture, e.g., event-driven, time-line, time-
driven, object-oriented, etc.

¢ Network architecture, e.g., topology, predictability, and
controllability.

¢ Fault-tolerance and reliability evaluation, etc.

Tools for prototyping, simulation, code synthesis.
» Operating systems

¢ Task assignment and scheduling

¢ Communication protocols

¢ Failure management and recovery

¢ Clock Synchronization, etc.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues and Research

» Programming languages

¢ Better control over timing

¢ Proper interface to special-purpose devices
» Database systems

¢ Concurrency Control

< Failure recovery

¢ Availability

¢ Query Optimization, etc.
» Specification and verification

& Expressiveness and complexity

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues for Programming
Environments

= Loop size, timer granularity, imprecise
timer, sleep(), multi-programming, etc.

» Sequential programs, parallel programs,
timely programs.

« Client-server priority assignments -
priority inversion.
= Verification, analysis, and testing.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Issues for Programming

Environments
» Potential Timing Hazards:
[Loop 22?Multiprogramming???
Sensor();
"""" _ Timer Granularity?
Loop computation......
Size? < -------- /
t = time();
Time SleepTime := ReadyTime + PERIOD - t;
Elapsed ReadyTime = ReadyTime + PERIOD;

Here? | Sleep(SleepTime);
EndLoop;

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University. TI me .

Real Sleep

Issues for Programming
Environments

= The priority assignment for a Server TS?
¢ Processes TH and TL
¢ Priority Inversion

TL TL
/

N

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

TS

TH TH

Issues for Timer Drifting

Your timer ©O 1 2 3 4 5 6
settings ' y ' ' ' ' '
Timer
interrupts ~ + ! } ' ' I
Startsof 0 1 2 3 4,5 6
periods ¢ ' ' ' ' !

= Set the timer resolution to x.

= Round off all of timeout intervals to integer
multiples of x!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Software Architectures and Fault
Tolerance Issues for Real-Time
Applications

RN e

ktw@csie.ntu.edu.tw
%»ﬁﬁ&ggﬁ%@?%z
(Embedded Systems and Wireless Networking Laboratory)
SRR R SRR

Source: C. Douglass Locke & Farnam Jahanian, RTCSA’96 Talks Presentation.

Software Architectures for
Real-Time Applications

= Popular architectures:
¢ Timeline (i.e., cyclic executive or frame-based)

¢ Event-driven (with both periodic and aperiodic
activities)

¢ Pipelined

¢ Client-Server

»= Impacts
¢ Performance and life-cycle cost

¢ Critical design decisions such as synchronization
and exceptions.

= No restriction on parallel processing.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Timeline or Cyclic Executive

= A major cycle consists of a non-repeating
set of minor cycles

¢ Operations are implemented as
procedures.

¢ The timer calls each procedure in the list.
= NO concurrency exists.

= Very high life-cycle cost but very
predictable in the run-time behavior!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Timeline or Cyclic Executive

1/0 I/0 I/0 I/0

A A A A

Y A y
A

ﬁ Procedure 1 alone y

_ Procedure 1 and 4
B Procedure 1 and 3 Cyclic Executive [«— Timer (25ms.)
Procedure 1 and 2
A A
Y f—1 % v

Procedure 1| |Procedure 2| |Procedure 3| |Procedure 4

Event-Driven

= Characteristics:

¢ Trigger schedulable tasks by I/O completion and
timer events.

= Task Priority:

¢ Determined by timing constraints, e.g., RMS, or by
semantic importance.

»« Ways to avoid synchronization is needed
for predictable response.

» Processor utilization is preserved for
aperiodic events for response predictability.

= Prone to event shower! Good for systems with
spare computation power!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Event-Driven

[/O [—{Task 1 | output 0
> Manager 1
[/O |—>{Task 2 >
Clock | Task 3 | _ ;
Output J 10
Clock [Task 4 : Manager 2

Persistent data shared within partitions

Pipelined

= Characteristics:

¢ Trigger schedulable tasks by I/O completion,
timer events, and inter-task messages.

¢ The system can be described as a set of
pipelines of task invocations.
» Task priority

¢ Increasing task priorities in a unidirectional
pipeline will minimize the message queue buildup.

¢ Equal task priority setup is normal for bi-
directional pipelines.

= Prone to event shower! Good for systems
with spare computation power!

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Pipelined

1O Message
»| Handler > Output g
f Y > Manager 1|
/o : Filter
: y
Clock Correlator '
s ﬁmp I S T
Clock I Periodic anager
Generator

No shared data -- persistent data in Abstract Data Objects

Client-Server

= Characteristics:

¢ Trigger schedulable tasks by I/O completion, timer
events, and inter-task messages.

¢ Control flow for an event stays at a node while
data flow is distributed.

» Task priority

¢ Priority inheritance is used ideally. Practically task
priorities are set equally, and message priorities
are used instead to avoid bottlenecks.
= More messages are exchanged but are
significantly easier in debugging than pipelined
systems.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Client-Sever

U0 . Message R
»| Handler Output 1 10
‘|_>) vt v » Manager 1|
I/0 —| Filter
vt
Clock Correlator
F I(\)/Iutput L 1O
Clock | Periodic > vianager
Generator

No shared data--persistent data in Abstract Data Objects

Fault Tolerance

= Definition:

¢ A real-time fault-tolerance system is a
system that can deliver its service even in
the presence of faults.

= TImeliness versus Fault Tolerance

& Possible Faults: Hardware/software errors,

violation of timing constraints because of
the “environment”.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Fault Tolerance

= Use redundancy to detect errors and
mask failures

¢ Space Redundancy: replication of
physical devices.

¢ Time Redundancy: repetition of a
computation or communication.

¢ Information Redundancy: specific
encoding scheme, e.g., parity bit.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

Fault Tolerance

= Real-time systems

& Time is scare -> methods should trade
space/information redundancy for time.

x Possible Structures:

@ Active replicas:

< Each request is processed by all replicas, and their
results are “combined” to mask faults.

@ Passive replicas:
% One primary and several backups.
< Once the primary fails, a backup takes over.
€ Cooperating replicas/objects:
< A client makes a request through a “broker” mechanism.

Copyright: All rights reserved, Prof. Tei-Wei Kuo, Embedded System and Wireless Networking Lab, National Taiwan University.

