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Introduction

An edge-colored graph G is called rainbow if every edge of G receives a
different color.

Definition 2

anti-Ramsey problem: fins the anti-Ramsey number AR(n,G) in an
edge-coloring of K, containing no rainbow copy of any graph in class G.

v

Definition 3

r(n, t): the maximum number of colors in an edge-coloring K,, not having t
edge-disjoint rainbow spanning trees.
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Previous Works

@ anti-Ramsey number for perfect matchings is (";3) + 2 for n > 14.
[HY12]

@ The maximum number of colors in an edge-coloring of K, (n > 4)
with no rainbow spanning tree is (";2) + 1. [BVO01]

e r(n,2) = ("52) + 2 for n > 6. [S AO7]

(]
r(n,t):{( Y+t forn>2t+,/6t— 2+ 3

2
( ) for n = 2t
. [S J16b]
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Previous Works

Also a conjecture:

r(n, t) = ("52) +tforn>2t+2>6.

[S J16b] This paper proves this conjecture.
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Theorem 1

Combining with these three results ([BVO01], [S A07], [S J16b]), we have

For all positive integer t,

(";2)—1—1“ for n > 2t + 2
r(n, t) = (”51) forn=2t+1
( ) for n = 2t

If n < 2t, K, doesn’t have enough edges for t edge-disjoint spanning trees.
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When t =1, [CH17] showed that at determining the largest rainbow

spanning forest of a graph can be solved by applying the Matroid
Intersection Theorem.
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An edge-colored connected graph G has a rainbow spanning tree if and
only if for every 2 < k < n and every partition of G with k parts, at least
k — 1 different colors are represented in edges between partition classes.

[Sch03], [Suz06], [CH17]
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By generalizing theorem 2 to t color-disjoint rainbow spanning tree, by
[Sch03],

An edge-colored multigraph G has t pairwise color-disjoint rainbow
spanning trees if and only if for every partition P of V/(G) into |P| parts, at

least t(|P|—1) distinct colors are represented in edges between partition
classes.
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Nash-Walliam-Tutte Theorem

Nash-Williams-Tutte Theorem: A multigraph contains t edge-disjoint
spanning trees if and only if for every partition P of its vertex set, it has at
least t(|P|—1) cross-edges. Theorem 3 implies the Nash-Williams- Tutte
Theorem by assigning every edge of the multigraph a distinct color.

[Nas61], [Tut61].
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Theorem 3 can be also generalized to extending edge-disjoint rainbow
spanning forests to edge-disjoint rainbow spanning trees.

Let G be an edge-colored multigraph and Fq,--- , F; be t edge-disjoint
rainbow spanning forests.

Definition 4

A extension from Fi,---  F;to Tq,---, Ty which is t rainbow spanning
trees in G is color-disjoint if all edges in U;(E(T;)\E(F;)) have distinct
colors and these colors are different from the colors appearing in the edges
of U,‘E(F,').
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Theorem 4

By using metroid methods again or graph theoretical arguments, we have

Theorem 4

A family of t edge-disjoint rainbow spanning forests Fy.--- | F; has a
color-disjoint extension in G if and only if for every partition P of G into
|P| parts,

t
|c(er(P, G))[ + D ler(P, F)| > (/P +1)
i=1
, where G is the spanning subgraph of G by removing all edges with colors

appearing in some F; and c(cr(P, G')) be the set of colors appearing in the
edges of G' crossing the partition P.

v
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© Proof of Theorem 3
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Proof of Theorem 3
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Proof of Theorem 3

We will prove theorem by using matroid and graph theoretical arguments.
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A matroid is defined as M = (E, T), where E is the ground set and Z C 2F
is a set containing subsets of E that satisfy

e ifACBCEand BeZ, then Aec 1.

o if ACZ, BC T and |A| > |B|, then 3a € A\ B such that
Bu{a} €.

Given a matroid M = (E, T), the rank function ry : 25 — N is defined as
rm(S) = max{|l|: IC S,1€Z}.
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@ The graphic matroid of a graph G is the matroid M = (E,Z) where
E = E(G) and T is the set of forests in G.

@ The partition matroid of a graph G is the matroid M = (E,Z) where
E = E(G) and Z is the set of rainbow subgraphs of G.

o Given k matroids {M; = (E;, Z;) }jc|x. the union of the k matroids is a

matroid M= (E,Z) = (U, Ei, {h U--- Ul : Iy € Zifor all i € [K]}).
This matroid has rank function

k
r(S) = min <!5\ T+ Z v (TN E,-))

i=1

. [Edm68] [Nas67]
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e Given two matroid My = (E,Z;) and My = (E,Z2) on the same
ground set with rank function ry, ro respectively. The Matroid
Intersection Theorem shows that

Zax || = min(n (U) + r(E\ U))

. [Edm70]
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Proof of Theorem 3 using Matroid

[Sch03]

The forward direction is clear.

