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Introduction

Definition 1
An edge-colored graph G is called rainbow if every edge of G receives a
different color.

Definition 2
anti-Ramsey problem: fins the anti-Ramsey number AR(n,G) in an
edge-coloring of Kn containing no rainbow copy of any graph in class G.

Definition 3
r(n, t): the maximum number of colors in an edge-coloring Kn not having t
edge-disjoint rainbow spanning trees.
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Previous Works

anti-Ramsey number for perfect matchings is
(n−3

2

)
+ 2 for n ≥ 14.

[HY12]
The maximum number of colors in an edge-coloring of Kn (n ≥ 4)
with no rainbow spanning tree is

(n−2
2

)
+ 1. [BV01]

r(n, 2) =
(n−2

2

)
+ 2 for n ≥ 6. [S A07]

r(n, t) =
{(n−2

2

)
+ t for n > 2t +

√
6t− 23

4 + 5
2(n

2

)
− t for n = 2t

. [S J16b]
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Previous Works

Also a conjecture:

Conjecture 1
r(n, t) =

(n−2
2

)
+ t for n ≥ 2t + 2 ≥ 6.

.[S J16b] This paper proves this conjecture.
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Theorem 1

Combining with these three results ([BV01], [S A07], [S J16b]), we have

Theorem 1
For all positive integer t,

r(n, t) =


(n−2

2

)
+ t for n ≥ 2t + 2(n−1

2

)
for n = 2t + 1(n

2

)
− t for n = 2t

Remark 1
If n < 2t, Kn doesn’t have enough edges for t edge-disjoint spanning trees.

Lu, Wang tree21spr June 8th, 2021 8 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem 2

When t = 1, [CH17] showed that at determining the largest rainbow
spanning forest of a graph can be solved by applying the Matroid
Intersection Theorem.
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Theorem 2

Theorem 2
An edge-colored connected graph G has a rainbow spanning tree if and
only if for every 2 ≤ k ≤ n and every partition of G with k parts, at least
k− 1 different colors are represented in edges between partition classes.

[Sch03], [Suz06], [CH17]
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Theorem 3

By generalizing theorem 2 to t color-disjoint rainbow spanning tree, by
[Sch03],

Theorem 3
An edge-colored multigraph G has t pairwise color-disjoint rainbow
spanning trees if and only if for every partition P of V(G) into |P| parts, at
least t(|P|−1) distinct colors are represented in edges between partition
classes.
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Nash-Walliam-Tutte Theorem

Remark 2
Nash-Williams-Tutte Theorem: A multigraph contains t edge-disjoint
spanning trees if and only if for every partition P of its vertex set, it has at
least t(|P|−1) cross-edges. Theorem 3 implies the Nash-Williams-Tutte
Theorem by assigning every edge of the multigraph a distinct color.

[Nas61], [Tut61].
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Theorem 4

Theorem 3 can be also generalized to extending edge-disjoint rainbow
spanning forests to edge-disjoint rainbow spanning trees.
Let G be an edge-colored multigraph and F1, · · · ,Ft be t edge-disjoint
rainbow spanning forests.

Definition 4
A extension from F1, · · · ,Ft to T1, · · · ,Tt which is t rainbow spanning
trees in G is color-disjoint if all edges in ∪i(E(Ti)\E(Fi)) have distinct
colors and these colors are different from the colors appearing in the edges
of ∪iE(Fi).
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Theorem 4

By using metroid methods again or graph theoretical arguments, we have

Theorem 4
A family of t edge-disjoint rainbow spanning forests F1. · · · ,Ft has a
color-disjoint extension in G if and only if for every partition P of G into
|P| parts,

|c(cr(P,G′))|+
t∑

i=1

|cr(P,Fi)| ≥ t(|P|+ 1)

, where G′ is the spanning subgraph of G by removing all edges with colors
appearing in some Fi and c(cr(P,G′)) be the set of colors appearing in the
edges of G′ crossing the partition P.
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2 Proof of Theorem 3

3 Proof of Theorem 4
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Proof of Theorem 3
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Proof of Theorem 3

We will prove theorem by using matroid and graph theoretical arguments.
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Matroid

A matroid is defined as M = (E, I), where E is the ground set and I ⊆ 2E

is a set containing subsets of E that satisfy
if A ⊆ B ⊆ E and B ∈ I, then A ∈ I.
if A ⊆ I, B ⊆ I and |A| > |B|, then ∃a ∈ A \ B such that
B ∪ {a} ∈ I.

Given a matroid M = (E, I), the rank function rM : 2E → N is defined as
rM(S) = max{|I| : I ⊆ S, I ∈ I}.
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Matroid

The graphic matroid of a graph G is the matroid M = (E, I) where
E = E(G) and I is the set of forests in G.
The partition matroid of a graph G is the matroid M = (E, I) where
E = E(G) and I is the set of rainbow subgraphs of G.
Given k matroids {Mi = (Ei, Ii)}i∈[k], the union of the k matroids is a
matroid M = (E, I) = (

∪k
i=1 Ei, {I1 ∪ · · · ∪ Ik : Ii ∈ Iifor all i ∈ [k]}).

