Anti-Ramsey number of edge-disjoint rainbow spanning trees

Linyuan Lu Zhiyu Wang

Final Presentation, Special Topics on Graph Algorithms, Spring 2021 B07902131 陳冠宇 B07902132 陳威翰 B07902139 鄭豫澤

June 8th, 2021

- 2 Proof of Theorem 3
- 3 Proof of Theorem 4
- Proof of Theorem 1

Image: A matrix and a matrix

э

Proof of Theorem 3

3 Proof of Theorem 4

Introduction

э

Image: A matrix

Definition 1

An edge-colored graph G is called *rainbow* if every edge of G receives a different color.

Definition 2

anti-Ramsey problem: fins the anti-Ramsey number $AR(n, \mathcal{G})$ in an edge-coloring of K_n containing no rainbow copy of any graph in class \mathcal{G} .

Definition 3

r(n, t): the maximum number of colors in an edge-coloring K_n not having t edge-disjoint rainbow spanning trees.

- anti-Ramsey number for perfect matchings is $\binom{n-3}{2} + 2$ for $n \ge 14$. [HY12]
- The maximum number of colors in an edge-coloring of K_n $(n \ge 4)$ with no rainbow spanning tree is $\binom{n-2}{2} + 1$. [BV01]

•
$$r(n,2) = \binom{n-2}{2} + 2$$
 for $n \ge 6$. [S A07]

$$r(n,t) = \begin{cases} \binom{n-2}{2} + t & \text{for } n > 2t + \sqrt{6t - \frac{23}{4}} + \frac{5}{2} \\ \binom{n}{2} - t & \text{for } n = 2t \end{cases}$$

. [S J16b]

۰

Also a conjecture:

Conjecture 1

$$r(n,t) = \binom{n-2}{2} + t \text{ for } n \ge 2t + 2 \ge 6.$$

.[S J16b] This paper proves this conjecture.

Combining with these three results ([BV01], [S A07], [S J16b]), we have

Theorem 1

For all positive integer t,

$$r(n,t) = \begin{cases} \binom{n-2}{2} + t & \text{for } n \ge 2t+2\\ \binom{n-1}{2} & \text{for } n = 2t+1\\ \binom{n}{2} - t & \text{for } n = 2t \end{cases}$$

Remark 1

If n < 2t, K_n doesn't have enough edges for t edge-disjoint spanning trees.

When t = 1, [CH17] showed that at determining the largest rainbow spanning forest of a graph can be solved by applying the Matroid Intersection Theorem.

Theorem 2

An edge-colored connected graph G has a rainbow spanning tree if and only if for every $2 \le k \le n$ and every partition of G with k parts, at least k-1 different colors are represented in edges between partition classes.

[Sch03], [Suz06], [CH17]

By generalizing theorem 2 to t color-disjoint rainbow spanning tree, by [Sch03],

Theorem 3

An edge-colored multigraph G has t pairwise color-disjoint rainbow spanning trees if and only if for every partition P of V(G) into |P| parts, at least t(|P|-1) distinct colors are represented in edges between partition classes.

Remark 2

Nash-Williams-Tutte Theorem: A multigraph contains t edge-disjoint spanning trees if and only if for every partition P of its vertex set, it has at least t(|P|-1) cross-edges. Theorem 3 implies the Nash-Williams-Tutte Theorem by assigning every edge of the multigraph a distinct color.

[Nas61], [Tut61].

Theorem 3 can be also generalized to extending edge-disjoint rainbow spanning forests to edge-disjoint rainbow spanning trees. Let *G* be an edge-colored multigraph and F_1, \dots, F_t be *t* edge-disjoint rainbow spanning forests.

Definition 4

A extension from F_1, \dots, F_t to T_1, \dots, T_t which is t rainbow spanning trees in G is color-disjoint if all edges in $\cup_i (E(T_i) \setminus E(F_i))$ have distinct colors and these colors are different from the colors appearing in the edges of $\cup_i E(F_i)$.

By using metroid methods again or graph theoretical arguments, we have

Theorem 4

A family of t edge-disjoint rainbow spanning forests F_1 ..., F_t has a color-disjoint extension in G if and only if for every partition P of G into |P| parts,

$$|c(cr(P, G'))| + \sum_{i=1}^{t} |cr(P, F_i)| \ge t(|P| + 1)$$

, where G' is the spanning subgraph of G by removing all edges with colors appearing in some F_i and c(cr(P, G')) be the set of colors appearing in the edges of G' crossing the partition P.

Proof of Theorem 3

3 Proof of Theorem 4

э

Proof of Theorem 3

æ

We will prove theorem by using matroid and graph theoretical arguments.

A matroid is defined as M = (E, I), where E is the ground set and $I \subseteq 2^E$ is a set containing subsets of E that satisfy

- if $A \subseteq B \subseteq E$ and $B \in \mathcal{I}$, then $A \in \mathcal{I}$.
- if $A \subseteq \mathcal{I}$, $B \subseteq \mathcal{I}$ and |A| > |B|, then $\exists a \in A \setminus B$ such that $B \cup \{a\} \in \mathcal{I}$.

Given a matroid $M = (E, \mathcal{I})$, the rank function $r_M : 2^E \to N$ is defined as $r_M(S) = \max\{|I| : I \subseteq S, I \in \mathcal{I}\}.$

- The graphic matroid of a graph G is the matroid $M = (E, \mathcal{I})$ where E = E(G) and \mathcal{I} is the set of forests in G.
- The partition matroid of a graph G is the matroid $M = (E, \mathcal{I})$ where E = E(G) and \mathcal{I} is the set of rainbow subgraphs of G.
- Given k matroids $\{M_i = (E_i, \mathcal{I}_i)\}_{i \in [k]}$, the union of the k matroids is a matroid $M = (E, \mathcal{I}) = (\bigcup_{i=1}^k E_i, \{I_1 \cup \cdots \cup I_k : I_i \in \mathcal{I}_i \text{ for all } i \in [k]\})$. This matroid has rank function

$$r(S) = \min_{T \subseteq S} \left(|S \setminus T| + \sum_{i=1}^{k} r_{M_i}(T \cap E_i) \right)$$

. [Edm68] [Nas67]

• Given two matroid $M_1 = (E, \mathcal{I}_1)$ and $M_2 = (E, \mathcal{I}_2)$ on the same ground set with rank function r_1, r_2 respectively. The Matroid Intersection Theorem shows that

$$\max_{I \in \mathcal{I}_1 \cap \mathcal{I}_2} |I| = \min_{U \subseteq E} (r_1(U) + r_2(E \setminus U))$$

. [Edm70]

[Sch03]

The forward direction is clear.

