Anti－Ramsey number of edge－disjoint rainbow spanning

trees

Linyuan Lu Zhiyu Wang

Final Presentation，Special Topics on Graph Algorithms，Spring 2021
B07902131 陳冠宇 B07902132 陳威翰 B07902139 鄭豫澤
June 8th， 2021

Overview

(1) Introduction
(2) Proof of Theorem 3
(3) Proof of Theorem 4
(4) Proof of Theorem 1

(1) Introduction

(2) Proof of Theorem 3

(3) Proof of Theorem 4
(4) Proof of Theorem 1

Introduction

Introduction

Definition 1

An edge-colored graph G is called rainbow if every edge of G receives a different color.

Definition 2

anti-Ramsey problem: fins the anti-Ramsey number $\operatorname{AR}(n, \mathcal{G})$ in an edge-coloring of K_{n} containing no rainbow copy of any graph in class \mathcal{G}.

Definition 3

$r(n, t)$: the maximum number of colors in an edge-coloring K_{n} not having t edge-disjoint rainbow spanning trees.

Previous Works

- anti-Ramsey number for perfect matchings is $\binom{n-3}{2}+2$ for $n \geq 14$. [HY12]
- The maximum number of colors in an edge-coloring of $K_{n}(n \geq 4)$ with no rainbow spanning tree is $\binom{n-2}{2}+1$. [BV01]
- $r(n, 2)=\binom{n-2}{2}+2$ for $n \geq 6$. [S A07]

$$
r(n, t)= \begin{cases}\binom{n-2}{2}+t & \text { for } n>2 t+\sqrt{6 t-\frac{23}{4}}+\frac{5}{2} \\ \binom{n}{2}-t & \text { for } n=2 t\end{cases}
$$

[S J16b]

Previous Works

Also a conjecture:
Conjecture 1
$r(n, t)=\binom{n-2}{2}+t$ for $n \geq 2 t+2 \geq 6$.
.[S J16b] This paper proves this conjecture.

Theorem 1

Combining with these three results ([BV01], [S A07], [S J16b]), we have

Theorem 1

For all positive integer t,

$$
r(n, t)= \begin{cases}\binom{n-2}{2}+t & \text { for } n \geq 2 t+2 \\ \binom{n-1}{2} & \text { for } n=2 t+1 \\ \binom{n}{2}-t & \text { for } n=2 t\end{cases}
$$

Remark 1

If $n<2 t, K_{n}$ doesn't have enough edges for t edge-disjoint spanning trees.

Theorem 2

When $t=1$, [CH17] showed that at determining the largest rainbow spanning forest of a graph can be solved by applying the Matroid Intersection Theorem.

Theorem 2

Theorem 2

An edge-colored connected graph G has a rainbow spanning tree if and only if for every $2 \leq k \leq n$ and every partition of G with k parts, at least $k-1$ different colors are represented in edges between partition classes.
[Sch03], [Suz06], [CH17]

Theorem 3

By generalizing theorem 2 to t color-disjoint rainbow spanning tree, by [Sch03],

Theorem 3

An edge-colored multigraph G has t pairwise color-disjoint rainbow spanning trees if and only if for every partition P of $V(G)$ into $|P|$ parts, at least $t(|P|-1)$ distinct colors are represented in edges between partition classes.

Nash-Walliam-Tutte Theorem

Remark 2

Nash-Williams-Tutte Theorem: A multigraph contains t edge-disjoint spanning trees if and only if for every partition P of its vertex set, it has at least $t(|P|-1)$ cross-edges. Theorem 3 implies the Nash-Williams-Tutte Theorem by assigning every edge of the multigraph a distinct color.
[Nas61], [Tut61].

Theorem 4

Theorem 3 can be also generalized to extending edge-disjoint rainbow spanning forests to edge-disjoint rainbow spanning trees.
Let G be an edge-colored multigraph and F_{1}, \cdots, F_{t} be t edge-disjoint rainbow spanning forests.

Definition 4

A extension from F_{1}, \cdots, F_{t} to T_{1}, \cdots, T_{t} which is t rainbow spanning trees in G is color-disjoint if all edges in $\cup_{i}\left(E\left(T_{i}\right) \backslash E\left(F_{i}\right)\right)$ have distinct colors and these colors are different from the colors appearing in the edges of $\cup_{i} E\left(F_{i}\right)$.

Theorem 4

By using metroid methods again or graph theoretical arguments, we have

Theorem 4

A family of t edge-disjoint rainbow spanning forests $F_{1} . \cdots, F_{t}$ has a color-disjoint extension in G if and only if for every partition P of G into $|P|$ parts,

$$
\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|+\sum_{i=1}^{t}\left|\operatorname{cr}\left(P, F_{i}\right)\right| \geq t(|P|+1)
$$

, where G^{\prime} is the spanning subgraph of G by removing all edges with colors appearing in some F_{i} and $c\left(c r\left(P, G^{\prime}\right)\right)$ be the set of colors appearing in the edges of G^{\prime} crossing the partition P.

(1) Introduction

(2) Proof of Theorem 3

(3) Proof of Theorem 4

(4) Proof of Theorem 1

Proof of Theorem 3

Proof of Theorem 3

We will prove theorem by using matroid and graph theoretical arguments.

Matroid

A matroid is defined as $M=(E, \mathcal{I})$, where E is the ground set and $\mathcal{I} \subseteq 2^{E}$ is a set containing subsets of E that satisfy

- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
- if $A \subseteq \mathcal{I}, B \subseteq \mathcal{I}$ and $|A|>|B|$, then $\exists a \in A \backslash B$ such that $B \cup\{a\} \in \mathcal{I}$.
Given a matroid $M=(E, \mathcal{I})$, the rank function $r_{M}: 2^{E} \rightarrow \mathrm{~N}$ is defined as $r_{M}(S)=\max \{|I|: I \subseteq S, I \in \mathcal{I}\}$.

Matroid

- The graphic matroid of a graph G is the matroid $M=(E, \mathcal{I})$ where $E=E(G)$ and \mathcal{I} is the set of forests in G.
- The partition matroid of a graph G is the matroid $M=(E, \mathcal{I})$ where $E=E(G)$ and \mathcal{I} is the set of rainbow subgraphs of G.
- Given k matroids $\left\{M_{i}=\left(E_{i}, \mathcal{I}_{i}\right)\right\}_{i \in[k]}$, the union of the k matroids is a matroid $M=(E, \mathcal{I})=\left(\bigcup_{i=1}^{k} E_{i},\left\{I_{1} \cup \cdots \cup I_{k}: I_{i} \in \mathcal{I}_{i}\right.\right.$ for all $\left.\left.i \in[k]\right\}\right)$. This matroid has rank function

$$
r(S)=\min _{T \subseteq S}\left(|S \backslash T|+\sum_{i=1}^{k} r_{M_{i}}\left(T \cap E_{i}\right)\right)
$$

[Edm68] [Nas67]

Matroid

- Given two matroid $M_{1}=\left(E, \mathcal{I}_{1}\right)$ and $M_{2}=\left(E, \mathcal{I}_{2}\right)$ on the same ground set with rank function r_{1}, r_{2} respectively. The Matroid Intersection Theorem shows that

$$
\max _{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}}|I|=\min _{U \subseteq E}\left(r_{1}(U)+r_{2}(E \backslash U)\right)
$$

[Edm70]

Proof of Theorem 3 using Matroid

[Sch03]
The forward direction is clear.
It remains to show that if for every partition P of $V(G)$ into $|P|$ parts, at least $t(|P|-1)$ distinct colors are represented in edges between partition classes, then there exist t edge-disjoint rainbow spanning trees in G.