This matroid has rank function

r(S) = min
T⊆S

(
|S \ T|+

k∑
i=1

rMi(T ∩ Ei)

)

. [Edm68] [Nas67]
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Matroid

Given two matroid M1 = (E, I1) and M2 = (E, I2) on the same
ground set with rank function r1, r2 respectively. The Matroid
Intersection Theorem shows that

max
I∈I1∩I2

|I| = min
U⊆E

(r1(U) + r2(E \ U))

. [Edm70]
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Proof of Theorem 3 using Matroid

[Sch03]
The forward direction is clear.
It remains to show that if for every partition P of V(G) into |P| parts, at
least t(|P| − 1) distinct colors are represented in edges between partition
classes, then there exist t edge-disjoint rainbow spanning trees in G.
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Proof of Theorem 3 using Matroid

Given an edge-colored graph G, let M = (E, I) be the graphic matroid of
G and M′ = (E, I ′) be the partition matroid of G. Let
Mt = M ∨M ∨ · · · ∨M = (E, It), where we take t copies of M, which
contains the union of t forests. By matroid union theorem, we obtain that

rMt(S) = min
T⊆S

(|S \ T|+ t · rM(T))

.
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Proof of Theorem 3 using Matroid

By the Matroid Intersection Theorem, we have

max
I∈It∩I′

|I| = min
U⊆E

(rMt(U) + rM′(E \ U))

= min
U⊆E

(min
T⊆U

(|U \ T|+ t · rM(T)) + rM′(E \ U))

Let T ⊆ U ⊆ E be an arbitrary chosen. Observe that
t · rM(T) = t(n−q(T)), where q(T) is the number of connected
components of G[T].
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Proof of Theorem 3 using Matroid

Now we claim that

|U \ T|+ rM�(E \ U) ≥ rM�(E \ T) ≥ t(q(T)−1)

For any color c appearing in some edge e ∈ E \ T, if e ∈ E \ U, then the
color c is counted in rM�(E \ U); if e ∈ U, then that color is counted in
|U \ T|. In particular, at least t(q(T)−1) distinct colors are represented in
edges between connected components of T, thus in E \ T.
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Proof of Theorem 3 using Matroid

It follows that

|U \ T|+ t · rM(T) + rM�(E \ U) ≥ t(q(T)−1) + t(n−q(T)) ≥ t(n−1)

which implies that maxI∈It∩I� |I| ≥ t(n−1). By definition, we then have t
edge-disjoint rainbow spanning trees.
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Proof of Theorem 3 using graph theoretical arguments

Definition 5
V(G),E(G): the set of the vertex and the edge of G.

Definition 6
||G||: |E(G)|.

Definition 7
c(E): the set of colors that appear in E.
c(e): the color of edge e.

Definition 8
A color c has multiplicity k in G if the number of edges with color c in G is
k.
The color multiplicity of an edge in G is the multiplicity of the color of the
edge in G.
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Proof of Theorem 3 using graph theoretical arguments

For any partition P of the vertex set V(G) and a subgraph H of G, let |P|
denote the number of parts in the partition P and let cr(P,H) denote the
set of crossing edges in H whose end vertices belong to different parts in
the partition P. When H = G, we also write cr(P,G) as cr(P). Given two
partitions P1 : V = ∪iVi and P2 : V = ∪jV′

j, let the intersection P1 ∩ P2

denote the partition given by V =
∪

i,j Vi ∩ V′
j.
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Proof of Theorem 3 using graph theoretical arguments

Given a spanning disconnected subgraph H, there is a natural partition PH
associated to H, which partitions V into its connected components.
WLOG, we abuse our notation cr(H) to denote the crossing edges of G
corresponding to this partition PH.
Recall we want to show that an edge-colored multigraph G has t
color-disjoint rainbow spanning trees if and only if for any partition P of
V(G) (with |P| ≥ 2), |c(cr(P))| ≥ t(|P| − 1).
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Proof of Theorem 3 using graph theoretical arguments

For one direction, suppose that G contains t pairwise color-disjoint rainbow
spanning trees T1, · · ·Tt, then all edges in these trees have distinct colors.
For any partition P of the vertex set V, each tree contributes at least
|P| − 1 crossing edges, thus t trees contribute at least t(|P| − 1) crossing
edges and the colors of these edges are all distinct.
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Proof of Theorem 3 using graph theoretical arguments

For the other direction, assume G satisfies inequality
|c(cr(P))| ≥ t(|P| − 1).
We will use a contradiction to prove that G contains t pairwise
color-disjoint rainbow spanning trees.
Assume G does not contain t pairwise color-disjoint rainbow spanning
trees, and F be the collection of all families of t color-disjoint rainbow
spanning forests.

Lu, Wang tree21spr June 8th, 2021 30 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof of Theorem 3 using graph theoretical arguments

Consider the process:

C′ ←
∪t

j=1 c(cr(Fj))
while C′ ̸= ∅

for each color x in C′

for j in 1 · · · t
if x appears in Fj

delete the edge in color x from Fj
C′ ←

∪t
j=1 c(cr(Fj))− C′

We use F(i)
j to denote the rainbow spanning forest Fj after i iterations of

the while loop. Specially, F(∞)
j is the resulting rainbow spanning forest of

Fj after the process. Also, Ci denote the set C′ after the i-th iteration of
the while loop.
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Proof of Theorem 3 using graph theoretical arguments

This procedure is deterministic, thus {F(i)
j : j ∈ [t], i > 0} is unique for a

fixed family {F1, · · · ,Ft}. We can define a preorder on F :
The family {Fj}tj=1 is less than or equal to family {F′

j}tj=1 if there is a
positive integer l such that

For 1 ≤ i < l,
∑t

j=1 ∥ F(i)
j ∥=

∑t
j=1 ∥ F′

j
(i) ∥.∑t

j=1 ∥ F(l)
j ∥<

∑t
j=1 ∥ F′

j
(l) ∥
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Proof of Theorem 3 using graph theoretical arguments

Since G is finite, so is F . Thus there exists a maximal element
{F1, · · · ,Ft} ∈ F . Run the deterministic process on {F1, · · · ,Ft}.
The goal is to construct a common partition P by refining cr(Fj) so that
|c(cr(P))| < t(|P| − 1). We will show that all forests in {F(∞)

j : j ∈ [t]}
admit the same partition P.