It remains to show that if for every partition P of V(G) into |P| parts, at least t(|P|-1) distinct colors are represented in edges between partition classes, then there exist t edge-disjoint rainbow spanning trees in G.

Given an edge-colored graph G, let $M = (E, \mathcal{I})$ be the graphic matroid of G and $M' = (E, \mathcal{I}')$ be the partition matroid of G. Let $M^t = M \lor M \lor \cdots \lor M = (E, \mathcal{I}^t)$, where we take t copies of M, which contains the union of t forests. By matroid union theorem, we obtain that

$$r_{M^{t}}(S) = \min_{T \subseteq S} \left(|S \setminus T| + t \cdot r_{M}(T) \right)$$

By the Matroid Intersection Theorem, we have

$$\max_{I \in \mathcal{I}^t \cap \mathcal{I}'} |I| = \min_{U \subseteq E} (r_{M^t}(U) + r_{M'}(E \setminus U))$$
$$= \min_{U \subseteq E} (\min_{T \subseteq U} (|U \setminus T| + t \cdot r_M(T)) + r_{M'}(E \setminus U))$$

Let $T \subseteq U \subseteq E$ be an arbitrary chosen. Observe that $t \cdot r_M(T) = t(n-q(T))$, where q(T) is the number of connected components of G[T].

Now we claim that

$$|U \setminus T| + r_M(E \setminus U) \ge r_M(E \setminus T) \ge t(q(T)-1)$$

For any color *c* appearing in some edge $e \in E \setminus T$, if $e \in E \setminus U$, then the color *c* is counted in $r_M(E \setminus U)$; if $e \in U$, then that color is counted in $|U \setminus T|$. In particular, at least t(q(T)-1) distinct colors are represented in edges between connected components of *T*, thus in $E \setminus T$.

It follows that

$$|U \setminus T| + t \cdot r_M(T) + r_M(E \setminus U) \ge t(q(T)-1) + t(n-q(T)) \ge t(n-1)$$

which implies that $\max_{l \in \mathcal{I}^t \cap \mathcal{I}} |l| \ge t(n-1)$. By definition, we then have t edge-disjoint rainbow spanning trees.

Proof of Theorem 3 using graph theoretical arguments

Definition 5

V(G), E(G): the set of the vertex and the edge of G.

Definition 6

||G||: |E(G)|.

Definition 7

c(E): the set of colors that appear in *E*. c(e): the color of edge *e*.

Definition 8

A color c has multiplicity k in G if the number of edges with color c in G is k.

The color multiplicity of an edge in G is the multiplicity of the color of the edge in G.

For any partition P of the vertex set V(G) and a subgraph H of G, let |P| denote the number of parts in the partition P and let cr(P, H) denote the set of crossing edges in H whose end vertices belong to different parts in the partition P. When H = G, we also write cr(P, G) as cr(P). Given two partitions $P_1 : V = \bigcup_i V_i$ and $P_2 : V = \bigcup_j V_j$, let the intersection $P_1 \cap P_2$ denote the partition given by $V = \bigcup_{i,j} V_i \cap V_j$.

Given a spanning disconnected subgraph H, there is a natural partition P_H associated to H, which partitions V into its connected components. WLOG, we abuse our notation cr(H) to denote the crossing edges of G corresponding to this partition P_H . Recall we want to show that an edge-colored multigraph G has t

color-disjoint rainbow spanning trees if and only if for any partition P of V(G) (with $|P| \ge 2$), $|c(cr(P))| \ge t(|P| - 1)$.

For one direction, suppose that *G* contains *t* pairwise color-disjoint rainbow spanning trees T_1, \dots, T_t , then all edges in these trees have distinct colors. For any partition *P* of the vertex set *V*, each tree contributes at least |P| - 1 crossing edges, thus *t* trees contribute at least t(|P| - 1) crossing edges and the colors of these edges are all distinct.

For the other direction, assume *G* satisfies inequality $|a(a(D))| \ge t(|D| - 1)$

 $|c(cr(P))| \ge t(|P|-1).$

We will use a contradiction to prove that G contains t pairwise color-disjoint rainbow spanning trees.

Assume G does not contain t pairwise color-disjoint rainbow spanning trees, and \mathcal{F} be the collection of all families of t color-disjoint rainbow spanning forests.

Consider the process:

 $C' \leftarrow \bigcup_{j=1}^{t} c(cr(F_j))$ while $C' \neq \emptyset$ for each color x in C' for j in $1 \cdots t$ if x appears in F_j delete the edge in color x from F_j $C' \leftarrow \bigcup_{j=1}^{t} c(cr(F_j)) - C'$

We use $F_j^{(i)}$ to denote the rainbow spanning forest F_j after *i* iterations of the while loop. Specially, $F_j^{(\infty)}$ is the resulting rainbow spanning forest of F_j after the process. Also, C_i denote the set C' after the *i*-th iteration of the while loop.