It remains to show that if for every partition P of V(G) into |P| parts, at
least t(|P| — 1) distinct colors are represented in edges between partition
classes, then there exist t edge-disjoint rainbow spanning trees in G.
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Proof of Theorem 3 using Matroid

Given an edge-colored graph G, let M = (E,Z) be the graphic matroid of
G and M = (E,Z') be the partition matroid of G. Let

M= MV MV ---V M= (E,I"), where we take t copies of M, which
contains the union of t forests. By matroid union theorem, we obtain that

() = min 1S\ 7]+ - raa(T)
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Proof of Theorem 3 using Matroid

By the Matroid Intersection Theorem, we have
max |/ = I&lglIEl(th(U) + v (E\ U))

IETENT’
= min(min((U\ 71+ t- (7)) + rvr (E\ U))

Let T C U C E be an arbitrary chosen. Observe that

t-ry(T) = t(n—q(T)), where g(T) is the number of connected
components of G[T].
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Proof of Theorem 3 using Matroid

Now we claim that
U\ TI+ ra (E\ U) = g (E\ T) > t{q(T)—1)

For any color ¢ appearing in some edge e € E\ T, if e € E\ U, then the
color cis counted in ry (E\ U); if e € U, then that color is counted in
|U\ T|. In particular, at least t(q(T)—1) distinct colors are represented in
edges between connected components of T, thus in E\ T.
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Proof of Theorem 3 using Matroid

It follows that

U\ T+t (T + ra (E\ U) > t{q(T)—1) + t(n—q(T)) > t(n—1)

which implies that maxcz:nz |/| > t(n—1). By definition, we then have t
edge-disjoint rainbow spanning trees.
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Proof of Theorem 3 using graph theoretical arguments

Def|n|t|on

. the set of the vertex and the edge of G.

Definition 6
||Gl|: [E(G)|.

Definition 7

c(E): the set of colors that appear in E.
c(e): the color of edge e.

\

Definition 8
A color ¢ has multiplicity k in G if the number of edges with color cin G is
k.

The color multiplicity of an edge in G is the multiplicity of the color of the
edge in G.

V.
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Proof of Theorem 3 using graph theoretical arguments

For any partition P of the vertex set V(G) and a subgraph H of G, let |P|
denote the number of parts in the partition P and let cr(P, H) denote the
set of crossing edges in H whose end vertices belong to different parts in
the partition P. When H = G, we also write cr(P, G) as cr(P). Given two
partitions P; : V=U;V;and Py : V= UJ-\/J-, let the intersection P; N Py
denote the partition given by V=J;; V;n V..
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Proof of Theorem 3 using graph theoretical arguments

Given a spanning disconnected subgraph H, there is a natural partition Py
associated to H, which partitions V into its connected components.
WLOG, we abuse our notation cr(H) to denote the crossing edges of G
corresponding to this partition Py.

Recall we want to show that an edge-colored multigraph G has t

color-disjoint rainbow spanning trees if and only if for any partition P of
V(G) (with |P| > 2), |c(cr(P))| > t(|P| — 1).
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Proof of Theorem 3 using graph theoretical arguments

For one direction, suppose that G contains t pairwise color-disjoint rainbow
spanning trees T1,--- T, then all edges in these trees have distinct colors.
For any partition P of the vertex set V, each tree contributes at least

|P| — 1 crossing edges, thus t trees contribute at least t(|P| — 1) crossing
edges and the colors of these edges are all distinct.
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Proof of Theorem 3 using graph theoretical arguments

For the other direction, assume G satisfies inequality

c(er(P))| > ¢(|P| - 1).

We will use a contradiction to prove that G contains t pairwise
color-disjoint rainbow spanning trees.