Proof of Theorem 3 using Matroid

Given an edge-colored graph G, let $M=(E, \mathcal{I})$ be the graphic matroid of G and $M^{\prime}=\left(E, \mathcal{I}^{\prime}\right)$ be the partition matroid of G. Let $M^{t}=M \vee M \vee \cdots \vee M=\left(E, \mathcal{I}^{t}\right)$, where we take t copies of M, which contains the union of t forests. By matroid union theorem, we obtain that

$$
r_{M^{t}}(S)=\min _{T \subseteq S}\left(|S \backslash T|+t \cdot r_{M}(T)\right)
$$

Proof of Theorem 3 using Matroid

By the Matroid Intersection Theorem, we have

$$
\begin{aligned}
\max _{I \in \mathcal{I}^{t} \cap \mathcal{I}^{\prime}}|I| & =\min _{U \subseteq E}\left(r_{M^{t}}(U)+r_{M^{\prime}}(E \backslash U)\right) \\
& =\min _{U \subseteq E}\left(\min _{T \subseteq U}\left(|U \backslash T|+t \cdot r_{M}(T)\right)+r_{M^{\prime}}(E \backslash U)\right)
\end{aligned}
$$

Let $T \subseteq U \subseteq E$ be an arbitrary chosen. Observe that $t \cdot r_{M}(T)=t(n-q(T))$, where $q(T)$ is the number of connected components of $G[T]$.

Proof of Theorem 3 using Matroid

Now we claim that

$$
|U \backslash T|+r_{M}(E \backslash U) \geq r_{M}(E \backslash T) \geq t(q(T)-1)
$$

For any color c appearing in some edge $e \in E \backslash T$, if $e \in E \backslash U$, then the color c is counted in $r_{M}(E \backslash U)$; if $e \in U$, then that color is counted in $|U \backslash T|$. In particular, at least $t(q(T)-1)$ distinct colors are represented in edges between connected components of T, thus in $E \backslash T$.

Proof of Theorem 3 using Matroid

It follows that

$$
|U \backslash T|+t \cdot r_{M}(T)+r_{M}(E \backslash U) \geq t(q(T)-1)+t(n-q(T)) \geq t(n-1)
$$

which implies that $\max _{\ell \in \mathcal{I}^{t} \cap \mathcal{I}}|I| \geq t(n-1)$. By definition, we then have t edge-disjoint rainbow spanning trees.

Proof of Theorem 3 using graph theoretical arguments

Definition 5

$V(G), E(G)$: the set of the vertex and the edge of G.

Definition 6

$\|G\|:|E(G)|$.
Definition 7
$c(E)$: the set of colors that appear in E.
$c(e)$: the color of edge e.

Definition 8

A color c has multiplicity k in G if the number of edges with color c in G is k.

The color multiplicity of an edge in G is the multiplicity of the color of the edge in G.

Proof of Theorem 3 using graph theoretical arguments

For any partition P of the vertex set $V(G)$ and a subgraph H of G, let $|P|$ denote the number of parts in the partition P and let $\operatorname{cr}(P, H)$ denote the set of crossing edges in H whose end vertices belong to different parts in the partition P. When $H=G$, we also write $\operatorname{cr}(P, G)$ as $\operatorname{cr}(P)$. Given two partitions $P_{1}: V=\cup_{i} V_{i}$ and $P_{2}: V=\cup_{j} V_{j}$, let the intersection $P_{1} \cap P_{2}$ denote the partition given by $V=\bigcup_{i, j} V_{i} \cap V_{j}$.

Proof of Theorem 3 using graph theoretical arguments

Given a spanning disconnected subgraph H, there is a natural partition P_{H} associated to H, which partitions V into its connected components. WLOG, we abuse our notation $\operatorname{cr}(H)$ to denote the crossing edges of G corresponding to this partition P_{H}.
Recall we want to show that an edge-colored multigraph G has t color-disjoint rainbow spanning trees if and only if for any partition P of $V(G)$ (with $|P| \geq 2),|c(c r(P))| \geq t(|P|-1)$.

Proof of Theorem 3 using graph theoretical arguments

For one direction, suppose that G contains t pairwise color-disjoint rainbow spanning trees $T_{1}, \cdots T_{t}$, then all edges in these trees have distinct colors. For any partition P of the vertex set V, each tree contributes at least $|P|-1$ crossing edges, thus t trees contribute at least $t(|P|-1)$ crossing edges and the colors of these edges are all distinct.

Proof of Theorem 3 using graph theoretical arguments

For the other direction, assume G satisfies inequality $|c(c r(P))| \geq t(|P|-1)$.
We will use a contradiction to prove that G contains t pairwise color-disjoint rainbow spanning trees.
Assume G does not contain t pairwise color-disjoint rainbow spanning trees, and \mathcal{F} be the collection of all families of t color-disjoint rainbow spanning forests.

Proof of Theorem 3 using graph theoretical arguments

Consider the process:
$C^{\prime} \leftarrow \bigcup_{j=1}^{t} c\left(c r\left(F_{j}\right)\right)$
while $C^{\prime} \neq \emptyset$
for each color x in C^{\prime}

$$
\text { for } j \text { in } 1 \cdots t
$$

if x appears in F_{j} delete the edge in color x from F_{j}
$C^{\prime} \leftarrow \bigcup_{j=1}^{t} c\left(c r\left(F_{j}\right)\right)-C^{\prime}$
We use $F_{j}^{(i)}$ to denote the rainbow spanning forest F_{j} after i iterations of the while loop. Specially, $F_{j}^{(\infty)}$ is the resulting rainbow spanning forest of F_{j} after the process. Also, C_{i} denote the set C^{\prime} after the i-th iteration of the while loop.