This procedure is deterministic, thus $\{F_j^{(i)} : j \in [t], i > 0\}$ is unique for a fixed family $\{F_1, \dots, F_t\}$. We can define a preorder on \mathcal{F} : The family $\{F_j\}_{j=1}^t$ is less than or equal to family $\{F'_j\}_{j=1}^t$ if there is a positive integer *I* such that

• For $1 \le i < l$, $\sum_{j=1}^{t} || F_j^{(i)} || = \sum_{j=1}^{t} || F_j^{(i)} ||$. • $\sum_{j=1}^{t} || F_j^{(l)} || < \sum_{j=1}^{t} || F_j^{(l)} ||$ Since G is finite, so is \mathcal{F} . Thus there exists a maximal element $\{F_1, \dots, F_t\} \in \mathcal{F}$. Run the deterministic process on $\{F_1, \dots, F_t\}$. The goal is to construct a common partition P by refining $cr(F_j)$ so that |c(cr(P))| < t(|P|-1). We will show that all forests in $\{F_j^{(\infty)} : j \in [t]\}$ admit the same partition P.

Claim 1

$$\bigcup_{j=1}^{t} c\left(cr\left(F_{j}^{(i)}\right)\right) \subseteq \left(\bigcup_{j=1}^{t} c\left(cr\left(F_{j}^{(i-1)}\right)\right)\right) \cup \left(\bigcup_{j=1}^{t} c(F_{j}^{(i)})\right)$$

Assume there is a contradiction: $x \in \bigcup_{j=1}^{t} c(cr(F_{j}^{(i)})) \setminus \bigcup_{j=1}^{t} c(cr(F_{j}^{(i-1)}))$ and there is no edge with color x in all $F_{1}^{(i)}, \dots, F_{t}^{(i)}$. Let e be the edge such that c(e) = x and $e \in cr(F_{s}^{(i)})$ for some $s \in [t]$. Observe that since $c(e) \notin \bigcup_{j=1}^{t} c(cr(F_{j}^{(i-1)}))$, it follows that $F_{s}^{(i-1)} + e$ contains a rainbow cycle, which passes through e and another edge $e' \in F_{s}^{(i-1)}$ joining two distinct components of $F_{s}^{(i)}$. Considering a new family of rainbow spanning forest $\{P_{1}, \dots, P_{t}\}$ where $P_{j}' = F_{j}$ for $j \neq s$ and $P_{s}' = F_{s} - e' + e$. The color-disjoint property is reserved since the c(e) is not in any F_j . Observe that since $c(e) \notin \bigcup_{j=1}^{t} c(cr(F_j^{(i-1)}))$, $F_s^{\prime(i)}$ will have one fewer component than $F_s^{(i)}$. Thus we have

$$\sum_{j=1}^{t} \|F_{j}^{(k)}\| = \sum_{j=1}^{t} \|F_{j}^{\prime(k)}\|, \forall k < i$$

$$\sum_{j=1}^{l} \|F_{j}^{\prime(i)}\| > \sum_{j=1}^{l} \|F_{j}^{(i)}\|$$

which contradicts our maximality assumption of $\{F_i : i \in [t]\}$.

Proof of Theorem 3 using graph theoretical arguments

Claim 1 implies that for each $x \in Ci$, there is an edge e of color x in exactly one of the forests in $\{F_j^{(i)} : j \in [t]\}$. Thus removing that edge in the next iteration will increase the sum of number of partitions exactly by 1. Thus we have that

$$\sum_{j=1}^{t} |P_{F_{j}^{(i+1)}}| = \sum_{j=1}^{t} |P_{F_{j}^{(i)}}| + |C_{i}|$$

It then follows that

$$\sum_{j=1}^{t} |P_{F_{j}^{(\infty)}}| = \sum_{P_{F_{j}}} |+\sum_{i} |C_{i}|$$
$$= \sum_{P_{F_{j}}} |+|\bigcup_{j=1}^{t} c(cr(F_{j}^{(\infty)}))$$

Proof of Theorem 3 using graph theoretical arguments

Finally set the partition $P = \bigcap_{j=1}^{t} P_{F_{j}^{(\infty)}}$. We claim $P_{F_{j}^{(\infty)}} = P, \forall j$. This is because all edges in $cr(P_{F_{j}^{(\infty)}}) \cap \bigcup_{k=1}^{t} E(F_{k}^{(\infty)})$ have been already removed. We then have

$$t|P| = \sum_{j=1}^{t} |P_{F_{j}^{(\infty)}}| = \sum_{P_{F_{j}}} |+| \bigcup_{j=1}^{t} c(cr(F_{j}^{(\infty)}))| = \sum_{j=1}^{t} |P_{F_{j}}| + |c(cr(P))|$$

$$\geq t + 1 + |c(cr(P))|$$

We obtain

$$|\mathit{c}(\mathit{cr}(\mathit{P}))| \leq \mathit{t}(|\mathit{P}|-1) - 1$$

Contradiction.

Corollary 1

The edge-colored complete graph K_n has t color-disjoint rainbow spanning trees if the number of edges colored with any fixed color is at most n/(2t).

э

Suppose K_n does not have t color-disjoint rainbow spanning trees, then there exists a partition P of $V(K_n)$ into r parts $(2 \le r \le n)$ such that the number of distinct colors in the crossing edges of P is at most t(r-1)-1. Let m be the number of edges crossing the partition P. It follows that

$$m \le (t(r-1)-1) \cdot \frac{n}{2t} \le \frac{n}{2}(r-1) - \frac{n}{2t}$$

Proof of Corollary 1

On the other hand,

$$m \ge \binom{n}{2} - \binom{n-(r-1)}{2}$$

Hence we have

$$\binom{n}{2} - \binom{n-(r-1)}{2} \le \frac{n}{2}(r-1) - \frac{n}{2t}$$

which implies

$$(n-r)(r-1) \le -\frac{n}{t}$$

which contradicts that $2 \le r \le n$.