Assume G does not contain t pairwise color-disjoint rainbow spanning
trees, and F be the collection of all families of t color-disjoint rainbow
spanning forests.
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Proof of Theorem 3 using graph theoretical arguments

Consider the process:

C Uiy cler(F)

while C' # ()
for each color xin C
forjinl---t

if x appears in F;
delete the edge in color x from F;

C = Up cler(F) = C

We use FJ(-') to denote the rainbow spanning forest F; after i iterations of

the while loop. Specially, FJ<.°°) is the resulting rainbow spanning forest of
F; after the process. Also, C; denote the set C after the i-th iteration of
the while loop.
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Proof of Theorem 3 using graph theoretical arguments

This procedure is deterministic, thus {FJ(-') :j€ [t],i> 0} is unique for a
fixed family {Fy, -, F:}. We can define a preorder on F:

The family {F;}L_, is less than or equal to family {F;}Jt:1 if there is a
positive integer / such that

o Forl<i<! Yp, 1A =Xk I O .
o L I A < Sy 1 A
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Proof of Theorem 3 using graph theoretical arguments

Since G is finite, so is F. Thus there exists a maximal element

{F1, -+, Ft} € F. Run the deterministic process on {Fi,--- , F:}.

The goal is to construct a common partition P by refining cr(F;j) so that
|c(cr(P))] < t(|P| — 1). We will show that all forests in {F™): j € [}
admit the same partition P.
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Proof of Theorem 3 using graph theoretical arguments

Assume there is a contradiction: x € |Ji_, c(cr(FJ(-i))) \UL, c(cr(FJ(-i_l)))
and there is no edge with color x in all F('.)7 ‘e ,ng).

Let e be the edge such that c(e) = xand e € cr(Fg)) for some s € [t].
Observe that since c(e) ¢ U}Zl c(cr(FJ(-i_l))), it follows that FY ") + e
contains a rainbow cycle, which passes through e and another edge

e e Fi"*l) joining two distinct components of ng).

Considering a new family of rainbow spanning forest {F},--- , F;} where
Fi=Fjforj#sand F,=Fs— ¢ +e
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Proof of Theorem 3 using graph theoretical arguments

The color-disjoint property is reserved since the c(e) is not in any F;.
t . p
Observe that since c(e) ¢ |J c(cr(FJ(.'fl))), FX) will have one fewer
j=1
component than /—é’). Thus we have

t

t
STIARI =S IFY ) vk < i
2 —

Jj=1

t t

STIED > STIF)
= =1

1

which contradicts our maximality assumption of {F;: i € [t|}.
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Proof of Theorem 3 using graph theoretical arguments

Claim 1 implies that for each x € Ci, there is an edge e of color x in

exactly one of the forests in {FJ(-i) :j € [t]}. Thus removing that edge in

the next iteration will increase the sum of number of partitions exactly by
1. Thus we have that

t t

> ’PFj"“)‘ => !PFfo\ +|Gil

=1 =1

It then follows that
t
D 1P =D 1+ D ICH
=1 7 Pr; i

="+ e )
PE. j=1
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Proof of Theorem 3 using graph theoretical arguments

t
Finally set the partition P = () PF(°°>' We claim PF<°°) = P,Vj. This is
=1 J
t
because all edges in cr(P ) N U E(Fg(oo)) have been already removed.
' k=1

J
We then have

t

tPl =3 1Pror| = 3 |+ [ clert A1 = 3 IPe] +Ieer(P)]
j=1 Pr. j j=1

j=1
> t+ 1+ |c(cr(P))]
We obtain
c(er(P)| < t(|P] 1) —1

Contradiction.
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Corollary 1

The edge-colored complete graph K, has t color-disjoint rainbow spanning
trees if the number of edges colored with any fixed color is at most n/(2t).
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Proof of Corollary 1

Suppose K, does not have t color-disjoint rainbow spanning trees, then
there exists a partition P of V(K,) into r parts (2 < r < n) such that the
number of distinct colors in the crossing edges of P is at most t(r—1)—1.
Let m be the number of edges crossing the partition P. It follows that

m< (Hr=1)=1)- 5 < 2(r=1)— 5.
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Proof of Corollary 1

On the other hand,

Hence we have

which implies
(n—n(r—1) < —-

which contradicts that 2 < r < n.
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© Proof of Theorem 4
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Proof of Theorem 4
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Proof of Theorem 4

Recall that we want to show that any t edge-disjoint rainbow spanning
forests Fq,--- , F: have a color-disjoint extension to edge-disjoint rainbow
spanning trees in G if and only if

lc(er(P, G)) y+2\cr F) > t(|P| —1)

j=1

where G is the spanning subgraph of G by removing all edges with colors
appearing in some F;.
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Proof of Theorem 4

The forward direction is also trivial. We will show that the condition
lc(er(P, G)) |—|—Z|cr F)| > t(|P| - 1)
j=1

implies the existance of a color-disjoint extension to edge-disjoint rainbow
spanning trees.
The proof is similar to the proof of Theorem 3.
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Proof of Theorem 4

Consider a set of edge-maximal forests F§0)7 e ,F§°) which is a
color-disjoint extension of Fq,--- , F;. From {FJ(-O)}, we delete all edges in
{FJ(-O)} of some color ¢ appearing in Uj=1 c(cr(FJ(-O), G)) to get a new set
{FJ(-l)}. Repeat this process until we reach a stable set {FJ(.OO)}.