Claim 1

t∪
j=1

c
(

cr
(

F(i)
j

))
⊆

 t∪
j=1

c
(

cr
(

F(i−1)
j

)) ∪
 t∪

j=1

c(F(i)
j )


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Proof of Theorem 3 using graph theoretical arguments

Assume there is a contradiction: x ∈
∪t

j=1 c(cr(F(i)
j )) \

∪t
j=1 c(cr(F(i−1)

j ))

and there is no edge with color x in all F(i)
1 , · · · ,F(i)

t .
Let e be the edge such that c(e) = x and e ∈ cr(F(i)

s ) for some s ∈ [t].
Observe that since c(e) /∈

∪t
j=1 c(cr(F(i−1)

j )), it follows that F(i−1)
s + e

contains a rainbow cycle, which passes through e and another edge
e′ ∈ F(i−1)

s joining two distinct components of F(i)
s .

Considering a new family of rainbow spanning forest {F′
1, · · · ,F′

t} where
F′

j = Fj for j ̸= s and F′
s = Fs − e′ + e.
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Proof of Theorem 3 using graph theoretical arguments

The color-disjoint property is reserved since the c(e) is not in any Fj.

Observe that since c(e) /∈
t∪

j=1
c(cr(F(i−1)

j )), F′(i)
s will have one fewer

component than F(i)
s . Thus we have

t∑
j=1

∥F(k)
j ∥ =

t∑
j=1

∥F′(k)
j ∥,∀k < i

t∑
j=1

∥F′(i)
j ∥ >

t∑
j=1

∥F(i)
j ∥

which contradicts our maximality assumption of {Fi : i ∈ [t]}.
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Proof of Theorem 3 using graph theoretical arguments
Claim 1 implies that for each x ∈ Ci, there is an edge e of color x in
exactly one of the forests in {F(i)

j : j ∈ [t]}. Thus removing that edge in
the next iteration will increase the sum of number of partitions exactly by
1. Thus we have that

t∑
j=1

|PF(i+1)
j
| =

t∑
j=1

|PF(i)
j
|+ |Ci|

It then follows that
t∑

j=1

|PF(∞)
j
| =

∑
PFj

|+
∑

i
|Ci|

=
∑
PFj

|+ |
t∪

j=1

c(cr(F(∞)
j ))|
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Proof of Theorem 3 using graph theoretical arguments

Finally set the partition P =
t∩

j=1
PF(∞)

j
. We claim PF(∞)

j
= P,∀j. This is

because all edges in cr(PF(∞)
j

) ∩
t∪

k=1

E(F(∞)
k ) have been already removed.

We then have

t|P| =
t∑

j=1

|PF(∞)
j
| =

∑
PFj

|+ |
t∪

j=1

c(cr(F(∞)
j ))| =

t∑
j=1

|PFj |+ |c(cr(P))|

≥ t + 1 + |c(cr(P))|

We obtain
|c(cr(P))| ≤ t(|P| − 1)− 1

Contradiction.
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Corollary 1

Corollary 1

The edge-colored complete graph Kn has t color-disjoint rainbow spanning
trees if the number of edges colored with any fixed color is at most n/(2t).
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Proof of Corollary 1

Suppose Kn does not have t color-disjoint rainbow spanning trees, then
there exists a partition P of V(Kn) into r parts (2 ≤ r ≤ n) such that the
number of distinct colors in the crossing edges of P is at most t(r−1)−1.
Let m be the number of edges crossing the partition P. It follows that

m ≤ (t(r− 1)− 1) · n
2t ≤

n
2
(r− 1)− n

2t
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Proof of Corollary 1

On the other hand,

m ≥
(

n
2

)
−
(

n− (r− 1)

2

)
Hence we have (

n
2

)
−
(

n− (r− 1)

2

)
≤ n

2
(r− 1)− n

2t

which implies
(n− r)(r− 1) ≤ −n

t
which contradicts that 2 ≤ r ≤ n.
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1 Introduction

2 Proof of Theorem 3

3 Proof of Theorem 4

4 Proof of Theorem 1
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Proof of Theorem 4
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Proof of Theorem 4

Recall that we want to show that any t edge-disjoint rainbow spanning
forests F1, · · · ,Ft have a color-disjoint extension to edge-disjoint rainbow
spanning trees in G if and only if

|c(cr(P,G′))|+
t∑

j=1

|cr(P,Fj)| ≥ t(|P| − 1)

where G′ is the spanning subgraph of G by removing all edges with colors
appearing in some Fj.
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Proof of Theorem 4

