
Competitive Online Search Trees on Trees
SODA 2020

Prosenjit Bose, Jean Cardinal, John Iacono,
Grigorios Koumoutsos, Stefan Langerman

Presenters:
黃光輝 R09922052
劉厚辰 R09922016
吳禹璇 R09944012

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 1/40

Outline

1 Introduction

2 Related Work

3 Computation Model

4 Lower Bound

5 Tango Trees on Trees

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 2/40

Introduction

Searching Vertices of a Tree
Searching for an element that is not part of a linearly ordered set, but rather a
vertex of a tree G.
Generalize binary search trees to search trees on trees.

Online and offline search
Given a search sequence X = x1, ..., xm, where each xi is nodes of the BST.
Offline search: the sequence X is known in advance and the rotations performed
might be based on the knowledge of next request.
Online search: each request xi is revealed after the previous search xi−1 has been
performed.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 3/40

Introduction

Adaptive Binary Search Trees - BST Model of Computation
The two actions below can be done using unit cost:

1. A pointer moves from a node to a adjacent node.
2. Rotation of a node.

Example of such model: Red-Black tree1, AVL-tree2.

Adaptive Search Trees on Trees
Adaptive by changing the search tree on tree has never been considered.
Goal: Generalize from BST to General Search Tree (GST) and consider
the design of competitive online search trees on trees in this model.

1LJ Guibas et al. A dichromatic framework for balanced trees. IEEE Computer Society, 1978.
2GM Adel’son-Vel’skii et al. An algorithm for the organization of information. 1962

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 4/40

Introduction

Our Approach - From Binary to General Search Trees
Inspired by the BST-model Tango trees with the notion of Steiner-closed (specific
to the GST model).
While entropy-based lower bounds fail in the GST model, we are able to adapt
one of the lower bounds3 which can matched by a factor O(log log n) to our data
structure using a two-level decomposition.

1. Decompose a balanced search tree into preferred paths.
2. Resorting to link-cut trees for handling the changes in preferred paths.

3Robert E. Wilber et al. Lower bounds for accessing binary search trees with rotations. SIAM, 1989
Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 5/40

Introduction

Our Results
We define the GST model (generalize the BST model) which corresponds to the
special case where the underlying tree is a path.
Lower and upper bounds for GST model match the ones known for the BST
model.

Lower Bound
Lower bound on the cost of any algorithm in the GST model is generalized from the
interleave lower bound of BST3 to search trees on trees.

3Robert E. Wilber et al. Lower bounds for accessing binary search trees with rotations. SIAM, 1989
Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 6/40

Introduction

Upper Bound
An online algorithm for executing search sequences in search trees on trees that is
O(log log n)-competitive even knowing all search requests in advance.
Idea:

Connect the cost of the algorithm to the interleave lower bound.
Lower bound increases by 1, the algorithm incurs a cost at most O(log log n).

This is based on the paradigm for Tango trees4.
More ideas and techniques are involved:

Steiner-closed search trees
A subset of k vertices (defined as preferred path later) can be stored easily in a BST
data structure that supports split and merge in O(log k) time.
Two-level decomposition involving link-cut trees5 and show that the resulting data
structure is a valid search tree on tree.

4Erik D. Demaine et al. The geometry of binary search trees. SODA, 2009
5Daniel Dominic Sleator et al. A data structure for dynamic trees. J. Comput. Syst. Sci., 1983

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 7/40

Related Work

Dynamic optimality of binary search trees
Dynamic optimality conjecture for BSTs which posits the existence of
O(1)-competitive online binary search trees.
Although both splay trees and the greedy algorithm are conjectured to be
O(1)-competitive, the best known upper bound on their competitive ratio is
O(log n).
The best competitive ratio known is O(log log n), which is achieved by using
tango trees.

Note: Tango trees are designed to approximately match the interleave lower
bound.6 Thus, we are able to use this data structure to generalize to search tree
on trees.

6Erik D. Demaine et al. Dynamic optimality - almost. SIAM, 2007
Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 8/40

Computation Model

Definition 2.1 (Search Tree On A Tree)
A rooted tree T is a valid search tree on a given unrooted tree G = (V,E) if the root r
of T stores a vertex of G and the rooted subtrees of T \ r are valid search trees on the
connected components of G \ r.

T and G do not have degree restrictions.
While T is rooted, there is no order among the children of a node.

