
A 2-approximation algorithm for the SROCT problem∗

Bang Ye Wu Kun–Mao Chao

Problem: Optimal Sum-Requirement Communication Spanning Trees (SROCT)
Instance: A G = (V,E, w) with vertex weight r : V → Z+

0 .
Goal: Find a spanning tree T of minimum s.r.c. cost.

Recall that the s.r.c. routing cost of a tree T is defined by Cs(T) =
∑

u,v(r(u) + r(v))dT (u, v).
Similar to the PROCT problem, the SROCT problem includes the MRCT problem as a special
case and is therefore NP-hard. The s.r.c. cost of a tree can also be computed by summing the
routing costs of edges. The only difference is the definition of routing load.

Definition 1: Let T be any spanning tree of a graph G, and r a vertex weight function. For
any edge e = (u, v) ∈ E(T), we define the s.r.c. routing load on the edge e to be ls(T, r, e) =
2(r(Tu)|Tv| + r(Tv)|Tu|), where Tu and Tv are the two subgraphs obtained by removing e from T .
The s.r.c. routing cost on the edge e is defined to be ls(T, r, e)w(e).

Lemma 1: Let T be any spanning tree of a graph G = (V, E,w) and r be a vertex weight function.
Cs(T) =

∑
e∈E(T) ls(T, r, e)w(e).

In this section, we focus on the approximation algorithm for an SROCT. For the PROCT
problem, it has been shown that an optimal solution for a graph has the same value as the one
for its metric closure. In other words, using bad edges cannot lead to a better solution. However,
the SROCT problem has no such a property. For example, consider the graph G in Figure 1. The
edge (a, b) is not in E(G), and T is a spanning tree of the metric closure of G. All three possible
spanning trees of G are Y1, Y2 and Y3. It will be shown that the s.r.c cost of T is less than that of
Yi for i = 1, 2, 3.

To compare the s.r.c costs, we can only focus on the coefficient of k in the cost. Note that
only vertices a and x have nonzero weights. By Lemma 1, the s.r.c. cost of T can be computed as
follows:

Cs(T)
= ls(T, r, (a, b))w(a, b) + ls(T, r, (a, y))w(a, y) + ls(T, r, (y, x))w(x, y)
= 2(k(4 + 1) + 0(4k))2 + 2(k × 1 + 4× 4k)(1) + 2(5k × 1 + 4× 1)(1)
= 64k + . . .

Similarly we have Cs(Y1) = 66k, Cs(Y2) = 66k, and Cs(Y3) = 90k. The example illustrates that it
is impossible to transform any spanning tree of Ḡ to a spanning tree of G without increasing the
s.r.c cost for some graph G, where Ḡ is the metric closure of G. But it should be noted that the

∗An excerpt from the book “Spanning Trees and Optimization Problems,” by Bang Ye Wu and Kun-Mao Chao
(2004), Chapman & Hall/CRC Press, USA.

1

4k
nodes

r(y)=0

r(x)=1

r(a)=4

r(b)=0

1

1

1
1

2

k
nodes

r(y)=0

r(x)=1

r(a)=4

r(b)=0

1

1

2

r(y)=0

r(x)=1

r(a)=4

r(b)=0

1

1
1

Graph
G.
 (
a,b
) is not an edge in
G

A spanning tree
T

of the metric

closure

r(y)=0

r(x)=1

r(a)=4

r(b)=0

1

1

1

r(y)=0

r(x)=1

r(a)=4

r(b)=0
1

1
1

Y
1
 Y
2
 Y
3

Figure 1: A tree with bad edges may have less s.r.c. cost. The triangles represent nodes of zero
weight and connected by zero-length edges.

example does not disprove the possibility of reducing the SROCT problem on general graphs to its
metric version.

We shall present a 2-approximation algorithm for the SROCT problem on general graphs. For
each vertex v of the input graph, the algorithm finds the shortest-paths tree rooted at v. Then it
outputs the shortest-paths tree with minimum s.r.c. cost. We shall show that there always exists a
vertex x such that any shortest-paths tree rooted at x is a 2-approximation solution.

In the following, graph G = (V, E, w) and vertex weight r is the input of the SROCT problem.
We assume that |V | = n, |E| = m and r(V) = R.

Lemma 2: Let T be a spanning tree of G. For any vertex x ∈ V ,

Cs(T) ≤ 2
∑

v∈V

(nr(v) + R) dT (v, x).

Proof:

Cs(T) =
∑

u,v∈V

(r(u) + r(v)) dT (u, v)

≤
∑

u,v∈V

(r(u) + r(v)) (dT (u, x) + dT (x, v))

= 2
∑

u,v∈V

(r(u) + r(v)) dT (u, x)

≤ 2
∑

v∈V

(nr(v) + R) dT (v, x).