Since we only delete edges in G, we have E(Fj) C E(FJ(-OO) for each
1 <j< t The edges and colors in |J%_; E(F;) will not affect the process.
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Proof of Theorem 4

A similar claim still holds:

Claim 2
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Proof of Theorem 4

Let G = <U?:1 c(cr(F<-i), G/))) \ (Ut n c(cr(Fj(.i_l), G/))), then we have:

J —

t t
D IPain] =D IPu| +1Cil
=t =1
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Proof of Theorem 4

It follows that
t t
S IPaso| =D 1Pl + > ICH
=1 ! =1 i
t t
=>_ 1Pl + U elerF™, &)
j=1 j=1

. Set the partition P={_; P . Clearly all the edges in cr(P, G
Set the partition Nizq )\ E(F) early all the edges in cr(P, G)

are removed. All possible edges remaining in G that cross the partition P
are exactly the edges in Ule cr(P, Fj).
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Proof of Theorem 4

We have
t t
t|P| = Z |Preo| + Z cr(P, ;)|
=1 j=1
t t t
=S 1P|+ 1 cler B, 6N+ er(P R
=1 '’ j=1 j=1
t t
= Z |Peo| + [e(er(P, G))| +Z lcr(P, Fj)|
. 1 J .

j= j= 1

t
> t+ 1+ [c(cr(P,G))|+ ) |er(P, F)|
=

Lu, Wang tree21spr June 8th, 2021 49 /103



Proof of Theorem 4

We obtain a contradiction:

|c(er(P, &)+ ler(P R < t(|P| —1) — 1

=1
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@ Proof of Theorem 1
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Proof of Theorem 1
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Proof of Theorem 1

Recall Theorem 1
For all positive integer t,

("3 +t for n>2t42
) forn=2t+1
(g—t for n =2t
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Lower bound for r(n, t)

See [S J16a] (Lemma 5.1) for more detail about the lower bound for r(n, t)
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Technical Lemma

Lemma 1

Let G be an edge-colored graph with s colors ci, ¢, ..., cs and

IV(G)| = n= 2t + 2 where t > 3. For color c;, let m; be the number of
edges of color ¢;. Suppose Y ;_(mj— 1) = 3t and m; > 2 for all i € [s].
Then, we can construct t edge-disjoint rainbow forest Fi, ..., F; in G such
that if we define Go = G — \J._, E(F;), then |E(Gy)| < 2t+ 1 and

A(Gp) < t+1.
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Proof of Technical Lemma

Consider two cases: m; > 2t+ 2 and m; < 2t + 1.
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Proof of Technical Lemma Case 1

Note that > 7 o(m;j— 1) =3t— (m; —1) <t—1. Thus, s< .

Let di(v) be the number of edges in color ¢; and incident to v in the
current graph G. We construct the edge-disjoint rainbow forests
Fi,Fo, ..., F:in two rounds.
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Proof of Technical Lemma Case 1 First Round

In the first round, we greedily extract edges only in color ¢;.
Fori=1,...,t at step /i, pick a vertex v with maximum d;(v) (pick
arbitrarily if tie). Pick an edge in color ¢; incident to v, assign it to Fj, and
delete it from G.

We claim that after the first round, di(v) < t+ 1 for any vertex v.
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Proof of Technical Lemma Case 1 First Round

Proof of di(v) < t+ 1:

Suppose d;(v) > t+ 2. Since n—1 — (t+ 2) < t, it follows that there
exists another vertex u with dj(u) > di(v) —1 > t+ 1. This implies

m; > t+ dl(V) + dl(u) —1>3t+2.

However, m; —1 < "7 | (m; — 1) = 3t, which gives us the contradiction.
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Proof of Technical Lemma Case 1 Second Round

In second round:
o Greedily extract edges not in color cj.

@ For i=1,...,t. In the i-th step, among all vertices v with at least
one neighboring edge not in color ¢, pick a vertex v with maximum
vertex degree d(v) (pick arbitrarily if tie). Pick an edge incident to v
and not in color ¢y, assign it to F;, and delete it from G.

If we succeed with selecting t edges not in color ¢j in the second round,
we claim d(v) < t+ 1 for any vertex v.
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Proof of Technical Lemma Case 1 Second Round

Proof d(v) < t+ 1 for any vertex v.