Proof of Theorem 3 using graph theoretical arguments

This procedure is deterministic, thus $\left\{F_{j}^{(i)}: j \in[t], i>0\right\}$ is unique for a fixed family $\left\{F_{1}, \cdots, F_{t}\right\}$. We can define a preorder on \mathcal{F} : The family $\left\{F_{j}\right\}_{j=1}^{t}$ is less than or equal to family $\left\{F_{j}^{\prime}\right\}_{j=1}^{t}$ if there is a positive integer / such that

- For $1 \leq i<I, \sum_{j=1}^{t}\left\|F_{j}^{(i)}\right\|=\sum_{j=1}^{t}\left\|F_{j}^{(i)}\right\|$.
- $\sum_{j=1}^{t}\left\|F_{j}^{(l)}\right\|<\sum_{j=1}^{t}\left\|F_{j}^{(I)}\right\|$

Proof of Theorem 3 using graph theoretical arguments

Since G is finite, so is \mathcal{F}. Thus there exists a maximal element $\left\{F_{1}, \cdots, F_{t}\right\} \in \mathcal{F}$. Run the deterministic process on $\left\{F_{1}, \cdots, F_{t}\right\}$.
The goal is to construct a common partition P by refining $\operatorname{cr}\left(F_{j}\right)$ so that $|c(c r(P))|<t(|P|-1)$. We will show that all forests in $\left\{F_{j}^{(\infty)}: j \in[t]\right\}$ admit the same partition P.

Claim 1

$$
\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i)}\right)\right) \subseteq\left(\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i-1)}\right)\right)\right) \cup\left(\bigcup_{j=1}^{t} c\left(F_{j}^{(i)}\right)\right)
$$

Proof of Theorem 3 using graph theoretical arguments

Assume there is a contradiction: $x \in \bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i)}\right)\right) \backslash \bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i-1)}\right)\right)$ and there is no edge with color x in all $F_{1}^{(i)}, \cdots, F_{t}^{(i)}$.
Let e be the edge such that $c(e)=x$ and $e \in \operatorname{cr}\left(F_{s}^{(i)}\right)$ for some $s \in[t]$. Observe that since $c(e) \notin \bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i-1)}\right)\right)$, it follows that $F_{s}^{(i-1)}+e$ contains a rainbow cycle, which passes through e and another edge $e^{\prime} \in F_{s}^{(i-1)}$ joining two distinct components of $F_{s}^{(i)}$.
Considering a new family of rainbow spanning forest $\left\{F_{1}^{\prime}, \cdots, F_{t}^{\prime}\right\}$ where $F_{j}^{\prime}=F_{j}$ for $j \neq s$ and $F_{s}^{\prime}=F_{s}-e^{\prime}+e$.

Proof of Theorem 3 using graph theoretical arguments

The color-disjoint property is reserved since the $c(e)$ is not in any F_{j}. Observe that since $c(e) \notin \bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i-1)}\right)\right), F_{s}^{(i)}$ will have one fewer component than $F_{s}^{(i)}$. Thus we have

$$
\begin{gathered}
\sum_{j=1}^{t}\left\|F_{j}^{(k)}\right\|=\sum_{j=1}^{t}\left\|F_{j}^{(k)}\right\|, \forall k<i \\
\sum_{j=1}^{t}\left\|F_{j}^{(i)}\right\|>\sum_{j=1}^{t}\left\|F_{j}^{(i)}\right\|
\end{gathered}
$$

which contradicts our maximality assumption of $\left\{F_{i}: i \in[t]\right\}$.

Proof of Theorem 3 using graph theoretical arguments

Claim 1 implies that for each $x \in C i$, there is an edge e of color x in exactly one of the forests in $\left\{F_{j}^{(i)}: j \in[t]\right\}$. Thus removing that edge in the next iteration will increase the sum of number of partitions exactly by 1. Thus we have that

$$
\sum_{j=1}^{t}\left|P_{F_{j}^{(i+1)}}\right|=\sum_{j=1}^{t}\left|P_{F_{j}^{(i)}}\right|+\left|C_{i}\right|
$$

It then follows that

$$
\begin{aligned}
\sum_{j=1}^{t}\left|P_{F_{j}(\infty)}\right| & =\sum_{P_{F_{j}}}\left|+\sum_{i}\right| C_{i} \mid \\
& =\sum_{P_{F_{j}}}\left|+\left|\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(\infty)}\right)\right)\right|\right.
\end{aligned}
$$

Proof of Theorem 3 using graph theoretical arguments

Finally set the partition $P=\bigcap_{j=1}^{t} P_{F_{j}^{(\infty)}}$. We claim $P_{F_{j}^{(\infty)}}=P, \forall j$. This is because all edges in $\operatorname{cr}\left(P_{F_{j}^{(\infty)}}\right) \cap \bigcup_{k=1}^{t} E\left(F_{k}^{(\infty)}\right)$ have been already removed. We then have

$$
\begin{aligned}
t|P| & =\sum_{j=1}^{t}\left|P_{F_{j}(\infty)}\right|=\sum_{P_{F_{j}}}\left|+\left|\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(\infty)}\right)\right)\right|=\sum_{j=1}^{t}\right| P_{F_{j}}|+|c(c r(P))| \\
& \geq t+1+|c(c r(P))|
\end{aligned}
$$

We obtain

$$
|c(c r(P))| \leq t(|P|-1)-1
$$

Contradiction.

Corollary 1

Corollary 1

The edge-colored complete graph K_{n} has t color-disjoint rainbow spanning trees if the number of edges colored with any fixed color is at most $n /(2 t)$.

Proof of Corollary 1

Suppose K_{n} does not have t color-disjoint rainbow spanning trees, then there exists a partition P of $V\left(K_{n}\right)$ into r parts $(2 \leq r \leq n)$ such that the number of distinct colors in the crossing edges of P is at most $t(r-1)-1$. Let m be the number of edges crossing the partition P. It follows that

$$
m \leq(t(r-1)-1) \cdot \frac{n}{2 t} \leq \frac{n}{2}(r-1)-\frac{n}{2 t}
$$

Proof of Corollary 1

On the other hand,

$$
m \geq\binom{ n}{2}-\binom{n-(r-1)}{2}
$$

Hence we have

$$
\binom{n}{2}-\binom{n-(r-1)}{2} \leq \frac{n}{2}(r-1)-\frac{n}{2 t}
$$

which implies

$$
(n-r)(r-1) \leq-\frac{n}{t}
$$

which contradicts that $2 \leq r \leq n$.

(1) Introduction

(2) Proof of Theorem 3

(3) Proof of Theorem 4

Proof of Theorem 4

Proof of Theorem 4

Recall that we want to show that any t edge-disjoint rainbow spanning forests F_{1}, \cdots, F_{t} have a color-disjoint extension to edge-disjoint rainbow spanning trees in G if and only if

$$
\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|+\sum_{j=1}^{t}\left|c r\left(P, F_{j}\right)\right| \geq t(|P|-1)
$$

where G^{\prime} is the spanning subgraph of G by removing all edges with colors appearing in some F_{j}.

Proof of Theorem 4

The forward direction is also trivial. We will show that the condition

$$
\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|+\sum_{j=1}^{t}\left|c r\left(P, F_{j}\right)\right| \geq t(|P|-1)
$$

implies the existance of a color-disjoint extension to edge-disjoint rainbow spanning trees.
The proof is similar to the proof of Theorem 3.