2

In the following, we use T to denote an optimal spanning tree of the SROCT problem, and use
x1 and x2 to denote a centroid and an r-centroid of T respectively. Let P = SPT (x1, x2) be the
path between the two vertices on the tree. If x1 and x2 are the same vertex, P contains only one
vertex.

Lemma 3: For any edge e ∈ E(P), the s.r.c load ls(T, r, e) ≥ nR.

Proof: Let T1 and T2 be the two subtrees resulting by deleting e from T . Assume that x1 ∈ V (T1)
and x2 ∈ V (T2). By the definitions of centroid and r-centroid, |V (T1)| ≥ n/2 and r(T2) ≥ R/2.
Then,

ls(T, r, e)/2 = |V (T1)|r(T2) + |V (T2)|r(T1)
= |V (T1)|r(T2) + (n− |V (T1)|) (R− r(T2))
= 2 (|V (T1)| − n/2) (r(T2)−R/2) + nR/2 ≥ nR/2.

The next lemma establishes a lower bound of the minimum s.r.c. cost. Remember that dT (v, P)
denotes the shortest path length from vertex v to path P .

Lemma 4: Cs(T) ≥ ∑
v∈V (nr(v) + R) dT (v, P) + nRw(P).

Proof: For any vertex u, we define SB(u) to be the set of vertices in the same branch of u.
Note that |SB(u)| ≤ n/2 and r(SB(u)) ≤ R/2 for any vertex u by the definitions of centroid and
r-centroid.

Cs(T) =
∑

u,v∈V

(r(u) + r(v)) dT (u, v)

= 2
∑

u,v∈V

r(u)dT (u, v)

≥ 2
∑

u∈V

∑

v/∈SB(u)

r(u) (dT (u, P) + dT (v, P))

+2
∑

u,v∈V

r(u)w(SPT (u, v) ∩ P). (1)

For the first term in (1),

2
∑

u∈V

∑

v/∈SB(u)

r(u) (dT (u, P) + dT (v, P))

= 2
∑

u∈V

∑

v/∈SB(u)

r(u)dT (u, P) + 2
∑

u∈V

∑

v/∈SB(u)

r(u)dT (v, P)

≥
∑

u∈V

nr(u)dT (u, P) + 2
∑

v∈V

∑

u/∈SB(v)

r(u)dT (v, P)

≥
∑

u∈V

nr(u)dT (u, P) +
∑

v∈V

RdT (v, P)

=
∑

v∈V

(nr(v) + R) dT (v, P). (2)

3

For the second term in (1),

2
∑

u,v∈V

r(u)w(SPT (u, v) ∩ P)

= 2
∑

u,v∈V

r(u)


 ∑

e∈SPT (u,v)∩P

w(e)




=
∑

e∈E(P)

(
2

∑
v

r ({u|e ∈ E(SPT (u, v))})
)

w(e)

=
∑

e∈E(P)

ls(T, r, e)w(e)

≥ nRw(P). (by Lemma 3) (3)

The result follows (1), (2), and (3).
The main result of this section is stated in the next theorem.

Theorem 5: There exists a 2-approximation algorithm with time complexity O(n2 log n + mn)
for the SROCT problem.

Proof: Let Y ∗ and Y ∗∗ be the shortest-path trees rooted at x1 and x2 respectively. Also, for
any v ∈ V , let h1(v) = w(SPT (v, x1) ∩ P) and h2(v) = w(SPT (v, x2) ∩ P). By Lemma 2,

Cs(Y ∗)/2 ≤
∑

v∈V

(nr(v) + R) dY ∗(v, x1)

≤
∑

v∈V

(nr(v) + R) (dT (v, P) + h1(v)). (4)

Similarly

Cs(Y ∗∗)/2 ≤
∑

v∈V

(nr(v) + R) (dT (v, P) + h2(v)). (5)

Since h1(v) + h2(v) = w(P) for any vertex v, by (4) and (5), we have

min{Cs(Y ∗), Cs(Y ∗∗)}
≤ (Cs(Y ∗) + Cs(Y ∗∗)) /2

≤
∑

v∈V

(nr(v) + R) (2dT (v, P) + h1(v) + h2(v))

=
∑

v∈V

(nr(v) + R) (2dT (v, P) + w(P))

= 2
∑

v∈V

(nr(v) + R) dT (v, P) + 2nRw(P)

≤ 2Cs(T). (by Lemma 4)

We have proved that there exists a vertex x such that any shortest-paths tree rooted at x is a 2-
approximation solution. Since it takes O(n log n+m) time to construct a shortest-paths tree rooted
at a given vertex and the s.r.c cost of a tree can be computed in O(n) time, a 2-approximation
solution of the SROCT problem can be found in O(n2 log n+mn) time by constructing a shortest-
paths tree rooted at each vertex and choosing the one with minimum s.r.c cost.

4