Note: In this work, we assume a fixed tree G unless otherwise indicated and n
denotes the number of vertices in G.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 9/40

Computation Model

Definition 2.2 (Rotation)
A rotation on a non-root node v of T is a local change which yields another search tree
constructed as follows:

Let p be the parent of v in T. Swap p and v in T.
All children of p remain children of p.
For a child u of v, let Su be the set of nodes in its subtree. For at most one child u
of v, there might be a node of Su adjacent to p in G; then u becomes a child of p;
all other children of v remain children of v.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 10/40

Computation Model

Definition 2.3 (GST model of computation)
In the GST model of computation, we are given a tree G and we maintain a tree T
which is valid search tree on G. At each time, there is a single node pointer at T. At
unit cost we can perform the following operations:

1. Move the pointer to a child or the parent of the current node.
2. Rotate the current node v.

A search operation for v ∈ V is any sequence of unit-cost operations where the
pointer starts at the root r of T and points to v at some point during the
execution of the operation.

Note: By this definition, we can see that the GST model is a generalization of
the BST model of computation.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 11/40

Computation Model

Definition 2.4 (Optimal)
Let OPT(G,X) be the optimal cost of any GST-model algorithm to execute the
sequence of searches X starting from any initial search tree T on G.

Sequence X = x1, x2, ..., xm is a valid search sequence in a tree G = (V,E) if all
xi ∈ V.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 12/40

Computation Model

Definition 2.5 (Preferred Child)
Let P be a valid search tree on G. Let y be a non-leaf node of P, with children
y1, ..., yd. At each time t ∈ [1,m], we define the preferred child of y to be the child yi
whose subtree P(yi) contains the most recent searched vertex in x1, ..., xt that is in a
node of P(y) (or is undefined if none of these searches are in P(y)). In case last request
in P(y) is to y, we set preferred child of y to be y1.

Preferred child of a node changes
throughout the execution of sequence
X.

Note: Preferred child of a node in a
search tree is crucial for the
lower/upper bound.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 13/40

Lower Bound

In this section, we show how to generalize the interleave lower bound of binary search
trees to search trees on trees.
Definition 3.1 (Interleave Bound)
Let P be a valid search tree on G. The interleave bound of a node y of P is the
number of times the preferred child of y changes over time 1, 2, ...,m. The interleave
bound I(G,P,X) is the sum of the interleave bounds of the nodes.

Note: P is a fixed search tree and does not change throughout the execution of X.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 14/40

Lower Bound

Theorem 3.1
Let P be a valid search tree on G. For any search sequence X in the GST model of
computation, we have that OPT(G,X) ≥ I(G,P,X)/2− n.

Let ALG be any GST-model algorithm. At a high-level, the proof consists of two
main steps:

Step 1: We show that if for a fixed node y in P the interleave bound value is q, then there
are at least q/2− 1 unit-cost operations performed by ALG. We charge those
operations to node y.

Step 2: We show that for two different nodes y ̸= z of P, the unit-cost operations charged to
y and z are disjoint.

The two steps imply the theorem; by summing overall nodes y of P, we get that
ALG has cost at least I(G,P,X)/2− n.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 15/40

Proof of Theorem 3.1

Definition 3.2 (Dominating Node/ Subtree)
Let lit be the node with smallest depth in Tt among l1,, ld , for some 1 ≤ it ≤ d.
Then, lti is the lowest common ancestor in Ti of all nodes stores in P(y). We call lit the
dominating node of P(y) in Tt and P(yit) the dominating subtree of P(y)

Let Tt be the tree maintained by ALG after the tth search.
y is a node of P of degree d with children y1, ..., yd
P(y) denote the subtree of P rooted at y.
li is the node of subtree P(y) with the smallest depth in tree Tt.

Note: As the tree Tt evolves over time, the dominating subtree of y might change.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 16/40

Proof of Theorem 3.1

Definition 3.3 (Transition Point)
Let lit be the dominating node of P(y) in Tt. For each i ̸= it, we call li to be the
transition point of y for P(yi) at time t.

Observation 3.1 (Property of transition points)
A transition point of a node y ∈ P can not be the root of Tt, since lit is its ancestor.
Thus whenever ALG has to touch a transition point of y , it incurs a cost of at least 1.

Observation 3.2 (Property of transition points)
Let lti be the dominating node of P(y) in Tt. If the request xt+1 is to a node of subtree
P(y) in Tt. If the request xt+1 is to a node of subtree P(yi) for some i ̸= it, then the
transition point li has to be touched by ALG.