Suppose not, if d(v) > t+ 2, then there's another vertex u with

d(u) < d(v) —1<t+1. It implies

>, mi>2t+d(u)+ d(v) — 1 > 4t + 2. However, since s < t, we have
o1, m; < 3t+s <4t Contradiction.

Therefore, d(v) < t+ 1. Moreover, |E(Gp)| < 4t — 2t < 2t
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Proof of Technical Lemma Case 1

If the process stops at step i = / < t, then all remaining edges in Gy must
be color 1. Thus, by the previous claim, A(Gy) < t+ 1. Moreover,
|E(G())| <m-—-t< (31.'+ 1) —t=2t+ 1.

In both cases above, Fi,..., F; are edge-disjoint rainbow forests!
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Proof of Technical Lemma Case 2

Claim: There exists t edge-disjoint rainbow forests Fi, Fo, ..., F;, such
that A(Gy) < t+ 1.
Proof: For j=1,2,...,t, we'll construct a rainbow forest F; by selecting a

rainbow set of edges, such that after deleting these edges from G,
A(Gp) < 2t+ 1 —j. Notice that when j = t, we will have A(Gp) < t+ 1.
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Proof of Technical Lemma Case 2

For step j, WLOG let vy, vs, ..., vt be the vertices with degree 2t + 2 —
and let ¢1, ¢, ..., cy be the set of colors of edges incident vy, vo, ..., vt in
G.

If there's no such vertex, simply pick an edge incident to the max-degree
vertex and assign it to F;.

Otherwise, we will construct an auxiliary bipartite graph H = AU B where
A={vi,w,...,vi} and B={ci,,...,cm} and vic, € E(H) iff there's
an edge of color ¢, incident to v,.
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Proof of Technical Lemma Case 2

We claim that there exists a perfect matching of A in H.

Suppose not, then by Hall's theorem, there exists a set of vertices

A ={u,ua, ..., ux} C Asuch that [N(A")| < |A'| = k where k > 2.
WLOG, suppose N(A) = {c|, ¢, ..., c,} where g < k— 1. Let m; be the
number of edges of color ¢; remaining in G.

Note that k # 2 since otherwise we will have on color with at least

2 x (2t+2—j) —1 > 2t + 3 edges, which contradicts our assumption in
this case.

Notice that for every i € [k], u; has at least (2t+ 2 — j) edges incident to it.
Moreover, at least j— 1 edges are already deleted from G in previous steps.
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Proof of Technical Lemma Case 2

Therefore, we have

M<zq m < (XL, (m— 1))+ (k—1) < 3t— (j— 1)+ (k—1).
It follows that k < 2 + 22t < 4.

Similarly, using another way of counting the edges incident to some

ui(i € [K]), we have k(2t+2 — j) — (&) < 3t— (j— 1) + (k— 1). Which
implies that t(2k — 3) < (k 3) +jk—1) < k(kf?’) + t(k—1).

It follows that t < QEk 2; Slnce k<4 and k> 2 we obtain that t < 1,
which contradicts our assumption that t > 2.

Thus, by contradiction, there exists a matching of A in H.
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Proof of Technical Lemma Case 2

This implies that there exists a rainbow set of edges E; that cover all
vertices with degree 2t + 2 — j in step j. We can then find a maximally
acyclic subset F; of Ej such that F; is a rainbow forest and every vertex of
degree 2t 4+ 2 — j is adjacent to some edge in F;. Delete edgs of F; from G
andwe have A(Gy) < 2t+ 1 —j. As a result, after t steps, we obtain t
edge-disjoint rainbow forests Fi, Fa, ..., Fr and A(Gy) < t+ 1.

This finishes the proof of the claim.
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Proof of Technical Lemma Case 2

Now let {Fi, Fa,..., F:} be an edge-maximal set of t edge-disjoint rainbow
forests that satisfies A(Gy) < t+ 1. We claim that |E(Gy)| < 2t+ 1.
Suppose not, i.e., |[E(Gy)| > 2t + 2. It follows that

SiE L IE(F)| < 6t— (2t+2) < 4t, i.e. there exists a j € [t] such that F;
has at most three edges.