The forward direction is also trivial. We will show that the condition

|c(cr(P,G′))|+
t∑

j=1

|cr(P,Fj)| ≥ t(|P| − 1)

implies the existance of a color-disjoint extension to edge-disjoint rainbow
spanning trees.
The proof is similar to the proof of Theorem 3.
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Proof of Theorem 4

Consider a set of edge-maximal forests F(0)
1 , · · · ,F(0)

t which is a
color-disjoint extension of F1, · · · ,Ft. From {F(0)

j }, we delete all edges in
{F(0)

j } of some color c appearing in
∪t

j=1 c(cr(F(0)
j ,G′)) to get a new set

{F(1)
j }. Repeat this process until we reach a stable set {F(∞)

j }.
Since we only delete edges in G′, we have E(Fj) ⊆ E(F(∞)

j for each
1 ≤ j ≤ t. The edges and colors in

∪t
j=1 E(Fj) will not affect the process.
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Proof of Theorem 4

A similar claim still holds:
Claim 2

t∪
j=1

c
(

cr
(

F(i)
j ,G′

))

⊆

 t∪
j=1

c
(

cr
(

F(i−1)
j ,G′

)) ∪
 t∪

j=1

c
(

E(F(i−1)
j ) ∩ E(G′)

)
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Proof of Theorem 4

Let Ci =
(∪t

j=1 c(cr(F(i)
j ,G′))

)
\
(∪t

j=1 c(cr(F(i−1)
j ,G′))

)
, then we have:

t∑
j=1

|PF(i+1)
j
| =

t∑
j=1

|PF(i)
j
|+ |Ci|

.
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Proof of Theorem 4

It follows that
t∑

j=1

|PF(∞)
j
| =

t∑
j=1

|PF(0)
j
|+
∑

i
|Ci|

=

t∑
j=1

|PF(0)
j
|+ |

t∪
j=1

c(cr(F(∞)
j ,G′))|

. Set the partition P =
∩t

j=1 PF(∞)
j \E(Fj)

. Clearly all the edges in cr(P,G′)

are removed. All possible edges remaining in G that cross the partition P
are exactly the edges in

∪t
j=1 cr(P,Fj).
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Proof of Theorem 4

We have

t|P| =
t∑

j=1

|PF(∞)
j
|+

t∑
j=1

|cr(P,Fj)|

=

t∑
j=1

|PF(0)
j
|+ |

t∪
j=1

c(cr(F(∞)
j ,G′))|+

t∑
j=1

|cr(P,Fj)|

=

t∑
j=1

|PF(0)
j
|+ |c(cr(P,G′))|+

t∑
j=1

|cr(P,Fj)|

≥ t + 1 + |c(cr(P,G′))|+
t∑

j=1

|cr(P,Fj)|

.
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Proof of Theorem 4

We obtain a contradiction:

|c(cr(P,G′))|+
t∑

j=1

|cr(P,Fj)| ≤ t(|P| − 1)− 1

.
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1 Introduction

2 Proof of Theorem 3

3 Proof of Theorem 4

4 Proof of Theorem 1
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Proof of Theorem 1
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Proof of Theorem 1

Recall Theorem 1
For all positive integer t,

r(n, t) =


(n−2

2

)
+ t for n ≥ 2t + 2(n−1

2

)
for n = 2t + 1(n

2

)
− t for n = 2t
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Lower bound for r(n, t)

See [S J16a] (Lemma 5.1) for more detail about the lower bound for r(n, t)
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Technical Lemma

Lemma 1
Let G be an edge-colored graph with s colors c1, c2, . . . , cs and
|V(G)| = n = 2t + 2 where t ≥ 3. For color ci, let mi be the number of
edges of color ci. Suppose

∑s
i=1(mi − 1) = 3t and mi ≥ 2 for all i ∈ [s].

Then, we can construct t edge-disjoint rainbow forest F1, . . . ,Ft in G such
that if we define G0 = G−

∪t
i=1 E(Fi), then |E(G0)| ≤ 2t + 1 and

∆(G0) ≤ t + 1.
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Proof of Technical Lemma

Consider two cases: m1 ≥ 2t + 2 and m1 ≤ 2t + 1.
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Proof of Technical Lemma Case 1

Note that
∑s

i=2(mi − 1) = 3t− (m1 − 1) ≤ t− 1. Thus, s ≤ t.
Let di(v) be the number of edges in color ci and incident to v in the
current graph G. We construct the edge-disjoint rainbow forests
F1,F2, . . . ,Ft in two rounds.
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Proof of Technical Lemma Case 1 First Round

In the first round, we greedily extract edges only in color c1.
For i = 1, . . . , t, at step i, pick a vertex v with maximum d1(v) (pick
arbitrarily if tie). Pick an edge in color c1 incident to v, assign it to Fi, and
delete it from G.
We claim that after the first round, d1(v) ≤ t + 1 for any vertex v.
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Proof of Technical Lemma Case 1 First Round

Proof of d1(v) ≤ t + 1:
Suppose d1(v) ≥ t + 2. Since n− 1− (t + 2) < t, it follows that there
exists another vertex u with d1(u) ≥ d1(v)− 1 ≥ t + 1. This implies
m1 ≥ t + d1(v) + d1(u)− 1 ≥ 3t + 2.
However, m1 − 1 ≤

∑s
i=1(mi − 1) = 3t, which gives us the contradiction.
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Proof of Technical Lemma Case 1 Second Round

In second round:
Greedily extract edges not in color c1.
For i = 1, . . . , t. In the i-th step, among all vertices v with at least
one neighboring edge not in color c1, pick a vertex v with maximum
vertex degree d(v) (pick arbitrarily if tie). Pick an edge incident to v
and not in color c1, assign it to Fi, and delete it from G.