Proof of Theorem 4

Consider a set of edge-maximal forests $F_{1}^{(0)}, \ldots, F_{t}^{(0)}$ which is a color-disjoint extension of F_{1}, \cdots, F_{t}. From $\left\{F_{j}^{(0)}\right\}$, we delete all edges in $\left\{F_{j}^{(0)}\right\}$ of some color c appearing in $\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(0)}, G^{\prime}\right)\right)$ to get a new set $\left\{F_{j}^{(1)}\right\}$. Repeat this process until we reach a stable set $\left\{F_{j}^{(\infty)}\right\}$. Since we only delete edges in G^{\prime}, we have $E\left(F_{j}\right) \subseteq E\left(F_{j}^{(\infty)}\right.$ for each $1 \leq j \leq t$. The edges and colors in $\bigcup_{j=1}^{t} E\left(F_{j}\right)$ will not affect the process.

Proof of Theorem 4

A similar claim still holds:
Claim 2

$$
\begin{aligned}
& \bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i)}, G^{\prime}\right)\right) \\
\subseteq & \left(\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i-1)}, G^{\prime}\right)\right)\right) \cup\left(\bigcup_{j=1}^{t} c\left(E\left(F_{j}^{(i-1)}\right) \cap E\left(G^{\prime}\right)\right)\right)
\end{aligned}
$$

Proof of Theorem 4

Let $C_{i}=\left(\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i)}, G^{\prime}\right)\right)\right) \backslash\left(\bigcup_{j=1}^{t} c\left(c r\left(F_{j}^{(i-1)}, G^{\prime}\right)\right)\right)$, then we have:

$$
\sum_{j=1}^{t}\left|P_{F_{j}^{(i+1)}}\right|=\sum_{j=1}^{t}\left|P_{F_{j}^{(i)}}\right|+\left|C_{i}\right|
$$

Proof of Theorem 4

It follows that

$$
\begin{aligned}
\sum_{j=1}^{t}\left|P_{F_{j}^{(\infty)}}\right| & =\sum_{j=1}^{t}\left|P_{F_{j}^{(0)}}\right|+\sum_{i}\left|C_{i}\right| \\
& =\sum_{j=1}^{t}\left|P_{F_{j}^{(0)}}\right|+\left|\bigcup_{j=1}^{t} c\left(\operatorname{cr}\left(F_{j}^{(\infty)}, G^{\prime}\right)\right)\right|
\end{aligned}
$$

. Set the partition $P=\bigcap_{j=1}^{t} P_{F_{j}^{(\infty)} \backslash E\left(F_{j}\right)}$. Clearly all the edges in $\operatorname{cr}\left(P, G^{\prime}\right)$ are removed. All possible edges remaining in G that cross the partition P are exactly the edges in $\bigcup_{j=1}^{t} \operatorname{cr}\left(P, F_{j}\right)$.

Proof of Theorem 4

We have

$$
\begin{aligned}
t|P| & =\sum_{j=1}^{t}\left|P_{F_{j}^{(\infty)}}\right|+\sum_{j=1}^{t}\left|c r\left(P, F_{j}\right)\right| \\
& =\sum_{j=1}^{t}\left|P_{F_{j}^{(0)}}\right|+\left|\bigcup_{j=1}^{t} c\left(\operatorname{cr}\left(F_{j}^{(\infty)}, G^{\prime}\right)\right)\right|+\sum_{j=1}^{t}\left|\operatorname{cr}\left(P, F_{j}\right)\right| \\
& =\sum_{j=1}^{t}\left|P_{F_{j}^{(0)}}\right|+\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|+\sum_{j=1}^{t}\left|\operatorname{cr}\left(P, F_{j}\right)\right| \\
& \geq t+1+\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|+\sum_{j=1}^{t}\left|\operatorname{cr}\left(P, F_{j}\right)\right|
\end{aligned}
$$

Proof of Theorem 4

We obtain a contradiction:

$$
\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|+\sum_{j=1}^{t}\left|\operatorname{cr}\left(P, F_{j}\right)\right| \leq t(|P|-1)-1
$$

(2) Proof of Theorem 3

(3) Proof of Theorem 4
(4) Proof of Theorem 1

Proof of Theorem 1

Proof of Theorem 1

Recall Theorem 1

For all positive integer t,

$$
r(n, t)= \begin{cases}\binom{n-2}{2}+t & \text { for } n \geq 2 t+2 \\ \binom{n-1}{2} & \text { for } n=2 t+1 \\ \binom{n}{2}-t & \text { for } n=2 t\end{cases}
$$

Lower bound for $r(n, t)$

See [S J16a] (Lemma 5.1) for more detail about the lower bound for $r(n, t)$

Technical Lemma

Lemma 1

Let G be an edge-colored graph with s colors $c_{1}, c_{2}, \ldots, c_{s}$ and $|V(G)|=n=2 t+2$ where $t \geq 3$. For color c_{i}, let m_{i} be the number of edges of color c_{i}. Suppose $\sum_{i=1}^{s}\left(m_{i}-1\right)=3 t$ and $m_{i} \geq 2$ for all $i \in[s]$. Then, we can construct t edge-disjoint rainbow forest F_{1}, \ldots, F_{t} in G such that if we define $G_{0}=G-\bigcup_{i=1}^{t} E\left(F_{i}\right)$, then $\left|E\left(G_{0}\right)\right| \leq 2 t+1$ and $\Delta\left(G_{0}\right) \leq t+1$.

Proof of Technical Lemma

Consider two cases: $m_{1} \geq 2 t+2$ and $m_{1} \leq 2 t+1$.

Proof of Technical Lemma Case 1

Note that $\sum_{i=2}^{s}\left(m_{i}-1\right)=3 t-\left(m_{1}-1\right) \leq t-1$. Thus, $s \leq t$. Let $d_{i}(v)$ be the number of edges in color c_{i} and incident to v in the current graph G. We construct the edge-disjoint rainbow forests $F_{1}, F_{2}, \ldots, F_{t}$ in two rounds.

Proof of Technical Lemma Case 1 First Round

In the first round, we greedily extract edges only in color c_{1}. For $i=1, \ldots, t$, at step i, pick a vertex v with maximum $d_{1}(v)$ (pick arbitrarily if tie). Pick an edge in color c_{1} incident to v, assign it to F_{i}, and delete it from G.
We claim that after the first round, $d_{1}(v) \leq t+1$ for any vertex v.

Proof of Technical Lemma Case 1 First Round

Proof of $d_{1}(v) \leq t+1$:
Suppose $d_{1}(v) \geq t+2$. Since $n-1-(t+2)<t$, it follows that there exists another vertex u with $d_{1}(u) \geq d_{1}(v)-1 \geq t+1$. This implies $m_{1} \geq t+d_{1}(v)+d_{1}(u)-1 \geq 3 t+2$. However, $m_{1}-1 \leq \sum_{i=1}^{s}\left(m_{i}-1\right)=3 t$, which gives us the contradiction.

Proof of Technical Lemma Case 1 Second Round

In second round:

- Greedily extract edges not in color c_{1}.
- For $i=1, \ldots, t$. In the i-th step, among all vertices v with at least one neighboring edge not in color c_{1}, pick a vertex v with maximum vertex degree $d(v)$ (pick arbitrarily if tie). Pick an edge incident to v and not in color c_{1}, assign it to F_{i}, and delete it from G.