Since F; is edge maximal, none of the edges in Gy can be added to F;. We
have three cases: |E(Fj)| =1,2,3.
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Proof of Technical Lemma Case 2a

Case 2a: |E(Fj)| = 1. It then follows that all edges in Gy have the same
color (call it ¢}) as the single edge in F;. Thus, we have a color with
multiplicity at least 2t 4 3, which contradicts that m; < 2t + 2.
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Proof of Technical Lemma Case 2b

Case 2b: |E(Fj)| = 2. Similarly, we have that at least 2t + 1 edges in Gy
that share the same color (call them ¢/, c}) as edges in Fj. It follows that
my1 + mg > 2t + 3. Similar to Case 1, in this case, we have s < t+ 1 and
|E(G)| = 3t+ s < 4t+ 1. Since |E(Gp)| > 2t + 2, that implies that

ST E(F)| < (4t+ 1) — (2t +2) = 2t — 1. Hence, there exists some Fy
such that >0, |E(F)| < (4t+1) — (2t +2) = 2t — 1. Hence, there exists
some Fy such that |E(Fg)| < 1 and we are done by Case 2a.
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Proof of Technical Lemma Case 2c

Case 2c: |E(Fj)| = 3. Similarly, we have that at least 2t — 1 edges in Gy
share the same colors (call them ¢}, ¢, c;) as edges in Fj. It follows that
my + mg + ms > 2t + 2. By the inequality, we have that s < t+ 4 and
|E(G)| < 4t+ 4. Since |E(Gp)| > 2t + 2, that implies that

S L |E(F)| < 2t+2. Since t > 3 by our assumption, there exists a

k € [t] such that |E(Fk) < 2| and we are done by Case 2b and Case 2c.
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Proof of Technical Lemma Case 2

Therefore, by contradiction, we have that |E(Gy)| < 2t+ 1 an we're done.
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Theorem 1 where n = 2t + 2

Proposition 1

For any n = 2t +2 6, we have r(n, t) = (";?) + t = 2¢2
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Theorem 1 where n = 2t + 2

Note that the lower bound is shown by Proposition 1. For the upper
bound, we will assume that t > 3 since the case when t = 2 is implied by
the result of [S A07]. We will show that any coloring of Kasio with 22 + 1
distinct colors contains t edge-disjoint rainbow spanning trees. Call this
edge-colored graph G. Let m; be the multiplicity of the color ¢; in G.
WLOG, say the first s colors have multiplicity at least 2, that is,
my>my2>--->mg>2.

Lu, Wang tree21spr June 8th, 2021 74 /103



Theorem 1 where n = 2t + 2

Let G; be the spanning subgraph of G consisting of all edges with color
multiplicity greater than 1 in G. Let G be the spanning subgraph
consisting of the remaining edges. We have

S

S (mi—1) = <g) — (22 +1) =3t

i=1

In particular, we have

|E(G1)| =Y m;=3t+s<6t
i=1
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Theorem 1 where n = 2t + 2

By Lemma 1, it follows that we can construct t edge-disjoint rainbow
spanning forests Fi,--- , F; in G such that if we define

t
Gy = E(Gl)— U E(F,'), then
i=1

|E(Go)| < 2t+ 1 and A(Gy) < t+1

Now we show that Fi,--- , F; have a color-disjoint extension to t
edge-disjoint rainbow spanning trees. Consider any partition P. We will
verify

|e(er(P. Go))| + Y |er(P. F)| > t(|P| — 1)
i=1
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Theorem 1 where n = 2t + 2

We will first verify the case when 3 < |P| < n. Note that

ertP, G+ 3 P 1P = () -2tern (") g

2
i=1

We want to show that the right hand side of the above inequality is
nonnegative. Note that the function on the right hand side is concave
downward with respect to |P|. Thus it is sufficient to verify it at |P| =3
and |P| = n. When |P| = 3, we have

<g> —(2t+1) - <";2> —2t=0

when |P| = n, we have

(g) —(2t+1)—tn—1)=0
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Theorem 1 where n = 2t + 2

It remains to verify for |P| = 2. By Theorem 4, we have |E(Gp)| < 2t + 1.
If each part of P contains at least 2 vertices, then we have

|c(er(P, G2))| + ) ler(P, F)| — t(|P| — 1)

i=1

> (5) - Gl (") -
> <'2’> —(2t+1)—(<n§2>+1)—t

=t—12>0
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Theorem 1 where n = 2t + 2

Otherwise, P is of the form V(G) = {v} U B for some v € V(G) and
B= V(G) \ {v}. By Lemma 1, we have dg, < t+ 1. Thus,

|c(er(P), G2)| + Z |er(P, F)| — t(|P — 1)

i=1
>(n—1)—dg,(v) —t>2t+1—(t+1)—t=0

Therefore, by Theorem 4, Fy,--- , F; have a color-disjoint extension to t
edge-disjoint rainbow spanning trees.
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Theorem 1 where n > 2t + 3