If we succeed with selecting t edges not in color c1 in the second round,
we claim d(v) ≤ t + 1 for any vertex v.
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Proof of Technical Lemma Case 1 Second Round

Proof d(v) ≤ t + 1 for any vertex v.
Suppose not, if d(v) ≥ t + 2, then there’s another vertex u with
d(u) ≤ d(v)− 1 ≤ t + 1. It implies∑s

i=1 mi ≥ 2t + d(u) + d(v)− 1 ≥ 4t + 2. However, since s ≤ t, we have∑s
i=1 mi ≤ 3t + s ≤ 4t. Contradiction.

Therefore, d(v) ≤ t + 1. Moreover, |E(G0)| ≤ 4t− 2t ≤ 2t
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Proof of Technical Lemma Case 1

If the process stops at step i = l < t, then all remaining edges in G0 must
be color 1. Thus, by the previous claim, ∆(G0) ≤ t + 1. Moreover,
|E(G0)| ≤ m1 − t ≤ (3t + 1)− t = 2t + 1.
In both cases above, F1, . . . ,Ft are edge-disjoint rainbow forests!
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Proof of Technical Lemma Case 2

Claim: There exists t edge-disjoint rainbow forests F1,F2, . . . ,Ft, such
that ∆(G0) ≤ t + 1.
Proof: For j = 1, 2, . . . , t, we’ll construct a rainbow forest Fj by selecting a
rainbow set of edges, such that after deleting these edges from G,
∆(G0) ≤ 2t + 1− j. Notice that when j = t, we will have ∆(G0) ≤ t + 1.
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Proof of Technical Lemma Case 2

For step j, WLOG let v1, v2, . . . , vt be the vertices with degree 2t + 2− j
and let c1, c2, . . . , cm be the set of colors of edges incident v1, v2, . . . , vt in
G.
If there’s no such vertex, simply pick an edge incident to the max-degree
vertex and assign it to Fj.
Otherwise, we will construct an auxiliary bipartite graph H = A ∪ B where
A = {v1, v2, . . . , vl} and B = {c1, c2, . . . , cm} and vxcy ∈ E(H) iff there’s
an edge of color cy incident to vx.
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Proof of Technical Lemma Case 2

We claim that there exists a perfect matching of A in H.
Suppose not, then by Hall’s theorem, there exists a set of vertices
A′ = {u1, u2, . . . , uk} ⊆ A such that |N(A′)| < |A′| = k where k ≥ 2.
WLOG, suppose N(A) = {c′1, c′2, . . . , c′q} where q ≤ k− 1. Let m′

i be the
number of edges of color c′i remaining in G.
Note that k ̸= 2 since otherwise we will have on color with at least
2× (2t + 2− j)− 1 ≥ 2t + 3 edges, which contradicts our assumption in
this case.
Notice that for every i ∈ [k], ui has at least (2t+2− j) edges incident to it.
Moreover, at least j− 1 edges are already deleted from G in previous steps.
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Proof of Technical Lemma Case 2

Therefore, we have
k(2t+2−j)

2 ≤
∑q

i=1 m′
i ≤ (

∑q
i=1(m′

i − 1)) + (k− 1) ≤ 3t− (j− 1) + (k− 1).
It follows that k ≤ 2 + 2t

2t−j ≤ 4.
Similarly, using another way of counting the edges incident to some
ui(i ∈ [k]), we have k(2t + 2− j)−

(k
2

)
≤ 3t− (j− 1) + (k− 1). Which

implies that t(2k− 3) ≤ k(k−3)
2 + j(k− 1) ≤ k(k−3)

2 + t(k− 1).
It follows that t ≤ k(k−3)

2(k−2) . Since k ≤ 4 and k > 2, we obtain that t ≤ 1,
which contradicts our assumption that t ≥ 2.
Thus, by contradiction, there exists a matching of A in H.
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Proof of Technical Lemma Case 2

This implies that there exists a rainbow set of edges Ej that cover all
vertices with degree 2t + 2− j in step j. We can then find a maximally
acyclic subset Fj of Ej such that Fj is a rainbow forest and every vertex of
degree 2t + 2− j is adjacent to some edge in Fj. Delete edgs of Fj from G
andwe have ∆(G0) ≤ 2t + 1− j. As a result, after t steps, we obtain t
edge-disjoint rainbow forests F1,F2, . . . ,Ft and ∆(G0) ≤ t + 1.
This finishes the proof of the claim.
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Proof of Technical Lemma Case 2

Now let {F1,F2, . . . ,Ft} be an edge-maximal set of t edge-disjoint rainbow
forests that satisfies ∆(G0) ≤ t + 1. We claim that |E(G0)| ≤ 2t + 1.
Suppose not, i.e., |E(G0)| ≥ 2t + 2. It follows that∑t

i=1 |E(Fi)| ≤ 6t− (2t + 2) < 4t, i.e. there exists a j ∈ [t] such that Fj
has at most three edges.
Since Fj is edge maximal, none of the edges in G0 can be added to Fj. We
have three cases: |E(Fj)| = 1, 2, 3.
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Proof of Technical Lemma Case 2a

