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Introduction



Ramseyness

Definition. Let G, H and H ′ be graphs. We say that G is
Ramsey for (H,H ′), denoted by

G→ (H,H ′),

if every red/blue-coloring of the edges of G yields either a red
copy of H or a blue copy of H ′. Let G→ H denote that
G→ (H,H).
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Ramsey Numbers

The usual and size Ramsey numbers are defined as follows.

Definition. For graphs H and H ′, the usual Ramsey number
r(H,H ′) is defined by

r(H,H ′) = min{|V (G)| : G→ (H,H ′)},

and let r(H) = r(H,H).

Definition. For graphs H and H ′, the size Ramsey number
r̂(H,H ′) is defined by

r̂(H,H ′) = min{|E(G)| : G→ (H,H ′)},

and let r̂(H) = r̂(H,H).
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A Recurrence

Theorem. For any positive integers n and m,

r(Kn,Km) ≤ r(Kn−1,Km) + r(Kn,Km−1).

Corollary. For any positive integers n and m,

r(Kn,Km) ≤
(
n+m− 2

n− 1

)
.
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Asymptotics

The diagonal Ramsey numbers are bounded by

√
2e−1(1 + o(1))n2n/2 ≤ r(Kn) ≤ n−Θ(logn/ log logn)4n.
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A Hard Challenge

Erdős asks us to imagine an alien force, vastly more powerful
than us, landing on Earth and demanding the value of r(K5) or
they will destroy our planet. In that case, he claims, we should
marshal all our computers and all our mathematicians and
attempt to find the value. But suppose, instead, that they ask
for r(K6). In that case, he believes, we should attempt to
destroy the aliens.

— Joel Spencer
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A Hard Challenge

Note that there are 2n(n−1)/2 different red/blue-coloring of Kn.
Thus, it is hard to compute the Ramsey numbers simply via
brute force since the time complexity is exponential.
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Known Upper and Lower Bounds

m 1 2 3 4 5 6

r(K1,Km) 1

r(K2,Km) 1 2

r(K3,Km) 1 3 6

r(K4,Km) 1 4 9 18

r(K5,Km) 1 5 14 25 43–48

r(K6,Km) 1 6 18 36–41 58–87 102–165

Table: Known Bounding Ranges for Ramsey Numbers r(Kn,Km)
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A Simple Observation

The size Ramsey number is bounded by the usual Ramsey
number.

Theorem. For any graphs H and H ′,

r̂(H,H ′) ≤
(
r(H,H ′)

2

)
.

It is known that if H and H ′ are complete graphs, then the
equality holds.
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Size Ramsey Number of Sparse Graphs

However, when H and H ′ are sparse, the size Ramsey number
may be small. Currently we have the following results.

I Stars: r̂(K1,n,K1,m) = n+m− 1.

I Paths: r̂(Pn) = Θ(n), and r̂(Pn) < 137n when n→∞.

I Cycles: r̂(Cn) = Θ(n).

I Trees: r̂(T ) = Θ(β(T )) for any tree T , where β(·) is a
parameter satisfying β(T ) ≤ |V (T )|∆(T ).
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Terminologies



Strong Product

The strong product of two graphs is defined as follows.

Definition. Let G and H be graphs. The strong product of G
and H, denoted by G�H, is the graph with vertex set
V (G)× V (H), where (u1, v1) and (u2, v2) are adjacent in
G�H if

I u1 = u2 and v1v2 ∈ E(H), or

I u1u2 ∈ E(G) and v1 = v2, or

I u1u2 ∈ E(G) and v1v2 ∈ E(H).

13/43



Examples of Strong Products

Figure: The strong product of P3 and P3.

14/43



Examples of Strong Products

Figure: The strong product of P3 and K3.
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Graph Decomposition

Definition. For graphs G and H, an H-decomposition of G is
a graph H ∼= H whose vertices, called bags, are subsets of
V (G), such that the following properties hold.

(a) For each v ∈ V (G), the subgraph of H induced by
{B ∈ V (H) : v ∈ B} is nonempty and connected.

(b) For each uv ∈ E(G), {u, v} ⊆ B for some B ∈ V (H).

The width of H is the size of the largest bag of H minus one.
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Tree Decomposition

Definition. A tree decomposition of a graph G is a
T -decomposition for some tree T .

Definition. The treewidth of a graph G, denoted by tw(G), is
the minimum width of a tree decomposition of G.
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Tree Decomposition

A B C

D

EFG

H

{H,A,B}

{F,G,H}

{B,F,H} {F,B,D}

{B,C,D}

{D,E, F}

Figure: A graph G and a tree decomposition of G with width 2.
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Treewidth

Given a graph G and a positive integer k, it is NP-complete to
determine whether tw(G) ≤ k.

However, if k is a fixed constant, then one can easily recognize
the graphs G with tw(G) ≤ k, and a tree decomposition of G
with width k can be constructed in linear time.

Treewidth is a crucial and well-studied parameter of graphs
since many NP-complete problems (e.g., maximum independent
set) can be solved efficiently via dynamic programming on
graphs of bounded treewidth.
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Degeneracy

Definition. Let G be a graph, and let k be a positive integer.
A graph G is said to be k-degenerate if every subgraph of G
has minimum degree at most k.

