
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

O(log2 k/ log log k)-Approximation Algorithm for
Directed Steiner Tree: A Tight Quasi-Polynomial-Time

Algorithm
STOC 2019: Proceedings of the 51st Annual ACM SIGACT

Symposium on Theory of Computing

Fabrizio Grandoni Bundit Laekhanukit Shi Li

Final Presentation, Special Topics on Graph Algorithms, Spring 2021
B07902024 塗大為 B07902133 彭道耘 B07902134 黃于軒 B07902141 林庭風

June 1st, 2021

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 1 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 2 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 3 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 4 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Outline

For a directed graph with k terminals, the paper [GLL18] presents:
An O(log2 k/ log log k)-approximation algorithm for Directed
Steiner Tree (DST) in quasi-polynomial time. (Section 3, 4, 5, 6)
Under certain conjectures, O(log2 k/ log log k) is the optimal
approximation ratio for quasi-polynomial time algorithms. (Section 7)

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 5 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Directed Steiner Tree

Definition 1
Given a weighted directed graph G, a root r ∈ V(G) and a set of terminals
K ⊆ V(G) \ {r}, a directed steiner tree T is an aborescence (directed tree)
rooted at r that contains all the terminals.

The goal of Directed Steiner Tree is to find such T with minimum
cost. Throughout the presentation, we will additionally assume that the
edge weights in the input graph satisfy triangle-inequality, without loss of
generality.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 6 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Directed Steiner Tree

1

1Rot12.
Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 7 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Complexity Theory

Definition 2
Quasi-polynomial-time algorithms run in O(2polylog(n)) time. More
precisely, QP =

∪
c∈N DTIME(2O(logc n)).

Definition 3
ZPTIME(f(n)) refers to randomized algorithms that always return the
correct answer and have randomized running times with expectation
O(f(n)).

Remark
It will be shown that, assuming the Projection Game Conjecture (which
will be stated later) and NP ̸⊆

∩
0<ϵ<1 ZPTIME(2nϵ

), the optimal
approximation ratio for quasi-polynomial time algorithms is
O(log2 k/ log log k).

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 8 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sketch of Approach

1 Directed Steiner Tree (DST) ⇐⇒ Decomposition Tree
2 Decomposition Tree ⇐⇒ Label-Consistent Subtree

(LCST)
3 Integer linear programming formulation of LCST
4 Sherali-Adams lifting of the corresponding relaxed LP formulation
5 O(log2 k/ log log k)-approximation of the ILP instance in O(nlog5 k)

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 9 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sherali-Adams Lifting

A lift and project method to solve ILP, originally introduced in [SA90].
1 Formulate (relaxed) LP problem, resulting in a relaxed polytope

containing the integer polytope.
2 Apply Sherali-Adams to ”tighten” the polytope.
3 It can be shown that, after enough runs of the previous step, the

integer polytope is obtained.
4 The idea is to run “the right number of” rounds such that the

resulting polytope is “somewhat tight” but yet not very difficult to
solve.

For the R-th round, Sherali-Adams adds the variables xS =
∏

i∈S xi for
every subset S ⊆ [n] of size not exceeding R and replaces the original
constraints accordingly.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 10 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sherali-Adams Lifting

For a polytope P, SA(P,R) denotes the polytope tightened by the R-th
round of Sherali-Adams lift. Additionally, the hierarchy makes conditioning
on an event possible

Definition 4
Let x ∈ SA(P,R) for R ≥ 1, for xi > 0 define x′ ∈ SA(P,R− 1) to be x
conditioned on xi as

x′S =
xS∪{i}

xi

for S ∈
([n]

R−1

)
.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 11 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Basic Definitions

Definition 5
Given a rooted tree T and a vertex v ∈ V(T), we use root(T) to denote
the root of T and T[v] to denote the subtree containing v and all of its
decendents.