Case 2a: |E(Fj)| = 1. It then follows that all edges in G0 have the same
color (call it c′1) as the single edge in Fj. Thus, we have a color with
multiplicity at least 2t + 3, which contradicts that m1 < 2t + 2.
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Proof of Technical Lemma Case 2b

Case 2b: |E(Fj)| = 2. Similarly, we have that at least 2t + 1 edges in G0

that share the same color (call them c′1, c′2) as edges in Fj. It follows that
m1 + m2 ≥ 2t + 3. Similar to Case 1, in this case, we have s ≤ t + 1 and
|E(G)| = 3t + s ≤ 4t + 1. Since |E(G0)| ≥ 2t + 2, that implies that∑t

i=1 |E(Fi)| ≤ (4t + 1)− (2t + 2) = 2t− 1. Hence, there exists some Fk
such that

∑t
i=1 |E(Fi)| ≤ (4t + 1)− (2t + 2) = 2t− 1. Hence, there exists

some Fk such that |E(Fk)| ≤ 1 and we are done by Case 2a.
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Proof of Technical Lemma Case 2c

Case 2c: |E(Fj)| = 3. Similarly, we have that at least 2t− 1 edges in G0

share the same colors (call them c′1, c′2, c′3) as edges in Fj. It follows that
m1 + m2 + m3 ≥ 2t + 2. By the inequality, we have that s ≤ t + 4 and
|E(G)| ≤ 4t + 4. Since |E(G0)| ≥ 2t + 2, that implies that∑t

i=1 |E(Fi)| ≤ 2t + 2. Since t ≥ 3 by our assumption, there exists a
k ∈ [t] such that |E(Fk) ≤ 2| and we are done by Case 2b and Case 2c.
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Proof of Technical Lemma Case 2

Therefore, by contradiction, we have that |E(G0)| ≤ 2t + 1 an we’re done.
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Theorem 1 where n = 2t + 2

Proposition 1

For any n = 2t + 2�6, we have r(n, t) =
(n−2

2

)
+ t = 2t2
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Theorem 1 where n = 2t + 2

Note that the lower bound is shown by Proposition 1. For the upper
bound, we will assume that t ≥ 3 since the case when t = 2 is implied by
the result of [S A07]. We will show that any coloring of K2t+2 with 2t2 +1
distinct colors contains t edge-disjoint rainbow spanning trees. Call this
edge-colored graph G. Let mi be the multiplicity of the color ci in G.
WLOG, say the first s colors have multiplicity at least 2, that is,
m1 ≥ m2 ≥ · · · ≥ ms ≥ 2.
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Theorem 1 where n = 2t + 2

Let G1 be the spanning subgraph of G consisting of all edges with color
multiplicity greater than 1 in G. Let G2 be the spanning subgraph
consisting of the remaining edges. We have

s∑
i=1

(mi − 1) =

(
n
2

)
− (2t2 + 1) = 3t

In particular, we have

|E(G1)| =
s∑

i=1

mi = 3t + s ≤ 6t

Lu, Wang tree21spr June 8th, 2021 75 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem 1 where n = 2t + 2

By Lemma 1, it follows that we can construct t edge-disjoint rainbow
spanning forests F1, · · · ,Ft in G such that if we define
G0 = E(G1)−

t∪
i=1

E(Fi), then

|E(G0)| ≤ 2t + 1 and ∆(G0) ≤ t + 1

Now we show that F1, · · · ,Ft have a color-disjoint extension to t
edge-disjoint rainbow spanning trees. Consider any partition P. We will
verify

|c(cr(P,G2))|+
t∑

i=1

|cr(P,Fi)| ≥ t(|P| − 1)
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Theorem 1 where n = 2t + 2

We will first verify the case when 3 ≤ |P| ≤ n. Note that

|c(cr(P,G2))|+
t∑

i=1

|cr(P,Fi)|−t(|P|−1) ≥
(

n
2

)
−2(t+1)−

(
n− |P|+ 1

2

)
−t(|P|−1)

We want to show that the right hand side of the above inequality is
nonnegative. Note that the function on the right hand side is concave
downward with respect to |P|. Thus it is sufficient to verify it at |P| = 3
and |P| = n. When |P| = 3, we have(

n
2

)
− (2t + 1)−

(
n− 2

2

)
− 2t = 0

when |P| = n, we have(
n
2

)
− (2t + 1)− t(n− 1) = 0
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Theorem 1 where n = 2t + 2

It remains to verify for |P| = 2. By Theorem 4, we have |E(G0)| ≤ 2t + 1.
If each part of P contains at least 2 vertices, then we have

|c(cr(P,G2))|+
t∑

i=1

|cr(P,Fi)| − t(|P| − 1)

≥
(

n
2

)
− |E(G0)| − (

(
n− 2

2

)
+ 1)− t

≥
(

n
2

)
− (2t + 1)− (

(
n− 2

2

)
+ 1)− t

= t− 1 ≥ 0
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Theorem 1 where n = 2t + 2

Otherwise, P is of the form V(G) = {v} ∪ B for some v ∈ V(G) and
B = V(G) \ {v}. By Lemma 1, we have dG0 ≤ t + 1. Thus,

|c(cr(P),G2)|+
t∑

i=1

|cr(P,Fi)| − t(|P| − 1)