If we succeed with selecting t edges not in color c_{1} in the second round, we claim $d(v) \leq t+1$ for any vertex v.

Proof of Technical Lemma Case 1 Second Round

Proof $d(v) \leq t+1$ for any vertex v.
Suppose not, if $d(v) \geq t+2$, then there's another vertex u with $d(u) \leq d(v)-1 \leq t+1$. It implies
$\sum_{i=1}^{s} m_{i} \geq 2 t+d(u)+d(v)-1 \geq 4 t+2$. However, since $s \leq t$, we have $\sum_{i=1}^{s} m_{i} \leq 3 t+s \leq 4 t$. Contradiction.
Therefore, $d(v) \leq t+1$. Moreover, $\left|E\left(G_{0}\right)\right| \leq 4 t-2 t \leq 2 t$

Proof of Technical Lemma Case 1

If the process stops at step $i=I<t$, then all remaining edges in G_{0} must be color 1 . Thus, by the previous claim, $\Delta\left(G_{0}\right) \leq t+1$. Moreover, $\left|E\left(G_{0}\right)\right| \leq m_{1}-t \leq(3 t+1)-t=2 t+1$.
In both cases above, F_{1}, \ldots, F_{t} are edge-disjoint rainbow forests!

Proof of Technical Lemma Case 2

Claim: There exists t edge-disjoint rainbow forests $F_{1}, F_{2}, \ldots, F_{t}$, such that $\Delta\left(G_{0}\right) \leq t+1$.
Proof: For $j=1,2, \ldots, t$, we'll construct a rainbow forest F_{j} by selecting a rainbow set of edges, such that after deleting these edges from G, $\Delta\left(G_{0}\right) \leq 2 t+1-j$. Notice that when $j=t$, we will have $\Delta\left(G_{0}\right) \leq t+1$.

Proof of Technical Lemma Case 2

For step j, WLOG let $v_{1}, v_{2}, \ldots, v_{t}$ be the vertices with degree $2 t+2-j$ and let $c_{1}, c_{2}, \ldots, c_{m}$ be the set of colors of edges incident $v_{1}, v_{2}, \ldots, v_{t}$ in G.

If there's no such vertex, simply pick an edge incident to the max-degree vertex and assign it to F_{j}.
Otherwise, we will construct an auxiliary bipartite graph $H=A \cup B$ where $A=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$ and $B=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ and $v_{x} c_{y} \in E(H)$ iff there's an edge of color c_{y} incident to v_{x}.

Proof of Technical Lemma Case 2

We claim that there exists a perfect matching of A in H.
Suppose not, then by Hall's theorem, there exists a set of vertices $A^{\prime}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subseteq A$ such that $\left|N\left(A^{\prime}\right)\right|<\left|A^{\prime}\right|=k$ where $k \geq 2$. WLOG, suppose $N(A)=\left\{c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{q}^{\prime}\right\}$ where $q \leq k-1$. Let m_{i}^{\prime} be the number of edges of color c_{i}^{\prime} remaining in G.
Note that $k \neq 2$ since otherwise we will have on color with at least $2 \times(2 t+2-j)-1 \geq 2 t+3$ edges, which contradicts our assumption in this case.
Notice that for every $i \in[k], u_{i}$ has at least $(2 t+2-j)$ edges incident to it. Moreover, at least $j-1$ edges are already deleted from G in previous steps.

Proof of Technical Lemma Case 2

Therefore, we have
$\frac{k(2 t+2-j)}{2} \leq \sum_{i=1}^{q} m_{i}^{\prime} \leq\left(\sum_{i=1}^{q}\left(m_{i}^{\prime}-1\right)\right)+(k-1) \leq 3 t-(j-1)+(k-1)$.
It follows that $k \leq 2+\frac{2 t}{2 t-j} \leq 4$.
Similarly, using another way of counting the edges incident to some $u_{i}(i \in[k])$, we have $k(2 t+2-j)-\binom{k}{2} \leq 3 t-(j-1)+(k-1)$. Which implies that $t(2 k-3) \leq \frac{k(k-3)}{2}+j(k-1) \leq \frac{k(k-3)}{2}+t(k-1)$.
It follows that $t \leq \frac{k(k-3)}{2(k-2)}$. Since $k \leq 4$ and $k>2$, we obtain that $t \leq 1$, which contradicts our assumption that $t \geq 2$.
Thus, by contradiction, there exists a matching of A in H.

Proof of Technical Lemma Case 2

This implies that there exists a rainbow set of edges E_{j} that cover all vertices with degree $2 t+2-j$ in step j. We can then find a maximally acyclic subset F_{j} of E_{j} such that F_{j} is a rainbow forest and every vertex of degree $2 t+2-j$ is adjacent to some edge in F_{j}. Delete edgs of F_{j} from G andwe have $\Delta\left(G_{0}\right) \leq 2 t+1-j$. As a result, after t steps, we obtain t edge-disjoint rainbow forests $F_{1}, F_{2}, \ldots, F_{t}$ and $\Delta\left(G_{0}\right) \leq t+1$. This finishes the proof of the claim.

Proof of Technical Lemma Case 2

Now let $\left\{F_{1}, F_{2}, \ldots, F_{t}\right\}$ be an edge-maximal set of t edge-disjoint rainbow forests that satisfies $\Delta\left(G_{0}\right) \leq t+1$. We claim that $\left|E\left(G_{0}\right)\right| \leq 2 t+1$. Suppose not, i.e., $\left|E\left(G_{0}\right)\right| \geq 2 t+2$. It follows that $\sum_{i=1}^{t}\left|E\left(F_{i}\right)\right| \leq 6 t-(2 t+2)<4 t$, i.e. there exists a $j \in[t]$ such that F_{j} has at most three edges.
Since F_{j} is edge maximal, none of the edges in G_{0} can be added to F_{j}. We have three cases: $\left|E\left(F_{j}\right)\right|=1,2,3$.

Proof of Technical Lemma Case 2a

Case 2a: $\left|E\left(F_{j}\right)\right|=1$. It then follows that all edges in G_{0} have the same color (call it c_{1}^{\prime}) as the single edge in F_{j}. Thus, we have a color with multiplicity at least $2 t+3$, which contradicts that $m_{1}<2 t+2$.

Proof of Technical Lemma Case 2b

Case $2 \mathrm{~b}:\left|E\left(F_{j}\right)\right|=2$. Similarly, we have that at least $2 t+1$ edges in G_{0} that share the same color (call them $c_{1}^{\prime}, c_{2}^{\prime}$) as edges in F_{j}. It follows that $m_{1}+m_{2} \geq 2 t+3$. Similar to Case 1 , in this case, we have $s \leq t+1$ and $|E(G)|=3 t+s \leq 4 t+1$. Since $\left|E\left(G_{0}\right)\right| \geq 2 t+2$, that implies that $\sum_{i=1}^{t}\left|E\left(F_{i}\right)\right| \leq(4 t+1)-(2 t+2)=2 t-1$. Hence, there exists some F_{k} such that $\sum_{i=1}^{t}\left|E\left(F_{i}\right)\right| \leq(4 t+1)-(2 t+2)=2 t-1$. Hence, there exists some F_{k} such that $\left|E\left(F_{k}\right)\right| \leq 1$ and we are done by Case 2a.