Proof of Theorem 3

3 Proof of Theorem 4

Proof of Theorem 4

Image: A image: A

æ

Recall that we want to show that any t edge-disjoint rainbow spanning forests F_1, \dots, F_t have a color-disjoint extension to edge-disjoint rainbow spanning trees in G if and only if

$$|c(cr(P,G'))| + \sum_{j=1}^{t} |cr(P,F_j)| \ge t(|P|-1)$$

where G' is the spanning subgraph of G by removing all edges with colors appearing in some F_j .

The forward direction is also trivial. We will show that the condition

$$|c(cr(P, G'))| + \sum_{j=1}^{t} |cr(P, F_j)| \ge t(|P| - 1)$$

implies the existance of a color-disjoint extension to edge-disjoint rainbow spanning trees.

The proof is similar to the proof of Theorem 3.

Consider a set of edge-maximal forests $F_1^{(0)}, \dots, F_t^{(0)}$ which is a color-disjoint extension of F_1, \dots, F_t . From $\{F_j^{(0)}\}$, we delete all edges in $\{F_j^{(0)}\}$ of some color *c* appearing in $\bigcup_{j=1}^t c(cr(F_j^{(0)}, G'))$ to get a new set $\{F_j^{(1)}\}$. Repeat this process until we reach a stable set $\{F_j^{(\infty)}\}$. Since we only delete edges in *G'*, we have $E(F_j) \subseteq E(F_j^{(\infty)})$ for each $1 \leq j \leq t$. The edges and colors in $\bigcup_{i=1}^t E(F_i)$ will not affect the process.

A similar claim still holds:

Claim 2

$$\bigcup_{j=1}^{t} c\left(cr\left(F_{j}^{(i)}, G'\right)\right)$$
$$\subseteq \left(\bigcup_{j=1}^{t} c\left(cr\left(F_{j}^{(i-1)}, G'\right)\right)\right) \cup \left(\bigcup_{j=1}^{t} c\left(E(F_{j}^{(i-1)}) \cap E(G')\right)\right)$$

æ

• • • • • • • • • •

Let
$$C_i = \left(\bigcup_{j=1}^t c(cr(F_j^{(i)}, G'))\right) \setminus \left(\bigcup_{j=1}^t c(cr(F_j^{(i-1)}, G'))\right)$$
, then we have:
$$\sum_{j=1}^t |P_{F_j^{(i+1)}}| = \sum_{j=1}^t |P_{F_j^{(i)}}| + |C_i|$$

.

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

It follows that

$$\begin{split} \sum_{j=1}^{t} |P_{F_{j}^{(\infty)}}| &= \sum_{j=1}^{t} |P_{F_{j}^{(0)}}| + \sum_{i} |C_{i}| \\ &= \sum_{j=1}^{t} |P_{F_{j}^{(0)}}| + |\bigcup_{j=1}^{t} c(cr(F_{j}^{(\infty)}, G'))| \end{split}$$

. Set the partition $P = \bigcap_{j=1}^{t} P_{F_{j}^{(\infty)} \setminus E(F_{j})}$. Clearly all the edges in cr(P, G') are removed. All possible edges remaining in G that cross the partition P are exactly the edges in $\bigcup_{j=1}^{t} cr(P, F_{j})$.

Proof of Theorem 4

We have

٠

$$\begin{split} t|P| &= \sum_{j=1}^{t} |P_{F_{j}^{(\infty)}}| + \sum_{j=1}^{t} |cr(P, F_{j})| \\ &= \sum_{j=1}^{t} |P_{F_{j}^{(0)}}| + |\bigcup_{j=1}^{t} c(cr(F_{j}^{(\infty)}, G'))| + \sum_{j=1}^{t} |cr(P, F_{j})| \\ &= \sum_{j=1}^{t} |P_{F_{j}^{(0)}}| + |c(cr(P, G'))| + \sum_{j=1}^{t} |cr(P, F_{j})| \\ &\geq t+1 + |c(cr(P, G'))| + \sum_{j=1}^{t} |cr(P, F_{j})| \end{split}$$

• • • • • • • • •

æ

We obtain a contradiction:

$$|c(cr(P, G'))| + \sum_{j=1}^{t} |cr(P, F_j)| \le t(|P| - 1) - 1$$

.

-

æ

Proof of Theorem 3

3 Proof of Theorem 4

э

Proof of Theorem 1

æ

Recall Theorem 1 For all positive integer t,

$$r(n,t) = \begin{cases} \binom{n-2}{2} + t & \text{for } n \ge 2t+2\\ \binom{n-1}{2} & \text{for } n = 2t+1\\ \binom{n}{2} - t & \text{for } n = 2t \end{cases}$$

э

See [S J16a] (Lemma 5.1) for more detail about the lower bound for r(n, t)

Lemma 1

Let G be an edge-colored graph with s colors c_1, c_2, \ldots, c_s and |V(G)| = n = 2t + 2 where $t \ge 3$. For color c_i , let m_i be the number of edges of color c_i . Suppose $\sum_{i=1}^{s} (m_i - 1) = 3t$ and $m_i \ge 2$ for all $i \in [s]$. Then, we can construct t edge-disjoint rainbow forest F_1, \ldots, F_t in G such that if we define $G_0 = G - \bigcup_{i=1}^{t} E(F_i)$, then $|E(G_0)| \le 2t + 1$ and $\Delta(G_0) \le t + 1$.

Consider two cases: $m_1 \ge 2t + 2$ and $m_1 \le 2t + 1$.

э

Note that $\sum_{i=2}^{s} (m_i - 1) = 3t - (m_1 - 1) \le t - 1$. Thus, $s \le t$. Let $d_i(v)$ be the number of edges in color c_i and incident to v in the current graph G. We construct the edge-disjoint rainbow forests F_1, F_2, \ldots, F_t in two rounds. In the first round, we greedily extract edges only in color c_1 . For i = 1, ..., t, at step *i*, pick a vertex *v* with maximum $d_1(v)$ (pick arbitrarily if tie). Pick an edge in color c_1 incident to *v*, assign it to F_i , and delete it from *G*.