≥ (n− 1)− dG0(v)− t ≥ 2t + 1− (t + 1)− t = 0

Therefore, by Theorem 4, F1, · · · ,Ft have a color-disjoint extension to t
edge-disjoint rainbow spanning trees.
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Theorem 1 where n ≥ 2t + 3

Proposition 2
For any n ≥ 2t + 2 ≥ 6, we have r(n, t) =

(n−2
2

)
+ t
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Theorem 1 where n ≥ 2t + 3

Again, the lower bound is due to Proposition 1. For the upper bound, we
will show that every edge-coloring of Kn with exactly

(n−2
2

)
+ t + 1 distinct

colors has t edge-disjoint spanning trees. Call this edge-colored graph G.
Given a vertex v, we define D(v) to be the set of colors C such that every
edge with colors in C is incident to v. Given a vertex v and a set of colors
C, define Γ(v,C) as the set of edges incident to v with colors in C. For
ease of notation, we let Γ(v) = Γ(v,D(v)).
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Theorem 1 where n ≥ 2t + 3

For fixed t, we will prove the theorem by induction on n. The base case is
when n = 2t + 2, which is proven in Proposition 2. Let’s now consider
the theorem when n ≥ 2t + 3.
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Theorem 1 where n ≥ 2t + 3 Case 1

Case 1: there exists a vertex v ∈ V(G) with |Γ(v)| ≥ t and |D(v)| ≤ n−3.
In this case, we set G� = G−{v}. Note that G� is an edge-colored complete
graph with at least

(n−2
2

)
+ t + 1− (n− 3) =

(n−3
2

)
+ t + 1 distinct colors.

Moreover |G�| ≥ 2t + 2. Hence by induction, there exists t edge-disjoint
rainbow spanning trees in G�. Note that by our definition of D(v), none of
the colors in D(v) appear in E(G�). Moreover, since |Γ(v)| ≥ t, we can
extend the t edge-disjoint rainbow spanning trees in G� to G by adding one
edge in Γ(v) to each of the rainbow spanning trees in G.
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Theorem 1 where n ≥ 2t + 3 Case 2

Case 2: Suppose we are not in Case 1. We first claim that there exists two
vertices v1, v2 ∈ V(G) such that |Γ(v1)| ≤ t−1 and |Γ(v2)| ≤ t. Otherwise,
there are at least n−1 vertices u with |Γ(u)| ≥ t. Since we are not in Case
1, it follows that all these vertices u also satisfy |D(u)| ≥ n−2. Hence by
counting the number of distinct colors in G, we have that

(n− 1)(n− 2)

2
≤
(

n− 2

2

)
+ t + 1

which implies that n ≤ t + 3, giving us the contradiction.
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Theorem 1 where n ≥ 2t + 3 Case 2

Now suppose |Γ(v1)| ≤ t−1 and |Γ(v2)| ≤ t−1. Let D = D(v1) ∪ D(v2).
Add new colors to D until |Γ(v1,D)| ≥ t, |Γ(v2,D)| ≥ t + 1 and
|D| ≥ t + 1. Call the resulting color set S. Note that
t + 1 ≤ |S| ≤ 2t + 1 ≤ n− 2. Now let G� = G−{v1, v2} and delete all
edges of colors in S from G�. We claim that G� has t color-disjoint rainbow
spanning trees. By Theorem 3, it is sufficient to verify the condition that
for any partition P of V(G′),

|c(cr(P,G′))| ≥ t(|P| − 1)
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Theorem 1 where n ≥ 2t + 3 Case 2

Observe

|c(cr(P,G′))| − t(|P| − 1)

≥ |c(E(G′))| −
(

n− 1− |P|
2

)
− t(|P| − 1)

≥
(

n− 2

2

)
+ t + 1− |S| −

(
n− 1− |P|

2

)
− t(|P| − 1)

≥
(

n− 2

2

)
+ t + 1− (n− 2)−

(
n− 1− |P|

2

)
− t(|P| − 1)

Note the expression above is concave downward as a function of |P|. It is
sufficient to check the value at 2 and n−2.
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Theorem 1 where n ≥ 2t + 3 Case 2

When |P| = 2, we have

|c(cr(P,G′))| − t(|P| − 1) ≥
(

n− 2

2

)
+ t + 1− (n− 2)−

(
n− 3

2

)
− t = 0

When |P| = n− 2, we have

c(cr(P,G′))| − t(|P| − 1) ≥
(

n− 2

2

)
+ t + 1− (n− 2)− t(n− 3)

=
(n− 4)(n− 2t− 3)

2
≥ 0

Here we use the assumption n ≥ 2t + 3 in the last step.