Note: Given time t, we will have exactly d− 1 transition points of y.
Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 17/40

Proof of Theorem 3.1

Proof of Step (1):
Assume IB(y) equals q and any two consecutive requests xjk , xjk+1

are from different
subtrees P(yk), P(yk+1). We can consider two situation:

Requests in non-dominating subtree: By Observation 3.2, when a node from a
non-dominating subtree P(yi) is requested, the transition node li has to be
touched. By Observation 3.1, at least one unit-cost operation has to be
performed.
Requests in dominating subtree: Since P(yk), P(yk+1) are different, the
dominating tree changed at least once during (jk, jk+1), which means there should
have been a rotation between the transition point of y and the dominating point
of P(y). So, the transition point of y for P(yk+1) is touched at least once during
(jk, jk+1) and it will charge 1.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 18/40

Proof of Theorem 3.1

Proof of Step (1) (cont.):
Let q1, q2 be the number of requests to non-dominating and dominating subtrees of
P(y) and q1 + q2 = q. Consider two case:

If q2 ≤ ⌈q/2⌉, we count only the unit-cost operations charged by q1. We have
that q1 = q− q2 ≥ q/2− 1.
If q2 ≥ ⌈q/2⌉, we count the unit-cost operations charged by q1 and the
consecutive requests of q2 which is the number of q2 precedes q1, that is q2 − q1.
We have that q1 + (q2 − q1) ≥ q/2− 1.

In conclusion, we charged at least q/2− 1 requests.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 19/40

Proof of Theorem 3.1

Proof of Step (2):

Lemma 3.1.
At any given time t, each node v of Tt can be a transition node of at most one node y
of P.

Proof.
Take two nodes y and z of P, y is the ancestor of z.
If the dominating subtree for y is the subtree including P(z), transition points of y
will not be in P(z).
Otherwise, transition point l for y and l is the lowest common ancestor of all
points of P(z). By Definition 3.2, l can not be a transition point for z.

Since preferred child changes for node y are charged to touches of transition points for
y. Lemma 3.1. implies no unit cost operation is counted twice by summing overall
nodes. We conclude that cost of ALG is at least I(G,P,X)/2− n.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 20/40

Tango Trees on Trees

Preferred path
Let P be a fixed valid search tree of a tree G. Start from a node that is not the
preferred child of its parent (or start from the root) and perform a walk by following
the preferred child of the current node, until reaching a leaf. If the preferred child is
undefined, pick one arbitrarily.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 21/40

Tango Trees on Trees
Each change of preferred child during a search sequence results to changes in the
preferred paths of P:

Let y be a node in a preferred path Π. If y changes preferred child from yi to yi′ ,
then Π splits into two paths Π1 and Π2.
Then, Π1 is merged with the preferred path previously rooted at yi′ .

root root root

T

hyy TyyhyyyiLOLO.li
T

ChangePreferredchild merge
PreferredpathT hew preferred

0 Preferredchild path
Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 22/40

Tango Trees on Trees

Observation 4.1
During a search sequence X, there are at most I(G,P,X) + n preferred path changes.

The additive n stems from the fact that when the preferred child of a node v is
undefined, we pick one of them arbitrarily in order to form a preferred path.
Thus when the preferred child of v is defined for first time, a preferred path change
might occur. Over all nodes there are at most n such preferred path changes.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 23/40

Steiner closed sets and trees

Definition 4.1 (Convex Hull)
Given a tree G = (V,E), for a set S ⊆ V of vertices, we define the convex hull CH(S)
be the subgraph of G induced by the vertices on all paths P(a, b), for all pairs of points
a, b in S.

Definition 4.2. (Steiner-closed set)
A set S is a Steiner-closed set of vertices of a tree G provided that every vertex in
CH(S) \ S has degree exactly two in CH(S).

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 24/40

Steiner closed sets and trees

Definition 4.3. (Steiner-closed tree)
A search tree T of a tree G is a Steiner-closed tree provided that the set of nodes on
the path in T from the root to an arbitrary node in T is a Steiner-closed set with
respect to G.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 25/40

Steiner closed sets and trees

Lemma 4.1.
Let = p0, ..., pj be a path from the root p0 to a node pjin a Steiner-closed search tree
T of tree G. For any i ∈ 1, ..., j, let Π′ = pi, ...pj . Removing CH(Π′) from CH(Π)
results in at most two connected components.

Proof:

Let Π′′ = p0, ..., pi−1.

Suppose that removing CH(Π′) from
CH(Π) in G results in at least 3
connected components, denote C1,
C2 and C3, respectively.