Proof of Technical Lemma Case 2 c

Case 2c: $\left|E\left(F_{j}\right)\right|=3$. Similarly, we have that at least $2 t-1$ edges in G_{0} share the same colors (call them $c_{1}^{\prime}, c_{2}^{\prime}, c_{3}^{\prime}$) as edges in F_{j}. It follows that $m_{1}+m_{2}+m_{3} \geq 2 t+2$. By the inequality, we have that $s \leq t+4$ and $|E(G)| \leq 4 t+4$. Since $\left|E\left(G_{0}\right)\right| \geq 2 t+2$, that implies that $\sum_{i=1}^{t}\left|E\left(F_{i}\right)\right| \leq 2 t+2$. Since $t \geq 3$ by our assumption, there exists a $k \in[t]$ such that $\left|E\left(F_{k}\right) \leq 2\right|$ and we are done by Case 2 b and Case 2 c .

Proof of Technical Lemma Case 2

Therefore, by contradiction, we have that $\left|E\left(G_{0}\right)\right| \leq 2 t+1$ an we're done.

Theorem 1 where $n=2 t+2$

Proposition 1

For any $n=2 t+26$, we have $r(n, t)=\binom{n-2}{2}+t=2 t^{2}$

Theorem 1 where $n=2 t+2$

Note that the lower bound is shown by Proposition 1. For the upper bound, we will assume that $t \geq 3$ since the case when $t=2$ is implied by the result of [S A07]. We will show that any coloring of $K_{2 t+2}$ with $2 t^{2}+1$ distinct colors contains t edge-disjoint rainbow spanning trees. Call this edge-colored graph G. Let m_{i} be the multiplicity of the color c_{i} in G. WLOG, say the first s colors have multiplicity at least 2 , that is, $m_{1} \geq m_{2} \geq \cdots \geq m_{s} \geq 2$.

Theorem 1 where $n=2 t+2$

Let G_{1} be the spanning subgraph of G consisting of all edges with color multiplicity greater than 1 in G. Let G_{2} be the spanning subgraph consisting of the remaining edges. We have

$$
\sum_{i=1}^{s}\left(m_{i}-1\right)=\binom{n}{2}-\left(2 t^{2}+1\right)=3 t
$$

In particular, we have

$$
\left|E\left(G_{1}\right)\right|=\sum_{i=1}^{s} m_{i}=3 t+s \leq 6 t
$$

Theorem 1 where $n=2 t+2$

By Lemma 1, it follows that we can construct t edge-disjoint rainbow spanning forests F_{1}, \cdots, F_{t} in G such that if we define
$G_{0}=E\left(G_{1}\right)-\bigcup_{i=1}^{t} E\left(F_{i}\right)$, then

$$
\left|E\left(G_{0}\right)\right| \leq 2 t+1 \text { and } \Delta\left(G_{0}\right) \leq t+1
$$

Now we show that F_{1}, \cdots, F_{t} have a color-disjoint extension to t edge-disjoint rainbow spanning trees. Consider any partition P. We will verify

$$
\left|c\left(c r\left(P, G_{2}\right)\right)\right|+\sum_{i=1}^{t}\left|c r\left(P, F_{i}\right)\right| \geq t(|P|-1)
$$

Theorem 1 where $n=2 t+2$

We will first verify the case when $3 \leq|P| \leq n$. Note that

$$
\left|c\left(c r\left(P, G_{2}\right)\right)\right|+\sum_{i=1}^{t}\left|\operatorname{cr}\left(P, F_{i}\right)\right|-t(|P|-1) \geq\binom{ n}{2}-2(t+1)-\binom{n-|P|+1}{2}-t(\mid
$$

We want to show that the right hand side of the above inequality is nonnegative. Note that the function on the right hand side is concave downward with respect to $|P|$. Thus it is sufficient to verify it at $|P|=3$ and $|P|=n$. When $|P|=3$, we have

$$
\binom{n}{2}-(2 t+1)-\binom{n-2}{2}-2 t=0
$$

when $|P|=n$, we have

$$
\binom{n}{2}-(2 t+1)-t(n-1)=0
$$

Theorem 1 where $n=2 t+2$

It remains to verify for $|P|=2$. By Theorem 4, we have $\left|E\left(G_{0}\right)\right| \leq 2 t+1$. If each part of P contains at least 2 vertices, then we have

$$
\begin{aligned}
\left|c\left(c r\left(P, G_{2}\right)\right)\right| & +\sum_{i=1}^{t}\left|c r\left(P, F_{i}\right)\right|-t(|P|-1) \\
& \geq\binom{ n}{2}-\left|E\left(G_{0}\right)\right|-\left(\binom{n-2}{2}+1\right)-t \\
& \geq\binom{ n}{2}-(2 t+1)-\left(\binom{n-2}{2}+1\right)-t \\
& =t-1 \geq 0
\end{aligned}
$$

Theorem 1 where $n=2 t+2$

Otherwise, P is of the form $V(G)=\{v\} \cup B$ for some $v \in V(G)$ and $B=V(G) \backslash\{v\}$. By Lemma 1, we have $d_{G_{0}} \leq t+1$. Thus,

$$
\begin{array}{r}
\left|c\left(c r(P), G_{2}\right)\right|+\sum_{i=1}^{t}\left|\operatorname{cr}\left(P, F_{i}\right)\right|-t(|P|-1) \\
\geq(n-1)-d_{G_{0}}(v)-t \geq 2 t+1-(t+1)-t=0
\end{array}
$$

Therefore, by Theorem 4, F_{1}, \cdots, F_{t} have a color-disjoint extension to t edge-disjoint rainbow spanning trees.

Theorem 1 where $n \geq 2 t+3$

Proposition 2

For any $n \geq 2 t+2 \geq 6$, we have $r(n, t)=\binom{n-2}{2}+t$

Theorem 1 where $n \geq 2 t+3$

Again, the lower bound is due to Proposition 1. For the upper bound, we will show that every edge-coloring of K_{n} with exactly $\binom{n-2}{2}+t+1$ distinct colors has t edge-disjoint spanning trees. Call this edge-colored graph G. Given a vertex v, we define $D(v)$ to be the set of colors C such that every edge with colors in C is incident to v. Given a vertex v and a set of colors C, define $\Gamma(v, C)$ as the set of edges incident to v with colors in C. For ease of notation, we let $\Gamma(v)=\Gamma(v, D(v))$.

Theorem 1 where $n \geq 2 t+3$

For fixed t, we will prove the theorem by induction on n. The base case is when $n=2 t+2$, which is proven in Proposition 2. Let' s now consider the theorem when $n \geq 2 t+3$.