Proposition 2

For any n > 2t+2 > 6, we have r(n, t) = (";°) +t
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Theorem 1 where n > 2t + 3

Again, the lower bound is due to Proposition 1. For the upper bound, we
will show that every edge-coloring of K, with exactly (”;2) + t+ 1 distinct
colors has t edge-disjoint spanning trees. Call this edge-colored graph G.
Given a vertex v, we define D(v) to be the set of colors C such that every
edge with colors in Cis incident to v. Given a vertex v and a set of colors
C, define I'(v, C) as the set of edges incident to v with colors in C. For
ease of notation, we let I'(v) = I'(v, D(v)).
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Theorem 1 where n > 2t + 3

For fixed t, we will prove the theorem by induction on n. The base case is
when n = 2t + 2, which is proven in Proposition 2. Let’ s now consider
the theorem when n > 2t + 3.
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Theorem 1 where n > 2t 4+ 3 Case 1

Case 1: there exists a vertex v € V(G) with |I'(v)| > t and |D(v)| < n—3.
In this case, we set G = G—{v}. Note that G is an edge-colored complete
graph with at least (";%) +t+1— (n—3) = (",*) + t + 1 distinct colors.
Moreover |G | > 2t + 2. Hence by induction, there exists t edge-disjoint
rainbow spanning trees in G. Note that by our definition of D(v), none of
the colors in D(v) appear in E(G ). Moreover, since [['(v)| > t, we can
extend the t edge-disjoint rainbow spanning trees in G to G by adding one
edge in I'(v) to each of the rainbow spanning trees in G.
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Theorem 1 where n > 2t + 3 Case 2

Case 2: Suppose we are not in Case 1. We first claim that there exists two
vertices vi, vo € V(G) such that [I'(v;)| < t—1 and |I'(w2)| < t. Otherwise,
there are at least n—1 vertices u with |I'(u)| > t. Since we are not in Case
1, it follows that all these vertices u also satisfy |D(u)| > n—2. Hence by
counting the number of distinct colors in G, we have that

(n=1)(n=2) _ (n—2

t41
5 2>++

which implies that n < t+ 3, giving us the contradiction.
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Theorem 1 where n > 2t + 3 Case 2

Now suppose |[I'(vy)| < t—1 and |I'(w)| < t—1. Let D = D(v1) U D(v2).
Add new colors to D until [I'(vq, D)| > t, [['(ve, D)| > t+ 1 and

|D| > t+ 1. Call the resulting color set S. Note that
t+1<|5<2t+1<n—2. Nowlet G = G—{v1, v} and delete all
edges of colors in S from G. We claim that G has t color-disjoint rainbow
spanning trees. By Theorem 3, it is sufficient to verify the condition that
for any partition P of V(G),

|c(er(P, G))| = t(|P| — 1)
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Theorem 1 where n > 2t + 3 Case 2

Observe

|c(er(P, @) — t(IP| — 1)

> @)l (") < e -

> <”;2) +t+1—15 - ("_12_|P|> —t(|P| - 1)
> (";2> +t+1—(n—2)— (n_lz_’P‘> —t(|P—1)

Note the expression above is concave downward as a function of |P]. It is
sufficient to check the value at 2 and n—2.
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Theorem 1 where n > 2t + 3 Case 2

When |P| = 2, we have

n—2 n—3
|c(cr(P,G’))|—t(|P\—1)2< 5 )+t+1—(n—2)—< )—t:O
When |P| = n— 2, we have

c(cr(P, G))| — t(|P| — 1) > (”f) +t+1l—(n—2)—t(n—3)

(n—4)(n—2t—3)
2

v

0

Here we use the assumption n > 2t + 3 in the last step.
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Theorem 1 where n > 2t 4 3 Case 2

Now it remains to extend the t color-disjoint spanning trees we found to G
by using only the colors in S. Let ey, --- , ex be the edges in G incident to
vi with colors in S. Let ey ,--- , € be the edges in G\ {v;} incident to vy
with colors in S. With our selection of S, it follows that k, /> t. Now
construct an auxiliary bipartite graph H with partite sets A = {ey, -+ , e}
and B= {€1,---, ¢} such that e;€; € E(H) if and only if e;, €; have
different colors in G.
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Theorem 1 where n > 2t 4 3 Case 2