We claim that after the first round, $d_1(v) \leq t+1$ for any vertex v.

Proof of $d_1(v) \le t + 1$: Suppose $d_1(v) \ge t + 2$. Since n - 1 - (t + 2) < t, it follows that there exists another vertex u with $d_1(u) \ge d_1(v) - 1 \ge t + 1$. This implies $m_1 \ge t + d_1(v) + d_1(u) - 1 \ge 3t + 2$. However, $m_1 - 1 \le \sum_{i=1}^{s} (m_i - 1) = 3t$, which gives us the contradiction. In second round:

- Greedily extract edges not in color c_1 .
- For i = 1,..., t. In the *i*-th step, among all vertices v with at least one neighboring edge not in color c₁, pick a vertex v with maximum vertex degree d(v) (pick arbitrarily if tie). Pick an edge incident to v and not in color c₁, assign it to F_i, and delete it from G.

If we succeed with selecting t edges not in color c_1 in the second round, we claim $d(v) \le t + 1$ for any vertex v.

Proof $d(v) \le t + 1$ for any vertex v. Suppose not, if $d(v) \ge t + 2$, then there's another vertex u with $d(u) \le d(v) - 1 \le t + 1$. It implies $\sum_{i=1}^{s} m_i \ge 2t + d(u) + d(v) - 1 \ge 4t + 2$. However, since $s \le t$, we have $\sum_{i=1}^{s} m_i \le 3t + s \le 4t$. Contradiction. Therefore, $d(v) \le t + 1$. Moreover, $|E(G_0)| \le 4t - 2t \le 2t$ If the process stops at step i = l < t, then all remaining edges in G_0 must be color 1. Thus, by the previous claim, $\Delta(G_0) \le t + 1$. Moreover, $|E(G_0)| \le m_1 - t \le (3t+1) - t = 2t + 1$. In both cases above, F_1, \ldots, F_t are edge-disjoint rainbow forests! Claim: There exists t edge-disjoint rainbow forests F_1, F_2, \ldots, F_t , such that $\Delta(G_0) \leq t + 1$. Proof: For $j = 1, 2, \ldots, t$, we'll construct a rainbow forest F_j by selecting a rainbow set of edges, such that after deleting these edges from G, $\Delta(G_0) \leq 2t + 1 - j$. Notice that when j = t, we will have $\Delta(G_0) \leq t + 1$. For step *j*, WLOG let v_1, v_2, \ldots, v_t be the vertices with degree 2t + 2 - jand let c_1, c_2, \ldots, c_m be the set of colors of edges incident v_1, v_2, \ldots, v_t in *G*.

If there's no such vertex, simply pick an edge incident to the max-degree vertex and assign it to F_j .

Otherwise, we will construct an auxiliary bipartite graph $H = A \cup B$ where $A = \{v_1, v_2, \ldots, v_l\}$ and $B = \{c_1, c_2, \ldots, c_m\}$ and $v_x c_y \in E(H)$ iff there's an edge of color c_y incident to v_x .

We claim that there exists a perfect matching of A in H. Suppose not, then by Hall's theorem, there exists a set of vertices $A' = \{u_1, u_2, \ldots, u_k\} \subseteq A$ such that |N(A')| < |A'| = k where $k \ge 2$. WLOG, suppose $N(A) = \{c'_1, c'_2, \ldots, c'_q\}$ where $q \le k - 1$. Let m'_i be the number of edges of color c'_i remaining in G. Note that $k \ne 2$ since otherwise we will have on color with at least $2 \times (2t + 2 - j) - 1 \ge 2t + 3$ edges, which contradicts our assumption in

this case.

Notice that for every $i \in [k]$, u_i has at least (2t+2-j) edges incident to it. Moreover, at least j-1 edges are already deleted from G in previous steps. Therefore, we have $\frac{k(2t+2-j)}{2} \leq \sum_{i=1}^{q} m'_i \leq (\sum_{i=1}^{q} (m'_i - 1)) + (k-1) \leq 3t - (j-1) + (k-1).$ It follows that $k \leq 2 + \frac{2t}{2t-j} \leq 4$. Similarly, using another way of counting the edges incident to some $u_i (i \in [k])$, we have $k(2t+2-j) - \binom{k}{2} \leq 3t - (j-1) + (k-1)$. Which implies that $t(2k-3) \leq \frac{k(k-3)}{2} + j(k-1) \leq \frac{k(k-3)}{2} + t(k-1)$. It follows that $t \leq \frac{k(k-3)}{2(k-2)}$. Since $k \leq 4$ and k > 2, we obtain that $t \leq 1$, which contradicts our assumption that $t \geq 2$. Thus, by contradiction, there exists a matching of A in H. This implies that there exists a rainbow set of edges E_j that cover all vertices with degree 2t + 2 - j in step j. We can then find a maximally acyclic subset F_j of E_j such that F_j is a rainbow forest and every vertex of degree 2t + 2 - j is adjacent to some edge in F_j . Delete edgs of F_j from G andwe have $\Delta(G_0) \leq 2t + 1 - j$. As a result, after t steps, we obtain t edge-disjoint rainbow forests F_1, F_2, \ldots, F_t and $\Delta(G_0) \leq t + 1$. This finishes the proof of the claim.

Now let $\{F_1, F_2, \ldots, F_t\}$ be an edge-maximal set of t edge-disjoint rainbow forests that satisfies $\Delta(G_0) \leq t+1$. We claim that $|E(G_0)| \leq 2t+1$. Suppose not, i.e., $|E(G_0)| \geq 2t+2$. It follows that $\sum_{i=1}^{t} |E(F_i)| \leq 6t - (2t+2) < 4t$, i.e. there exists a $j \in [t]$ such that F_j has at most three edges. Since F_j is edge maximal, none of the edges in G_0 can be added to F_j . We have three cases: $|E(F_i)| = 1, 2, 3$. Case 2a: $|E(F_j)| = 1$. It then follows that all edges in G_0 have the same color (call it c'_1) as the single edge in F_j . Thus, we have a color with multiplicity at least 2t + 3, which contradicts that $m_1 < 2t + 2$.