Theorem 1 where $n \geq 2 t+3$ Case 1

Case 1: there exists a vertex $v \in V(G)$ with $|\Gamma(v)| \geq t$ and $|D(v)| \leq n-3$. In this case, we set $G=G-\{v\}$. Note that G is an edge-colored complete graph with at least $\binom{n-2}{2}+t+1-(n-3)=\binom{n-3}{2}+t+1$ distinct colors. Moreover $|G| \geq 2 t+2$. Hence by induction, there exists t edge-disjoint rainbow spanning trees in G. Note that by our definition of $D(v)$, none of the colors in $D(v)$ appear in $E(G)$. Moreover, since $|\Gamma(v)| \geq t$, we can extend the t edge-disjoint rainbow spanning trees in G to G by adding one edge in $\Gamma(v)$ to each of the rainbow spanning trees in G.

Theorem 1 where $n \geq 2 t+3$ Case 2

Case 2: Suppose we are not in Case 1. We first claim that there exists two vertices $v_{1}, v_{2} \in V(G)$ such that $\left|\Gamma\left(v_{1}\right)\right| \leq t-1$ and $\left|\Gamma\left(v_{2}\right)\right| \leq t$. Otherwise, there are at least $n-1$ vertices u with $|\Gamma(u)| \geq t$. Since we are not in Case 1 , it follows that all these vertices u also satisfy $|D(u)| \geq n-2$. Hence by counting the number of distinct colors in G, we have that

$$
\frac{(n-1)(n-2)}{2} \leq\binom{ n-2}{2}+t+1
$$

which implies that $n \leq t+3$, giving us the contradiction.

Theorem 1 where $n \geq 2 t+3$ Case 2

Now suppose $\left|\Gamma\left(v_{1}\right)\right| \leq t-1$ and $\left|\Gamma\left(v_{2}\right)\right| \leq t-1$. Let $D=D\left(v_{1}\right) \cup D\left(v_{2}\right)$.
Add new colors to D until $\left|\Gamma\left(v_{1}, D\right)\right| \geq t,\left|\Gamma\left(v_{2}, D\right)\right| \geq t+1$ and $|D| \geq t+1$. Call the resulting color set S. Note that $t+1 \leq|S| \leq 2 t+1 \leq n-2$. Now let $G=G-\left\{v_{1}, v_{2}\right\}$ and delete all edges of colors in S from G. We claim that G has t color-disjoint rainbow spanning trees. By Theorem 3, it is sufficient to verify the condition that for any partition P of $V\left(G^{\prime}\right)$,

$$
\left|c\left(c r\left(P, G^{\prime}\right)\right)\right| \geq t(|P|-1)
$$

Theorem 1 where $n \geq 2 t+3$ Case 2

Observe

$$
\begin{aligned}
& \left|c\left(c r\left(P, G^{\prime}\right)\right)\right|-t(|P|-1) \\
& \geq\left|c\left(E\left(G^{\prime}\right)\right)\right|-\binom{n-1-|P|}{2}-t(|P|-1) \\
& \geq\binom{ n-2}{2}+t+1-|S|-\binom{n-1-|P|}{2}-t(|P|-1) \\
& \geq\binom{ n-2}{2}+t+1-(n-2)-\binom{n-1-|P|}{2}-t(|P|-1)
\end{aligned}
$$

Note the expression above is concave downward as a function of $|P|$. It is sufficient to check the value at 2 and $n-2$.

Theorem 1 where $n \geq 2 t+3$ Case 2

When $|P|=2$, we have
$\left|c\left(c r\left(P, G^{\prime}\right)\right)\right|-t(|P|-1) \geq\binom{ n-2}{2}+t+1-(n-2)-\binom{n-3}{2}-t=0$
When $|P|=n-2$, we have

$$
\begin{aligned}
c\left(c r\left(P, G^{\prime}\right)\right) \mid-t(|P|-1) & \geq\binom{ n-2}{2}+t+1-(n-2)-t(n-3) \\
& =\frac{(n-4)(n-2 t-3)}{2} \\
& \geq 0
\end{aligned}
$$

Here we use the assumption $n \geq 2 t+3$ in the last step.

Theorem 1 where $n \geq 2 t+3$ Case 2

Now it remains to extend the t color-disjoint spanning trees we found to G by using only the colors in S. Let e_{1}, \cdots, e_{k} be the edges in G incident to v_{1} with colors in S. Let $e_{1}, \cdots, e^{\prime}$, be the edges in $G \backslash\left\{v_{1}\right\}$ incident to v_{2} with colors in S. With our selection of S, it follows that $k, I \geq t$. Now construct an auxiliary bipartite graph H with partite sets $A=\left\{e_{1}, \cdots, e_{k}\right\}$ and $B=\left\{e^{\prime} 1, \cdots, e_{l}^{\prime}\right\}$ such that $e_{i} e_{j}^{\prime} \in E(H)$ if and only if e_{i}, e_{j}^{\prime} have different colors in G.

Theorem 1 where $n \geq 2 t+3$ Case 2

We claim that there is a matching of size t in H. Let M be the maximum matching in H. WLOG, suppose $e_{1} e_{1}^{\prime}, \cdots, e_{m} e_{m}^{\prime} \in M$ where $m<t$. It follows that $\left\{e_{j}: m<j \leq k\right\} \cup\left\{e_{j}^{\prime}: m<j \leq /\right\}$ all have the same color (otherwise we can extend the matching). WLOG, they all have color x. Now observe that for every matched edge $e_{i} e_{i}^{\prime}$, exactly one of the two end vertices must be in color x. Otherwise, we can extend the matching by pairing e_{i} with e_{t}^{\prime} and e_{t} with e_{i}^{\prime}. This implies that H has at most t colors, which contradicts that $|S| \geq t+1$. Hence there is a matching of size t in H. Since none of the edges in G have colors in S, it follows that we can extend the t color-disjoint rainbow spanning trees in G to t edge-disjoint rainbow spanning trees in G.

Theorem 1 where $n=2 t+1$

Proposition 3

For positive integers $t \geq 1$ and $n=2 t+1, r(n, t)=\binom{n-1}{2}=2 t^{2}=t$.

Theorem 1 where $n=2 t+1$

The lower bound is due to proposition 1.
We prove that any edge-coloring of $K_{2 t+1}$ with $2 t^{2}-t+1$ distinct colors contains t edge-disjoint rainbow spanning trees. Call this graph G. The proof approach is similar to the case when $n=2 t+2$. Let m_{i} be the multiplicity of the color c_{i} in G.