We claim that there is a matching of size t in H. Let M be the maximum
matching in H. WLOG, suppose e €], -, en€,, € M where m < t. It
follows that {ej: m < j < k} U {€;: m < j <} all have the same color
(otherwise we can extend the matching). WLOG, they all have color x.
Now observe that for every matched edge e;€/, exactly one of the two end
vertices must be in color x. Otherwise, we can extend the matching by
pairing e; with €, and e; with €. This implies that H has at most ¢ colors,
which contradicts that |S| > t+ 1. Hence there is a matching of size ¢ in
H. Since none of the edges in G have colors in S, it follows that we can
extend the t color-disjoint rainbow spanning trees in G to t edge-disjoint
rainbow spanning trees in G.
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Theorem 1 where n= 2t + 1

Proposition 3

For positive integers t > 1 and n =2t + 1, r(n,t) = (";!) =2 = ¢.
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Theorem 1 where n= 2t + 1

The lower bound is due to proposition 1.

We prove that any edge-coloring of Kyt 1 with 22 — t + 1 distinct colors
contains t edge-disjoint rainbow spanning trees. Call this graph G.

The proof approach is similar to the case when n = 2t + 2. Let m; be the
multiplicity of the color ¢; in G.
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Theorem 1 where n= 2t + 1

WLOG, say the first s colors have multiplicity > 2, which is
my>mg 2> 2> ms> 2.

Let G; be the spanning subgraph consisting of all edges whose color
multiplicity is greater than 1 in G, and Gy be the spanning subgraph
consisting of the remaining edges. We have

S

Z(m,-—l):<g)—(2t2—t+1):2t—1 (1)

i=1

In particular, we have

S
E(G)[ =) mj=2t—1+s<4t—2
i=1
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Theorem 1 where n= 2t + 1

We can construct t edge-disjoint rainbow forests Fy,--- , Fy in Gy such
that if we let Gy = G \ UL, E(Fi), then |E(Go)| < t.

To prove the claim, we consider two cases.
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Theorem 1 where n= 2t + 1

Case 1: my > t+ 2.
By equation 1, we have that s < (2t—1) — (t+1)+1=t—1. We
construct t edge-disjoint rainbow forests Fi,--- , F; as follows: First take t
edges of color ¢; and add one edge to each of Fi, -, F;. Next, pick one
edge from each of the remaining s — 1 colors and add each of them to a
distinct F;.
Clearly, we can obtain t edge-disjoint rainbow forests in this way.
Furthermore,

|E(Gy)| <2t—1+s—(t+s—1)=t

, which proves the claim.
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Theorem 1 where n= 2t + 1

Case 2: my < t+2.

Let F1,---, F; be the edge-maximal family of rainbow spanning forests in
G.

Let Gy = G1 \ UL, E(F;). Support |E(Gp)| > t, then

t

Z‘E(Fi)’ §2t—1+5—(t—|—1):t+5_2
i=1

. Since s < 2t — 1, it follows that there exists some j such that |E(F;)| < 2.
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Theorem 1 where n= 2t + 1

Case 2a: |[E(Fj)| =1.

Since {Fy,-- -, F:}, is edge-maximal and |E(Gp)| > t+ 1, it follows that all
edges in Gy share the same color (call it c}) as the single edge in F;. Thus
my > t+ 2 which contradicts that my < t+ 2.
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Theorem 1 where n= 2t + 1

Case 2b: |E(F))| = 2.

Similarly, at least t edges in Gy share the same colors (named as ¢}, c,) as
the two edges in F;. It follows that m; + mo > t+ 2, hence s < t+ 1.
Since |E(Gp)| > t+ 1, it follows

Z\E ) <2t—1+4s—(t+1)=t+s—2<2t—1

, thus there exists some forest with only one edge, in which case we are
done in Case 2a.
Thus, by contradiction, we have |E(Gp)| < t, and the proof is completed.
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Theorem 1 where n= 2t + 1

Now we show that Fi,--- , F; have a color-disjoint extension to t
edge-disjoint rainbow spanning trees. Consider any partition P, we will
verify

|c(er(P), Go) + Y |er(P, )| = t(|P| — 1)
i=1
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Theorem 1 where n= 2t + 1

We have

|c(er(P), G2))| + Y |er(P. Fi)| — t(|P| — 1)
i=1

>(5) == (") e

. Note that the function on right is concave downward on |P|. We can
verify it at |[P| =2 and |P| = n.

Lu, Wang tree21spr June 8th, 2021 99 /103



Theorem 1 where n= 2t + 1

When |P| = 2, we have

n n—1
—_ —_ —_ = — —_ >
<2> t < 0 > t=n—1-—-2t>0

When |P| = n, we have

By theorem 4, F,--- , F; have a color-disjoint extension to t edge-disjoint
rainbow spanning trees.
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