Case 2b: $|E(F_j)| = 2$. Similarly, we have that at least 2t + 1 edges in G_0 that share the same color (call them c'_1, c'_2) as edges in F_j . It follows that $m_1 + m_2 \ge 2t + 3$. Similar to Case 1, in this case, we have $s \le t + 1$ and $|E(G)| = 3t + s \le 4t + 1$. Since $|E(G_0)| \ge 2t + 2$, that implies that $\sum_{i=1}^{t} |E(F_i)| \le (4t + 1) - (2t + 2) = 2t - 1$. Hence, there exists some F_k such that $\sum_{i=1}^{t} |E(F_i)| \le (4t + 1) - (2t + 2) = 2t - 1$. Hence, there exists some F_k such that $|E(F_k)| \le 1$ and we are done by Case 2a.

Case 2c: $|E(F_j)| = 3$. Similarly, we have that at least 2t - 1 edges in G_0 share the same colors (call them c'_1, c'_2, c'_3) as edges in F_j . It follows that $m_1 + m_2 + m_3 \ge 2t + 2$. By the inequality, we have that $s \le t + 4$ and $|E(G)| \le 4t + 4$. Since $|E(G_0)| \ge 2t + 2$, that implies that $\sum_{i=1}^{t} |E(F_i)| \le 2t + 2$. Since $t \ge 3$ by our assumption, there exists a $k \in [t]$ such that $|E(F_k) \le 2|$ and we are done by Case 2b and Case 2c.

Therefore, by contradiction, we have that $|E(G_0)| \leq 2t + 1$ an we're done.

Proposition 1

For any
$$n = 2t + 26$$
, we have $r(n, t) = \binom{n-2}{2} + t = 2t^2$

э

Note that the lower bound is shown by Proposition 1. For the upper bound, we will assume that $t \ge 3$ since the case when t = 2 is implied by the result of [S A07]. We will show that any coloring of K_{2t+2} with $2t^2 + 1$ distinct colors contains t edge-disjoint rainbow spanning trees. Call this edge-colored graph *G*. Let m_i be the multiplicity of the color c_i in *G*. WLOG, say the first s colors have multiplicity at least 2, that is, $m_1 \ge m_2 \ge \cdots \ge m_s \ge 2$. Let G_1 be the spanning subgraph of G consisting of all edges with color multiplicity greater than 1 in G. Let G_2 be the spanning subgraph consisting of the remaining edges. We have

$$\sum_{i=1}^{s} (m_i - 1) = \binom{n}{2} - (2t^2 + 1) = 3t$$

In particular, we have

$$|\mathsf{E}(\mathsf{G}_1)| = \sum_{i=1}^{s} m_i = 3t + s \le 6t$$

By Lemma 1, it follows that we can construct t edge-disjoint rainbow spanning forests F_1, \dots, F_t in G such that if we define

$$G_0 = E(G_1) - \bigcup_{i=1}^{i} E(F_i)$$
, then $|E(G_0)| \le 2t + 1$ and $\Delta(G_0) \le t + 1$

Now we show that F_1, \dots, F_t have a color-disjoint extension to t edge-disjoint rainbow spanning trees. Consider any partition P. We will verify

$$|c(cr(P, G_2))| + \sum_{i=1}^{t} |cr(P, F_i)| \ge t(|P| - 1)$$

Theorem 1 where n = 2t + 2

We will first verify the case when $3 \le |P| \le n$. Note that

$$|c(cr(P, G_2))| + \sum_{i=1}^{t} |cr(P, F_i)| - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - t(|P| - 1) \ge {\binom{n}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}} - 2(t+1) - {\binom{n-|P|+1}{2}$$

We want to show that the right hand side of the above inequality is nonnegative. Note that the function on the right hand side is concave downward with respect to |P|. Thus it is sufficient to verify it at |P| = 3 and |P| = n. When |P| = 3, we have

$$\binom{n}{2} - (2t+1) - \binom{n-2}{2} - 2t = 0$$

when |P| = n, we have

$$\binom{n}{2} - (2t+1) - t(n-1) = 0$$

It remains to verify for |P| = 2. By Theorem 4, we have $|E(G_0)| \le 2t + 1$. If each part of P contains at least 2 vertices, then we have

$$\begin{aligned} |c(cr(P, G_2))| + \sum_{i=1}^{t} |cr(P, F_i)| - t(|P| - 1) \\ \ge {\binom{n}{2}} - |E(G_0)| - ({\binom{n-2}{2}} + 1) - t \\ \ge {\binom{n}{2}} - (2t+1) - ({\binom{n-2}{2}} + 1) - t \\ = t - 1 \ge 0 \end{aligned}$$

Otherwise, P is of the form $V(G) = \{v\} \cup B$ for some $v \in V(G)$ and $B = V(G) \setminus \{v\}$. By Lemma 1, we have $d_{G_0} \leq t + 1$. Thus,

$$|c(cr(P), G_2)| + \sum_{i=1}^{t} |cr(P, F_i)| - t(|P| - 1)$$

$$\geq (n - 1) - d_{G_0}(v) - t \geq 2t + 1 - (t + 1) - t = 0$$

Therefore, by Theorem 4, F_1, \dots, F_t have a color-disjoint extension to t edge-disjoint rainbow spanning trees.

Proposition 2

For any
$$n \ge 2t + 2 \ge 6$$
, we have $r(n, t) = \binom{n-2}{2} + t$

æ

Again, the lower bound is due to Proposition 1. For the upper bound, we will show that every edge-coloring of K_n with exactly $\binom{n-2}{2} + t + 1$ distinct colors has t edge-disjoint spanning trees. Call this edge-colored graph G. Given a vertex v, we define D(v) to be the set of colors C such that every edge with colors in C is incident to v. Given a vertex v and a set of colors C, define $\Gamma(v, C)$ as the set of edges incident to v with colors in C. For ease of notation, we let $\Gamma(v) = \Gamma(v, D(v))$.

