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Abstract

We study the problem of uniformly partitioning the edge set of a tree with n edges
into k connected components, where k ≤ n. The objective is to minimize the ratio of
the maximum to the minimum number of edges of the subgraphs in the partition.
We show that, for any tree and k ≤ 4, there exists a k-split with ratio at most
two. (Proofs for k = 3 and k = 4 are omitted here.) For general k, we propose a
simple algorithm that finds a k-split with ratio at most three in O(n log k) time.
Experimental results on random trees are also shown.
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1 Introduction

Graph partition is an important problem in computer science. It finds appli-

cations in parallel computing, data storage and segmentation, and operation

research. Most of the previous research was devoted to the vertex partition,

and many variants of the problem have been defined and investigated with

different objectives and constraints. To measure how uniform a partition is,

three natural objectives are usually used.

• To minimize the maximum (min-max).

• To maximize the minimum (max-min).

• To minimize the ratio of the maximum to the minimum (min-ratio).

Many problems in this line of investigation have been shown to be NP-hard

[1,10]. For the vertex partition of a tree, polynomial time algorithms for both

the min-max and the max-min objectives were developed [5,7,15,17]. Becker

and Perl [6] summarized their previous results with some other co-authors

and showed that the tree vertex partition problem of several other objective

functions can also be solved by using the shifting algorithm. An open problem

in that paper is the most uniform vertex partitioning problem for trees, in

which the objective is to minimize the difference between the maximum and

the minimum weights of the vertex set in the partition. For a special case

that the tree is a path, a solution was given in [16]. One can image that the

problem is more difficult than the min-max or max-min problem since both

the smallest and the largest parts are concerned.
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In this paper, we study the problem of splitting a tree into k parts with

approximately equal number of edges in each part subject to that the edges

in each part are connected. How well can one do it?

More formally, we define a k-split of a tree T as follows. Let T be a tree and

1 ≤ k ≤ e(T ). A k-tuple (T1, T2, . . . , Tk) is a k-split of T if (1) each Ti is a

connected subgraph of T ; and (2) Ti and Tj are edge disjoint for i ̸= j; and

(3) the union of all the subgraphs forms the whole tree T .

......

2 Notations and Preliminaries

Let E(T ) denote the edge set of a tree T and e(T ) denote the number of edges

of tree T . Throughout this paper, n = e(T ). An edge with endpoints u and v

is denoted by (u, v). Let T be a rooted tree and v be a vertex of T . We use Tv

to denote the subtree rooted at v, i.e. the subgraph induced on v and all its

descendants. Let u be a child of v. The subgraph Tu ∪ (u, v) is called a branch

of v.

Definition 1: Let T be a tree and 1 ≤ k ≤ e(T ). The ratio of a k-split

(T1, T2, . . . , Tk) of T is defined by maxi{e(Ti)}
mini{e(Ti)} .

By T = A ⊎ B, we denote that T is split into A and B, i.e., the edge sets of

the two subgraphs form a partition of E(T ). It is also noted that A and B

share a common vertex if T = A ⊎ B. By T = A ⊎ B ⊎ C, we understand a

3-split (A,B,C) of T , in which B intersects with both A and C. It includes
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the case that the three subgraphs share a common vertex.

Problem: Minimum Ratio k-Split

Instance: A tree T and an integer 1 < k < e(T ).

Goal: Find a k-split of T with minimum ratio.

Theorem 1: The Minimum Ratio k-Split problem is NP-hard.

Proof: Omitted. 2

Lemma 2: Let T be a rooted tree. For any 1 ≤ γ ≤ e(T ), we can split T

into (T1, T2) at a vertex v in linear time such that γ ≤ e(T1) < 2γ, in which v

is a vertex satisfying e(Tv) ≥ γ and e(Tu) < γ for any child u of v.

Proof: In linear time, we can traverse the tree in the post order and compute

the number of edges for the subtree rooted at each vertex. Such a vertex v

can be easily found while traversing the tree. Assume that B1, B2, . . . , Bq are

the branches at v. If e(Tv) = γ, we are done. Otherwise, we can find j ≤ q

such that
∑j−1

i=1 e(Bi) < γ and
∑j

i=1 e(Bi) ≥ γ. Since e(Bj) ≤ γ, we have that∑j
i=1 e(Bi) < 2γ. The union

∪j
i=1 Bi is the desired subgraph. 2

Taking γ = n/3 in Lemma 2, we have the following result.