Definition. The degeneracy of a graph G is the minimum
positive integer k such that G is k-degenerate.

Note that all graphs of treewidth k are k-degenerate, while
treewidth cannot be bounded in terms of degeneracy.
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Lovász Local Lemma

If a large number of events are all independent of one another
and each has probability less than 1, then with a positive
probability none of these events occur.

The following lemma, called Lovász Local Lemma, generalizes
this result by relaxing the independence condition slightly.

Lovász Local Lemma. Let E be a finite collection of events,
and let d be a positive integer. If for each E ∈ E , we have
Pr(E) ≤ 1/(4d) and there are at most d events in E \ {E} that
are not independent from E, then

Pr

(⋃
E∈E

E

)
< 1.
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Lovász Local Lemma

Lovász Local Lemma is a classic tool in probability graph
theory since it can imply the existence of a specific object.
However, the original proof of Lovász Local Lemma does not
provide an explicit way to avoid all events in E .

There was no constructive proof of Lovász Local Lemma found
until Robin Moser and Gábor Tardos proposed an expected
polynomial-time algorithm in 2010. This result won them the
Gödel Prize in 2020.
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Main Results



Main Results—Theorem 1

Theorem 1. For any positive integers k and d, there exists a
constant c such that for any positive integer n, there exists a
graph G with cn vertices and maximum degree c, such that

G→ (H,H ′)

holds for any graphs H and H ′ with n vertices, treewidth k
and maximum degree d.

Corollary. For any positive integers k and d, there exists a
constant c such that

r̂(H) ≤ c|V (H)|

for any graph H with tw(H) ≤ k and ∆(H) = d.
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Main Results—Theorem 2

Theorem 2. For any positive integer k, there exists a tree T
such that

G9 T

for any k-degenerate graph G.
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Proof of Theorem 1



Main Results—Theorem 1

Theorem 1. For any positive integers k and d, there exists a
constant c such that for any positive integer n, there exists a
graph G with cn vertices and maximum degree c, such that

G→ (H,H ′)

holds for any graphs H and H ′ with n vertices, treewidth k
and maximum degree d.
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Proof Sketch of Theorem 1

The proof sketch of Theorem 1 is as follows.

I Reduce the problem to the case T �Kk, where T is a tree.

I Obtain a regular graph H (which satisfies specific
conditions) and define G = H3 �Kr, where r = r(Kt) for
some large constant t. Fix a red/blue-coloring ψ of G.

I Now we focus on the blue t-cliques in G. Construct an
M -clique KM , where M is the number of the blue t-cliques
in G, and design a red/blue-coloring ϕ according to ψ and
a parameter s.

I Consider the two different cases and show that both impliy
the existence of a monochromatic copy of T �Kk, finishing
the proof.
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Reduction

Let ∆(H) denote the maximum degree of vertices of H.

Lemma 1. For any graph H with tw(H) = k and ∆(H) = d,
there exists a tree T with ∆(T ) ≤ 18kd2 such that H is a
subgraph of T �K18kd.

By Lemma 1, we can reduce Theorem 1 to the following case,
where Tn,d denotes the collection of trees T with |V (T )| = n
and ∆(T ) ≤ d.

Theorem. For any positive integers k and d, there exists a
constant c such that for any positive integer n, there exists a
cn-vertex graph G with ∆(G) ≤ c such that for any
T1, T2 ∈ Tn,d, each red/blue-coloring of G contains either a red
copy of T1 �Kk or a blue copy of T2 �Kk.
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A Key Tool

We pick specific numbers N , D and ε and apply the following
lemma to obtain a regular graph H.

Lemma 2. For any positive integer d, any ε > 0 and any even
number D > 100d2/ε4, there exists a constant c such that for
any positive integers n and N ≥ cn, there exists an N -vertex
D-regular graph H with the following properties.

(a) If S and T are disjoint subsets of V (H) and each contains
at least 2N/

√
D vertices, then there is an edge of H

connecting S and T .

(b) Each induced subgraph of H on at least εN vertices
contains all trees T with |V (T )| ≤ n and ∆(T ) ≤ d.

Let r = r(Kt) with t = (64kd)k(d2+d). We claim that
G = H3 �Kr satisfies the theorem.
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Cliques

Now fix a red/blue-coloring ψ of the edges of G.

By G = H(3) �Kr, each v ∈ V (H) corresponds to an r-clique
[v], which contains a monochromatic t-clique [v]∗ since

Kr → Kt.

Let G∗ be the subgraph of G induced by the blue t-cliques, and
let M denote the number of the blue t-cliques. Suppose that
M ≥ N/2 without loss of generality.
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Another Coloring

Now that we have M blue t-cliques, we can construct the
(G∗, ψ, s)-coloring ϕ of KM according to the following rule to
describe the pattern of the red/blue-colored edges between
these blue t-cliques. Here s = k(d2 + d) is a constant.