For fixed *t*, we will prove the theorem by induction on *n*. The base case is when n = 2t + 2, which is proven in Proposition 2. Let' s now consider the theorem when $n \ge 2t + 3$.

Case 1: there exists a vertex $v \in V(G)$ with $|\Gamma(v)| \ge t$ and $|D(v)| \le n-3$. In this case, we set $G = G - \{v\}$. Note that G is an edge-colored complete graph with at least $\binom{n-2}{2} + t + 1 - (n-3) = \binom{n-3}{2} + t + 1$ distinct colors. Moreover $|G| \ge 2t + 2$. Hence by induction, there exists t edge-disjoint rainbow spanning trees in G. Note that by our definition of D(v), none of the colors in D(v) appear in E(G). Moreover, since $|\Gamma(v)| \ge t$, we can extend the t edge-disjoint rainbow spanning trees in G to G by adding one edge in $\Gamma(v)$ to each of the rainbow spanning trees in G. Case 2: Suppose we are not in Case 1. We first claim that there exists two vertices $v_1, v_2 \in V(G)$ such that $|\Gamma(v_1)| \leq t-1$ and $|\Gamma(v_2)| \leq t$. Otherwise, there are at least n-1 vertices u with $|\Gamma(u)| \geq t$. Since we are not in Case 1, it follows that all these vertices u also satisfy $|D(u)| \geq n-2$. Hence by counting the number of distinct colors in G, we have that

$$\frac{(n-1)(n-2)}{2} \le \binom{n-2}{2} + t + 1$$

which implies that $n \le t + 3$, giving us the contradiction.

Now suppose $|\Gamma(v_1)| \leq t-1$ and $|\Gamma(v_2)| \leq t-1$. Let $D = D(v_1) \cup D(v_2)$. Add new colors to D until $|\Gamma(v_1, D)| \geq t$, $|\Gamma(v_2, D)| \geq t+1$ and $|D| \geq t+1$. Call the resulting color set S. Note that $t+1 \leq |S| \leq 2t+1 \leq n-2$. Now let $G = G-\{v_1, v_2\}$ and delete all edges of colors in S from G. We claim that G has t color-disjoint rainbow spanning trees. By Theorem 3, it is sufficient to verify the condition that for any partition P of V(G'),

$$|c(cr(P,G'))| \ge t(|P|-1)$$

Observe

$$\begin{aligned} |c(cr(P,G'))| &- t(|P|-1) \\ &\geq |c(E(G'))| - \binom{n-1-|P|}{2} - t(|P|-1) \\ &\geq \binom{n-2}{2} + t + 1 - |S| - \binom{n-1-|P|}{2} - t(|P|-1) \\ &\geq \binom{n-2}{2} + t + 1 - (n-2) - \binom{n-1-|P|}{2} - t(|P|-1) \end{aligned}$$

Note the expression above is concave downward as a function of |P|. It is sufficient to check the value at 2 and n-2.

Theorem 1 where $n \ge 2t + 3$ Case 2

When |P| = 2, we have

$$|c(cr(P,G'))| - t(|P|-1) \ge \binom{n-2}{2} + t + 1 - (n-2) - \binom{n-3}{2} - t = 0$$

When |P| = n - 2, we have

$$c(cr(P, G'))| - t(|P| - 1) \ge {\binom{n-2}{2}} + t + 1 - (n-2) - t(n-3)$$
$$= \frac{(n-4)(n-2t-3)}{2}$$
$$\ge 0$$

Here we use the assumption $n \ge 2t + 3$ in the last step.

Now it remains to extend the *t* color-disjoint spanning trees we found to *G* by using only the colors in *S*. Let e_1, \dots, e_k be the edges in *G* incident to v_1 with colors in *S*. Let e_1, \dots, e'_l be the edges in $G \setminus \{v_1\}$ incident to v_2 with colors in *S*. With our selection of *S*, it follows that $k, l \ge t$. Now construct an auxiliary bipartite graph *H* with partite sets $A = \{e_1, \dots, e_k\}$ and $B = \{e'1, \dots, e'_l\}$ such that $e_i e'_j \in E(H)$ if and only if e_i, e'_j have different colors in *G*.

We claim that there is a matching of size t in H. Let M be the maximum matching in *H*. WLOG, suppose $e_1 e'_1, \dots, e_m e'_m \in M$ where m < t. It follows that $\{e_j : m < j \le k\} \cup \{e'_j : m < j \le l\}$ all have the same color (otherwise we can extend the matching). WLOG, they all have color x. Now observe that for every matched edge $e_i e'_i$, exactly one of the two end vertices must be in color x. Otherwise, we can extend the matching by pairing e_i with e'_t and e_t with e'_i . This implies that H has at most t colors, which contradicts that $|S| \ge t + 1$. Hence there is a matching of size t in H. Since none of the edges in G have colors in S, it follows that we can extend the t color-disjoint rainbow spanning trees in G to t edge-disjoint rainbow spanning trees in G.

Proposition 3

For positive integers $t \ge 1$ and n = 2t + 1, $r(n, t) = \binom{n-1}{2} = 2t^2 = t$.

э

The lower bound is due to proposition 1. We prove that any edge-coloring of K_{2t+1} with $2t^2 - t + 1$ distinct colors contains t edge-disjoint rainbow spanning trees. Call this graph G. The proof approach is similar to the case when n = 2t + 2. Let m_i be the multiplicity of the color c_i in G. WLOG, say the first *s* colors have multiplicity ≥ 2 , which is $m_1 \geq m_2 \geq \cdots \geq m_s \geq 2$.