Lu, Wang tree21spr June 8th, 2021 87 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem 1 where n ≥ 2t + 3 Case 2

Now it remains to extend the t color-disjoint spanning trees we found to G
by using only the colors in S. Let e1, · · · , ek be the edges in G incident to
v1 with colors in S. Let e1�, · · · , e′l be the edges in G \ {v1} incident to v2
with colors in S. With our selection of S, it follows that k, l ≥ t. Now
construct an auxiliary bipartite graph H with partite sets A = {e1, · · · , ek}
and B = {e′1, · · · , e′l} such that eie′j ∈ E(H) if and only if ei, e′j have
different colors in G.
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Theorem 1 where n ≥ 2t + 3 Case 2

We claim that there is a matching of size t in H. Let M be the maximum
matching in H. WLOG, suppose e1e′1, · · · , eme′m ∈ M where m < t. It
follows that {ej : m < j ≤ k} ∪ {e′j : m < j ≤ l} all have the same color
(otherwise we can extend the matching). WLOG, they all have color x.
Now observe that for every matched edge eie′i, exactly one of the two end
vertices must be in color x. Otherwise, we can extend the matching by
pairing ei with e′t and et with e′i. This implies that H has at most t colors,
which contradicts that |S| ≥ t + 1. Hence there is a matching of size t in
H. Since none of the edges in G� have colors in S, it follows that we can
extend the t color-disjoint rainbow spanning trees in G� to t edge-disjoint
rainbow spanning trees in G.
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Theorem 1 where n = 2t + 1

Proposition 3

For positive integers t ≥ 1 and n = 2t + 1, r(n, t) =
(n−1

2

)
= 2t2 = t.
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Theorem 1 where n = 2t + 1

The lower bound is due to proposition 1.
We prove that any edge-coloring of K2t+1 with 2t2 − t + 1 distinct colors
contains t edge-disjoint rainbow spanning trees. Call this graph G.
The proof approach is similar to the case when n = 2t + 2. Let mi be the
multiplicity of the color ci in G.
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Theorem 1 where n = 2t + 1

WLOG, say the first s colors have multiplicity ≥ 2, which is
m1 ≥ m2 ≥ · · · ≥ ms ≥ 2.
Let G1 be the spanning subgraph consisting of all edges whose color
multiplicity is greater than 1 in G, and G2 be the spanning subgraph
consisting of the remaining edges. We have

s∑
i=1

(mi − 1) =

(
n
2

)
− (2t2 − t + 1) = 2t− 1 (1)

In particular, we have

|E(G1)| =
s∑

i=1

mi = 2t− 1 + s ≤ 4t− 2

.

Lu, Wang tree21spr June 8th, 2021 92 / 103



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem 1 where n = 2t + 1

Claim 3
We can construct t edge-disjoint rainbow forests F1, · · · ,Ft in G1 such
that if we let G0 = G1 \

∪l
i=1 E(Fi), then |E(G0)| ≤ t.

To prove the claim, we consider two cases.
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Theorem 1 where n = 2t + 1

Case 1: m1 ≥ t + 2.
By equation 1, we have that s ≤ (2t− 1)− (t + 1) + 1 = t− 1. We
construct t edge-disjoint rainbow forests F1, · · · ,Ft as follows: First take t
edges of color c1 and add one edge to each of F1, · · · ,Ft. Next, pick one
edge from each of the remaining s− 1 colors and add each of them to a
distinct Fi.
Clearly, we can obtain t edge-disjoint rainbow forests in this way.
Furthermore,

|E(G0)| ≤ 2t− 1 + s− (t + s− 1) = t

, which proves the claim.
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Theorem 1 where n = 2t + 1

Case 2: m1 < t + 2.
Let F1, · · · ,Ft be the edge-maximal family of rainbow spanning forests in
G1.
Let G0 = G1 \

∪t
i=1 E(Fi). Support |E(G0)| > t, then

t∑
i=1

|E(Fi)| ≤ 2t− 1 + s− (t + 1) = t + s− 2

. Since s ≤ 2t− 1, it follows that there exists some j such that |E(Fj)| ≤ 2.
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Theorem 1 where n = 2t + 1

Case 2a: |E(Fj)| = 1.
Since {F1, · · · ,Ft}, is edge-maximal and |E(G0)| ≥ t+1, it follows that all
edges in G0 share the same color (call it c′1) as the single edge in Fj. Thus
m1 ≥ t + 2 which contradicts that m1 < t + 2.
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Theorem 1 where n = 2t + 1

Case 2b: |E(Fj)| = 2.
Similarly, at least t edges in G0 share the same colors (named as c′1, c′2) as
the two edges in Fj. It follows that m1 + m2 ≥ t + 2, hence s ≤ t + 1.
Since |E(G0)| ≥ t + 1, it follows

t∑
i=1

|E(Fi)| ≤ 2t− 1 + s− (t + 1) = t + s− 2 ≤ 2t− 1

, thus there exists some forest with only one edge, in which case we are
done in Case 2a.
Thus, by contradiction, we have |E(G0)| ≤ t, and the proof is completed.
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Theorem 1 where n = 2t + 1

Now we show that F1, · · · ,Ft have a color-disjoint extension to t
edge-disjoint rainbow spanning trees. Consider any partition P, we will
verify

|c(cr(P),G2) +

t∑
i=1

|cr(P,Fi)| ≥ t(|P| − 1)

.
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Theorem 1 where n = 2t + 1

We have

|c(cr(P),G2))|+
t∑

i=1

|cr(P,Fi)| − t(|P| − 1)

≥
(

n
2

)
− t−

(
n− |P|+ 1

2

)
− t(|P| − 1)

. Note that the function on right is concave downward on |P|. We can
verify it at |P| = 2 and |P| = n.
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Theorem 1 where n = 2t + 1

When |P| = 2, we have(
n
2

)
− t−

(
n− 1

2

)
− t = n− 1− 2t ≥ 0

.
When |P| = n, we have (

n
2

)
− t− t(n− 1) = 0

.

By theorem 4, F1, · · · ,Ft have a color-disjoint extension to t edge-disjoint
rainbow spanning trees.
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