Let cic′i with i ∈ {1, 2, 3} be the cut
edges that connect Ci to CH(Π′)
with ci ∈ Ci and c′i ∈ CH(Π′).

iii

CHHD.ci
i

T T

紫 智

iii

CHHD.ci
i

T T

紫 智

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 26/40

Steiner closed sets and trees

Let P(c1, c2) be the path in CH(Π)
from c1 to c2 and P(c1, c3) the path
from c1 to c3.
Let v be the first vertex where
P(c1, c2) and P(c1, c3) diverge.
Note that v /∈ Π′′. However,
v ∈ CH(Π′′) since c1, c2 and c3 are in
Π′′.
Moreover, deg(v) ≥ 3 in CH(Π′′) ⇒
Contradiction!! (Violate Definition
4.2)

vǎr G

a Ǜns

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 27/40

Steiner closed sets and trees

Lemma 4.2
Given a valid search tree T on a tree G, we can create another valid search tree T′ of
G, such that T′ is Steiner-closed and height(T′) ≤ 2height(T).

Proof:
Perform a depth-first search on T and build our Steiner-closed tree incrementally.
Let r be the root of T. For any non-root node v with parent p(v), let Sv be the set
of elements in the path from the root r to v.
At each step i we transform the tree Ti into the tree Ti+1 such that T0 = T and
Tfinal = T′.
Consider in ith step of transformation, our DFS visits a node v ∈ T such that:

1. The set Sp(v) is Steiner-closed in G.
2. The set Sv is not Steiner-closed.

This means that CH(Sv) contains a unique vertex s ∈ CH(Sv) \ Sv with degree at
least 3.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 28/40

Steiner closed sets and trees

Observe that the vertices on the path between p(v) and v in G are contained in
the subtree rooted at v in Ti. Since s is on this path, it is in the subtree rooted at
v in Ti .
We obtain Ti+1 by rotating s up the tree until it is between p(v) and v, that is, we
make it a parent of v and a child of p(v).

董
depthsd T

on P
cuttgyf

cf
Spu

1
S

iii

i 是

slipway 下 新

Now, in Ti+1 the path from v up to root is now Steiner-closed by construction.
Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 29/40

Steiner closed sets and trees
Let vs be the child of v in Ti such that s is in the subtree rooted at vs. Let
v1, ..., vd be the other children of v.
From Ti to Ti+1, the depth of all nodes in subtrees rooted at v1, ..., vd increases by
1 and the depth of all other nodes of Ti does not increase.
For a node w in a subtree rooted at vj, 1 ≤ j ≤ d, we have that the depth of w
increases by 1, the new root(vj)-to w path is the same as before augmented by
node s and the path from root to v is Steiner-closed.

iii

All possible depth increases of w are caused by nodes in the path between v and w.
Summing overall changes, for any node of the tree at depth d in T0, its depth can
increase by 1 at most d times, i.e., height(T′) ≤ 2d = 2height(T).

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 30/40

Building the Reference tree

Lemma 4.3
Given a tree G, there is a search tree C of G with height at most log2 n+ 1. The tree
C is a centroid decomposition tree obtained by recursive application of Jordan＇s
theorem [Jor69, Har69]: Given a tree G with n vertices, there exists a vertex whose
removal partitions the tree into components, each with at most n/2 vertices.

Note: A centroid decomposition can be computed in time O(n log n).

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 31/40

Building the Reference tree

Using Lemma 4.2 and Lemma 4.3 we get the following corollary.

Corollary 4.1
For any tree G on n vertices, there exists a valid search tree P on G which is
Steiner-closed and it has height at most 2 log n+ 2.

Proof:
Since centroid decomposition C has height log n+ 1, thus the tree P can be obtained
by applying Lemma 4.2 for T = C. The tree P will be our reference tree in the rest of
this paper.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 32/40

Building the Reference tree

Observation 4.2
If a search tree T of a tree G is Steiner-closed, then for all nodes v in T, the subtree Tv
rooted at v is also Steiner-closed.

Definition 4.4
Let P̄(a, b) denote the set of nodes v ̸= {a, b} of the path from a to b.
For a Steiner-closed set of vertices S of G, let G(S) to be the graph with vertex set S
where two vertices a, b ∈ S are connected by an edge iff. no c ∈ S is in P̄(a, b).

Lemma 4.4
For any Steiner-closed set S, G(S) is a tree.

Proof: Follows from Definition 4.3.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 33/40

Maintaining preferred paths with link-cut trees

During an execution of a search
sequence we need to perform the
following operations on preferred
paths:

(i) Search for a node in a preferred
path Π.