Definition. Let G be a graph with vertices partitioned into
V1, V2, . . . , VM , and let ψ be a red/blue-coloring of E(G). The
(G,ψ, s)-coloring ϕ of KM is defined such that for each pair of
i, j ∈ {1, 2, . . . ,M}, the edge ij is colored

I blue if there is a blue copy of Ks,s between Vi and Vj in G;

I red otherwise.

Note that if uv ∈ E(G), then the edges between the blue
t-cliques [u]∗ and [v]∗ forms a complete bipartite Kt,t.
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Two Possible Cases

Following is an important lemma.

Lemma 3. Let n, δ, q be integers and let M ≥ 20nδq. Fix a
red/blue-coloring ϕ of the edges of KM . Then KM contains
either

(a) a blue copy of every tree in Tn,δ, or

(b) a red copy of a complete q-partite graph where each part
has size at least M/(5δq).

We apply Lemma 3 with δ = d2 and q = 2k + 1 and consider
the two possible cases as follows.
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The First Case

Case 1. Assume that KM contains a blue copy of every tree in
Tn,d2 . Then we can obtain a blue copy of T2 �Kk by applying
Lemma 4.

Lemma 4. Let T be a rooted tree in Tk,d, and let T ′ be the
truncation of T . Let G be a graph with vertices partitioned
into V1, V2, . . . , VM . Fix a (G,ψ, s)-coloring of KM with
s = d(k + k2). Suppose that G[Vi] is a blue clique and |Vi| ≥ s
for each i. If KM contains a blue copy of T ′, then G contains a
blue copy of T �Kk.

Here we truncate a rooted tree by deleting all vertices with
positive and even depth and connecting the vertices that were
connected by a two-edge path.
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The Second Case

Case 2. Now assume that KM contains a red copy of a
complete (2k + 1)-partite graph where each of the parts
V0, V1, . . . , V2k has size at least M/(5d2(2k + 1)).

By the construction of H and Kőnig’s Theorem, we can find a
set S ⊆ V0 with |S| ≥ εN such that

(a) for 1 ≤ i ≤ 2n, there exists an injection µi : S → Vi such
that v and µi(v) are adjacent in H for each v ∈ S, and

(b) the subgraph of H induced by S contains a copy T̃1 of T1.

To finish the proof, we aim to find a red copy of T1 �Kk in G∗

using this copy T̃1 in H.
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Construction

Root T̃1 at an arbitrary vertex. For each vertex v in T̃1,

I let Sv = {µi(v) : 1 ≤ i ≤ k} if v is at even depth, and

I let Sv = {µi(v) : k + 1 ≤ i ≤ 2k} otherwise.

Recall that each edge connecting distinct parts Vi and Vj is red.

It follows that the union of Sv for all v ∈ V (T̃1) induces a red
copy F of T1 �Kk in KM . Thus, it suffices to find an
isomorphism between F and a subgraph of G∗.
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Bounding the Number of Blue Edges

Note that we have the following facts.

I Each edge of F is an edge of H3.

I If uv ∈ E(H3) is a red edge in KM , then there is no blue
copy of Ks,s between the t-cliques [u]∗ and [v]∗ in G∗.

Lemma 5 bounds the number of blue edges that connects [u]∗

and [v]∗.

Lemma 5. An n-vertex graph containing no Ks,s subgraph
has at most (s− 1)1/sn2−1/s + (s− 1) edges.

Let F ′ be the subgraph of G∗ containing all red edges
connecting [u]∗ and [v]∗ in G∗ for each uv ∈ E(F ).
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Blowup

The t-blowup of a graph F is the strong product of F and an
t-vertex empty graph, with each v ∈ V (F ) corresponding to an
independent set [v] of size t.

We finish the proof by applying Lemma 6, which is implied by
Lovász Local Lemma.

Lemma 6. Let t be a positive integer, and let F be a graph
with ∆(F ) = d. If F ′ is a spanning subgraph of the t-blowup
of F such that for each edge uv ∈ E(F ), there are at least
(1− 1/(8d))t2 edges connecting [u] and [v] in F ′, then F is
isomorphic to a subgraph of F ′.

Since F and F ′ satisfy the assumption, we conclude that F ,
which is a red copy of T1 �Kk, is isomorphic to a subgraph of
F ′, finishing the proof.

38/43



Proof of Theorem 2



Main Results—Theorem 2

Theorem 2. For any positive integer k, there exists a tree T
such that

G9 T

for any k-degenerate graph G.
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Proof of Theorem 2

We show that a k-degenerate graph G is not Ramsey for the
complete (k + 1)-ary tree T with height k + 1.†

Let V (G) = {1, 2, . . . , n} such that for each u ∈ V (G), there are
at most k neighbors v of u with v < u. Fix a proper vertex
coloring φ : V (G)→ {1, 2, . . . , k + 1}. Color an edge uv with
u < v red if φ(u) < φ(v) and blue otherwise.

Then

I each monochromatic (either red or blue) monotone path in
G has length at most k, and

I each copy of T in G must contain a monotone path of
length k + 1.

Thus, G9 T .

†This proof was unpublished and was independently discovered by M. Geißer,
J. Rollin, and P. Stumpf. 41/43
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