Let G_1 be the spanning subgraph consisting of all edges whose color multiplicity is greater than 1 in G, and G_2 be the spanning subgraph consisting of the remaining edges. We have

$$\sum_{i=1}^{s} (m_i - 1) = \binom{n}{2} - (2t^2 - t + 1) = 2t - 1$$
 (1)

In particular, we have

$$|E(G_1)| = \sum_{i=1}^{s} m_i = 2t - 1 + s \le 4t - 2$$

Claim 3

We can construct t edge-disjoint rainbow forests F_1, \dots, F_t in G_1 such that if we let $G_0 = G_1 \setminus \bigcup_{i=1}^l E(F_i)$, then $|E(G_0)| \leq t$.

To prove the claim, we consider two cases.

Case 1: $m_1 \ge t + 2$.

By equation 1, we have that $s \leq (2t-1) - (t+1) + 1 = t-1$. We construct *t* edge-disjoint rainbow forests F_1, \dots, F_t as follows: First take *t* edges of color c_1 and add one edge to each of F_1, \dots, F_t . Next, pick one edge from each of the remaining s-1 colors and add each of them to a distinct F_i .

Clearly, we can obtain t edge-disjoint rainbow forests in this way. Furthermore,

$$|E(G_0)| \le 2t - 1 + s - (t + s - 1) = t$$

, which proves the claim.

Case 2: $m_1 < t + 2$. Let F_1, \dots, F_t be the edge-maximal family of rainbow spanning forests in G_1 .

Let $G_0 = G_1 \setminus \bigcup_{i=1}^t E(F_i)$. Support $|E(G_0)| > t$, then

$$\sum_{i=1}^{t} |E(F_i)| \le 2t - 1 + s - (t+1) = t + s - 2$$

. Since $s \leq 2t - 1$, it follows that there exists some *j* such that $|E(F_j)| \leq 2$.

Case 2a: $|E(F_j)| = 1$. Since $\{F_1, \dots, F_t\}$, is edge-maximal and $|E(G_0)| \ge t + 1$, it follows that all edges in G_0 share the same color (call it c'_1) as the single edge in F_j . Thus $m_1 \ge t + 2$ which contradicts that $m_1 < t + 2$. Case 2b: $|E(F_j)| = 2$.

Similarly, at least t edges in G_0 share the same colors (named as c'_1, c'_2) as the two edges in F_j . It follows that $m_1 + m_2 \ge t + 2$, hence $s \le t + 1$. Since $|E(G_0)| \ge t + 1$, it follows

$$\sum_{i=1}^{t} |E(F_i)| \le 2t - 1 + s - (t+1) = t + s - 2 \le 2t - 1$$

, thus there exists some forest with only one edge, in which case we are done in Case 2a.

Thus, by contradiction, we have $|E(G_0)| \le t$, and the proof is completed.

Now we show that F_1, \dots, F_t have a color-disjoint extension to t edge-disjoint rainbow spanning trees. Consider any partition P, we will verify

$$|c(cr(P), G_2) + \sum_{i=1}^{t} |cr(P, F_i)| \ge t(|P| - 1)$$

We have

$$|c(cr(P), G_2))| + \sum_{i=1}^{t} |cr(P, F_i)| - t(|P| - 1)$$

$$\geq {n \choose 2} - t - {n - |P| + 1 \choose 2} - t(|P| - 1)$$

. Note that the function on right is concave downward on |P|. We can verify it at |P| = 2 and |P| = n.

When |P| = 2, we have

$$\binom{n}{2} - t - \binom{n-1}{2} - t = n - 1 - 2t \ge 0$$

When |P| = n, we have

$$\binom{n}{2} - t - t(n-1) = 0$$

By theorem 4, F_1, \dots, F_t have a color-disjoint extension to t edge-disjoint rainbow spanning trees.

.

References I

- A. Bialostocki and W. Voxman. "On the anti-Ramsey numbers for spanning trees". In: *Bull. Inst. Combin. Appl.* 32 (2001), pp. 23–26.
- J. M. Carraher and S. G. Hartke. "Eulerian circuits with no monochromatic transitions in edgecolored digraphs with all vertices of outdegree three". In: *SIAM J. Discrete Math* 31(1) (2017), pp. 190–209.
- J. Edmonds. "Matroid Partition". In: *Math. of the Decision Sciences* 11 (1968), pp. 335–345.
- J. Edmonds. "Submodular functions, matroids and certain polyhedra". In: *Combinatorial structures and their applications* (1970), pp. 69–87.
- R. Haas and M. Young. "The anti-Ramsey number of perfect matching". In: *Discrete Math* 312 (2012), pp. 933–937.

References II

- C. St. J. A. Nash-Williams. "Edge disjoint spanning trees of finite graphs". In: *J. London Math. Soc.* 36 (1961), pp. 445–450.
 - C. St. J. A. Nash-Williams. "An application of matroids to graph theory". In: *Theory of Graphs International Symposium* (1967), pp. 263–265.
 - A. Alipour S. Akbari. "Multicolored trees in complete graphs". In: *J. Graph Theory* 54 (2007), pp. 221–232.
- D.B. Test S. Jahanbekam. "Anti-Ramsey problems for t edge-disjoint rainbow spanning subgraphs: cycles, matchings, or trees". In: *J Graph Theory* 82 (2016), pp. 75–89.
- D.B. West S. Jahanbekam. "Anti-Ramsey problems for t edge-disjoint rainbow spanning subgraphs: cycles, matchings, or trees". In: *J. Graph Theory* 82(1) (2016), pp. 75–89.

- A. Schrijver. "Combinatorial optimization. Polyhedra and efficiency. Vol. B". In: *Algorithms and Combinatorics* 24 (2003), pp. 39–69.
- K. Suzuki. "A necessary and sufficient condition for the existence of a heterochromatic spanning tree in a graph". In: *Graphs Combin* 22(2) (2006), pp. 261–269.
- W. T. Tutte. "On the problem of decomposing a graph into n connected factors". In: *Journal London Math. Soc* 142 (1961), pp. 221–230.