Theorem 1 where $n=2 t+1$

WLOG, say the first s colors have multiplicity ≥ 2, which is $m_{1} \geq m_{2} \geq \cdots \geq m_{s} \geq 2$.
Let G_{1} be the spanning subgraph consisting of all edges whose color multiplicity is greater than 1 in G, and G_{2} be the spanning subgraph consisting of the remaining edges. We have

$$
\begin{equation*}
\sum_{i=1}^{s}\left(m_{i}-1\right)=\binom{n}{2}-\left(2 t^{2}-t+1\right)=2 t-1 \tag{1}
\end{equation*}
$$

In particular, we have

$$
\left|E\left(G_{1}\right)\right|=\sum_{i=1}^{s} m_{i}=2 t-1+s \leq 4 t-2
$$

Theorem 1 where $n=2 t+1$

Claim 3

We can construct t edge-disjoint rainbow forests F_{1}, \cdots, F_{t} in G_{1} such that if we let $G_{0}=G_{1} \backslash \bigcup_{i=1}^{\prime} E\left(F_{i}\right)$, then $\left|E\left(G_{0}\right)\right| \leq t$.

To prove the claim, we consider two cases.

Theorem 1 where $n=2 t+1$

Case 1: $m_{1} \geq t+2$.
By equation 1, we have that $s \leq(2 t-1)-(t+1)+1=t-1$. We construct t edge-disjoint rainbow forests F_{1}, \cdots, F_{t} as follows: First take t edges of color c_{1} and add one edge to each of F_{1}, \cdots, F_{t}. Next, pick one edge from each of the remaining $s-1$ colors and add each of them to a distinct F_{i}.
Clearly, we can obtain t edge-disjoint rainbow forests in this way. Furthermore,

$$
\left|E\left(G_{0}\right)\right| \leq 2 t-1+s-(t+s-1)=t
$$

, which proves the claim.

Theorem 1 where $n=2 t+1$

Case 2: $m_{1}<t+2$.
Let F_{1}, \cdots, F_{t} be the edge-maximal family of rainbow spanning forests in G_{1}.
Let $G_{0}=G_{1} \backslash \bigcup_{i=1}^{t} E\left(F_{i}\right)$. Support $\left|E\left(G_{0}\right)\right|>t$, then

$$
\sum_{i=1}^{t}\left|E\left(F_{i}\right)\right| \leq 2 t-1+s-(t+1)=t+s-2
$$

. Since $s \leq 2 t-1$, it follows that there exists some j such that $\left|E\left(F_{j}\right)\right| \leq 2$.

Theorem 1 where $n=2 t+1$

Case 2a: $\left|E\left(F_{j}\right)\right|=1$. Since $\left\{F_{1}, \cdots, F_{t}\right\}$, is edge-maximal and $\left|E\left(G_{0}\right)\right| \geq t+1$, it follows that all edges in G_{0} share the same color (call it c_{1}^{\prime}) as the single edge in F_{j}. Thus $m_{1} \geq t+2$ which contradicts that $m_{1}<t+2$.

Theorem 1 where $n=2 t+1$

Case 2b: $\left|E\left(F_{j}\right)\right|=2$.
Similarly, at least t edges in G_{0} share the same colors (named as $c_{1}^{\prime}, c_{2}^{\prime}$) as the two edges in F_{j}. It follows that $m_{1}+m_{2} \geq t+2$, hence $s \leq t+1$. Since $\left|E\left(G_{0}\right)\right| \geq t+1$, it follows

$$
\sum_{i=1}^{t}\left|E\left(F_{i}\right)\right| \leq 2 t-1+s-(t+1)=t+s-2 \leq 2 t-1
$$

, thus there exists some forest with only one edge, in which case we are done in Case 2a.
Thus, by contradiction, we have $\left|E\left(G_{0}\right)\right| \leq t$, and the proof is completed.

Theorem 1 where $n=2 t+1$

Now we show that F_{1}, \cdots, F_{t} have a color-disjoint extension to t edge-disjoint rainbow spanning trees. Consider any partition P, we will verify

$$
\left|c\left(c r(P), G_{2}\right)+\sum_{i=1}^{t}\right| \operatorname{cr}\left(P, F_{i}\right) \mid \geq t(|P|-1)
$$

Theorem 1 where $n=2 t+1$

We have

$$
\begin{aligned}
& \left.\mid c\left(c r(P), G_{2}\right)\right)\left|+\sum_{i=1}^{t}\right| c r\left(P, F_{i}\right) \mid-t(|P|-1) \\
\geq & \binom{n}{2}-t-\binom{n-|P|+1}{2}-t(|P|-1)
\end{aligned}
$$

. Note that the function on right is concave downward on $|\mathrm{P}|$. We can verify it at $|P|=2$ and $|P|=n$.

Theorem 1 where $n=2 t+1$

When $|P|=2$, we have

$$
\binom{n}{2}-t-\binom{n-1}{2}-t=n-1-2 t \geq 0
$$

When $|P|=n$, we have

$$
\binom{n}{2}-t-t(n-1)=0
$$

By theorem 4, F_{1}, \cdots, F_{t} have a color-disjoint extension to t edge-disjoint rainbow spanning trees.

References I

A. Bialostocki and W. Voxman. "On the anti-Ramsey numbers for spanning trees". In: Bull. Inst. Combin. Appl. 32 (2001), pp. 23-26.
J. M. Carraher and S. G. Hartke. "Eulerian circuits with no monochromatic transitions in edgecolored digraphs with all vertices of outdegree three". In: SIAM J. Discrete Math 31(1) (2017), pp. 190-209.
J. Edmonds. "Matroid Partition". In: Math. of the Decision Sciences 11 (1968), pp. 335-345.
J. Edmonds. "Submodular functions, matroids and certain polyhedra". In: Combinatorial structures and their applications (1970), pp. 69-87.
R. Haas and M. Young. "The anti-Ramsey number of perfect matching". In: Discrete Math 312 (2012), pp. 933-937.

References II

C. St. J. A. Nash-Williams. "Edge disjoint spanning trees of finite graphs". In: J. London Math. Soc. 36 (1961),
pp. 445-450.
C. St. J. A. Nash-Williams. "An application of matroids to graph theory". In: Theory of Graphs - International Symposium (1967), pp. 263-265.
A. Alipour S. Akbari. "Multicolored trees in complete graphs". In: J. Graph Theory 54 (2007), pp. 221-232.
D.B. Test S. Jahanbekam. "Anti-Ramsey problems for t edge-disjoint rainbow spanning subgraphs: cycles, matchings, or trees". In: J Graph Thoery 82 (2016), pp. 75-89.
D.B. West S. Jahanbekam. "Anti-Ramsey problems for t edge-disjoint rainbow spanning subgraphs: cycles, matchings, or trees". In: J. Graph Theory 82(1) (2016), pp. 75-89.

References III

A. Schrijver. "Combinatorial optimization. Polyhedra and efficiency. Vol. B". In: Algorithms and Combinatorics 24 (2003), pp. 39-69.
K. Suzuki. "A necessary and sufficient condition for the existence of a heterochromatic spanning tree in a graph". In: Graphs Combin 22(2) (2006), pp. 261-269.
W. T. Tutte. "On the problem of decomposing a graph into n connected factors". In: Journal London Math. Soc 142 (1961), pp. 221-230.