(ii) Cut a preferred path Π into two
paths, one consisting of nodes of
depth smaller than d in P and the
other of nodes of depth at least d.
We denote this operation Cut(Π, d).

(iii) Merge two preferred paths Π1 and
Π2, where the bottom node of Π1

is the parent of the top node of Π2.

董
depthsd T

on P

然 d

fiidl

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 34/40

Maintaining preferred paths with link-cut trees

Let Π be a preferred path containing a Steiner-closed set of nodes S.
Split Π into two paths:
Split G(S) into two tree G(S1) and G(S2) where S1 and S2 are the nodes in Π1

and Π2. By Observation 4.2, we can know Π2 is also Steiner-closed, which implies
G(S2) is a tree.
Merge two preferred paths Π1 and Π2 into Π:
We can construct the tree G(S) where S is the union of the sets of nodes S1 and
S2 in the paths Π1 and Π2.

Note: By Lemma 4.1, we can get G(S2) by cutting at most two edges of G(S) and
G(S) can be obtained by cutting G(S1) at most two places and linking G(S1) and
G(S2) by two edges.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 35/40

Basic operations that need to be supported in logarithmic time

We need to implement a data structure supporting the above operations on the
forest of trees G(S) at O(log k) cost in the GST model.
Each of these operations can be split into a constant number of one of these two
operations:

1. Cut a tree into two by removing an edge.
2. Link two trees into one by adding an edge.

Resort link-cut trees data structure from Sleator and Tarjan
Heavy-path decomposition on the represented trees. Each heavy path represented by
a splay tree.

Data structure eventually consists of a hierarchy of splay trees, each representing
a path in a tree G(S), which corresponds to a path in the reference tree P.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 36/40

Basic operations that need to be supported in logarithmic time

Check the whole data structure is a search tree on G and the binary search tree
operations are elementary operations in the GST model.
Considering the preferred path Π in P with nodes S and the heavy path in the
decomposition of G(S).

Searching in a splay tree amounts to searching along a path of G(S), whose convex
hull is a path in G. By Observation 2.2, it is a proper search in the GST model.
Similarly, rotations in splay trees are rotations of the search tree on G as defined in
the GST model

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 37/40

Proposed Algorithm

Given the graph G, we construct a balanced Steiner-closed search tree P on G,
which we refer to as the reference tree.
We dynamically maintain a decomposition of P into preferred paths.
Each such preferred path with nodes S corresponds to an unrooted tree G(S),
which is a minor of G.
As searches are performed, preferred paths are updated, and these updates
correspond to linking and cutting trees G(S). For this, we use link-cut trees.
Those in turn decompose the trees G(S) into paths and reduce the operations to
link and cut on paths. These operations can be handled by splay trees.
Together, they form a search tree on G.

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 38/40

Bounding the cost

Lemma 4.5
Let l be the number of preferred child changes during a search. Then the cost of this
search is O((l+ 1)(1 + log log n)).

Proof:
During the search, the pointer touches exactly l+ 1 preferred paths. We account
separately for the search cost and the update cost.

Search cost: For each preferred path touched, the search cost is O(⌈log log n⌉).
Thus the total search cost is clearly O((l+ 1)(1 + log log n)).
Update cost: Time for cut and merge preferred paths on k nodes: O(1 + log k).
Since each preferred path has at most O(log n) nodes, we can perform those
updates in O(1 + log log n). There are l preferred path changes, and there are one
cut and and one merge operation for each change. So the total time for merging
and cutting is O(l∙(1 + log log n)).

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 39/40

Bounding the cost
Finally, combine Lemma 4.5 with Theorem 3.1, to get the competitive ratio of Tango
Search Tree (TST).

Theorem 4.1
For any X of length m = Ω(n), Tango Search Tree are O(log log n)-competitive.

Proof:
Note: Account only for the cost during searches, since the cost of transforming the
input tree into a valid TST is just a fixed additive term that doesn’t depend on X.

By Obs. 4.1, the total number of preferred path changes is at most I(G,P,X) + n.
For all search requests, we get that the cost of Tango Search Tree

∑
xi∈X

Lemma 4.5︷ ︸︸ ︷
(li + 1)(1 + log log n) = (I(G,P,X) + n+ m)(1 + log log n)

Thm. 3.1
= O(OPT(G,X))(1 + log log n)

Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, Stefan LangermanCompetitive Online Search Trees on Trees 40/40

	Introduction
	Related Work
	Computation Model
	Lower Bound
	Tango Trees on Trees