Corollary 3: For any tree T , there is a 2-split of T with ratio at most two. The

numbers of the two subgraphs are at most 2n/3 and at least n/3. Furthermore,

such a 2-split can be found in O(n) time.

One can further shows that the bounds are tight.
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The following simple result shows an upper and a lower bounds for the sizes

of the subgraphs in a k-split with a limited ratio.

Lemma 4: If (T1, T2, . . . , Tk) is a k-split of T with ratio r, then, for each

subgraph Ti,
n

r(k−1)+1
≤ e(Ti) ≤ rn

k+r−1
.

Proof: Let x be the number of edges of the maximum component. Since

the number of edges of the minimum component is no more than the mean of

the remainder, i.e., n−x
k−1

,

x ≤ r(n− x)

k − 1
.

Solving the inequality, we have x ≤ rn
k+r−1

. Similarly, let y denote the minimum

number of edges. The maximum is no less than the mean of the remainder,

n−y
k−1

, and we have y ≥ (n−y)
r(k−1)

, which implies y ≥ n
r(k−1)+1

. 2

3 On general k

3.1 A simple algorithm

We now propose a simple algorithm which finds a k-split of a tree with ratio at

most three. Given a tree T and an integer k, the algorithm starts at the 1-split

(T ) and repeatedly computes a (i+ 1)-split from the i-split by 2-splitting the

maximum subgraph. The time complexity of this algorithm is O(n log k).

Algorithm Simple-Split

Input: A tree T and an integer k ≤ e(T ).

Output: A k-split of T .
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1: Initiate an empty queue Q of trees, and insert T into Q.

2: For i← 1 to k − 1 do

2.1: Choose a tree Y in Q with maximum number of edges.

2.2: Find a 2-split (Y1, Y2) of Y with ratio at most two.

2.3: Remove Y from Q.

2.4: Insert Y1 and Y2 into Q.

3: Output the k trees in Q as the k-split of T .

In the next theorem, we show the performance of the algorithm.

Theorem 5: Given a tree T with n edges and an integer k ≤ n, the algorithm

Simple-Split finds a k-split of T with ratio at most 3 in O(n log k) time.

Proof: Let Mi and mi be respectively the maximum and minimum numbers

of edges of trees in the queue Q at i-th iteration. We first claim that the ratio

Mi/mi is at most 3 for each i. Initially Q contains only the input tree T ,

and M1/m1 = 1. Suppose that Mi/mi ≤ 3 for some i. We shall show that

Mi+1/mi+1 ≤ 3, and then the above claim is consequently true by induction.

At (i+1)-th iteration, the maximum tree Y is chosen and split into Y1 and Y2

with ratio at most 2. Therefore,Mi+1 ≤Mi, andmi+1 = min{mi, e(Y1), e(Y2)}.

Since min{e(Y1), e(Y2)} ≥ e(Y )/3 = Mi/3 and Mi/mi ≤ 3, we have

Mi+1

mi+1

≤ Mi

Mi/3
= 3.

Next, we turn to the time complexity. Let fn(i) be the total time complexity

of executing Step 2.2 in the first i iterations. By Corollary 3, splitting a tree

6



of Mi edges at i-th iteration takes O(Mi) time. Since the ratio Mi/mi is at

most three, by Lemma 4, we have

Mi ≤
3n

i+ 2
.

Note that we used a rougher estimation in the class of 2011/11/21: Mi ≤ 3n
i
.

The inequality Mi ≤ 3n
i+2

is a more accurate estimation, which is derived by

the fact that Mi ≤ 3n−Mi

i−1
for i > 1.

Therefore, for some constant c, fn(1) ≤ cn, and

fn(i) ≤ fn(i− 1) + c
3n

i+ 2

for i > 1. Solving the recurrence relation, we have

fn(k)≤ c
k∑

i=1

3n

i+ 2

< 3cn
k∑

i=1

1

i
= 3cnHk,

in which Hk is the well-known k-th harmonic number. Since Hk = O(log k),

we obtain fn(k) = O(n log k).

For Steps 2.1, 2.3, and 2.4, by simply using a data structure like heap to store

the numbers of edges of the trees in the queue, all the operations can be done in

totally O(k log k) time. Therefore the total time complexity is O(n log k). 2
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4 Concluding Remarks

One of the most important open problems in this line of investigation is that

whether there exists a k-split with ratio at most two for general k. Our future

work includes exact and approximation algorithms for finding the min-ratio

k-split for general or fixed k.
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