Definition 6
The rooted trees under discussion are out-arborescences, i.e., edges are
directeds toward the leaves. For a directed edge e = (u, v), we define
head(e) = u and tail(e) = v.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 12 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 13 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Previous & Related Works

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 14 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Comparison to Previous Work

The best polynomial-time approximation algorithm for DST achieves
an O((1/ϵ)3kϵ)-approximation ratio in O(n1/ϵ)-time, due to Charikar
et al. [Cha+99]
The previously best approximation algorithm for DST in
quasi-polynomial-time achieves ratio O(log3 k), due to Charikar et al.
[Cha+99] as well.
Recursive greedy algortihm of Chekuri and Pal for GST2 [CP05]

The first one that yields an approximation ratio of O(log2 k) for GST in
quasi-polynomial-time.
Their algorithm exploits that any optimal solution can be shortcut into
a path of length k, while paying only a factor of 2. (such a path exists
in the metric-closure of the input graph).

Hierarchy based LP-rounding techniques by Rothvoß [Rot12].
Handle the dependency rules.

2GST can be regard as a special instance of DST. See Definition 28 for more.
Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 15 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Related work

An O(log2 k log n)-approximation for GST in polynomial time, where
k is the number of groups by Garg et al. [GKR98]

Map the input instance into a tree instance by invoking the
Probabilistic Metric-Tree Embeddings.
Apply an elegant LP-based randomized rounding algorithm.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 16 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Related work

ℓ-DST and ℓ-GST, survivable network variants of DST and GST.
ℓ edge-disjoint directed (resp., undirected) paths from the root to each
terminal (resp., group).
There is no 2log1−ϵ n-approximation, for any ϵ > 0, unless
NP ⊆ DTIME(2polylog(n)), by Cheriyan et al. [Che+14]
There is no ℓ1/2−ϵ-approximation, for any constant ϵ > 0, unless
NP = ZPP, by Laekhanukit [Lae14]
Gupta et al. [GKR10] presented a Õ(log3 n log k)-approximation
algorithm for 2-GST.
Chalermsook et al. presented an LP-rounding bicriteria approximation
algorithm for ℓ-GST that returns a subgraph with cost O(log2 n log k)
times the optimum while guaranteeing a connectivity of at least
Ω(ℓ/ log n).

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 17 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 18 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 19 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree

Definition 7
A decomposition tree τ of G is a rooted tree where

α ∈ V(τ) is associated with µα ∈ V(G)
Leaf β ∈ V(τ) is associated with eβ ∈ E(G) and µβ = head(eβ)
For α2 being a child of α, there is a child α1 of α with

µα = µα1

µα2 is involved in τ [α1]

The cost of τ is the sum of costs of the edges corresponding to its leaves.

Definition 8
A vertex v ∈ V(G) is involved in τ [α] if either

µα = v
There is a leaf β ∈ τ [α] with v = tail(eβ)

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 20 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree

Intuitively, for a subgraph G′ ⊆ G, a decomposition tree of G′ represents
the process of recursively dividing E(G′) until the number of edges
becomes one. Additionally,

The decomposition is associated with a root r. r is the head of at
least one edge in the current edge set.
At the decomposition step, each sub-instance created either has the
same root r′ as the current instance, or r′ is the tail of an edge in the
edge set of another sub-instance having the same root as the current
instance. This ensures that the sub-instance is reachable from the
current root.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 21 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Reduction

The followings will be shown
Given a directed steiner tree T, there exists a decomposition tree τ of
T rooted at r with cost(τ) ≤ cost(T). All the terminals are involved
in τ . Additionally, τ is a full binary tree of height O(log k).
Given a decomposition tree τ rooted at r of some unknown subgraph
in G that involves all terminals, there exists a directed steiner tree T
with cost(T) ≤ cost(τ).

Therefore, finding the minimum DST can be reduced to finding the
minimum decomposition tree τ∗ rooted at r in G involving all k terminals.
Moreover, such decomposition tree will be a full binary tree and have
height O(log k).

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 22 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DST to Decomposition Tree

Let T be a directed steiner tree. Since triangle-inequality is satisfied, the
internal vertices in T have out-degree at least two and thus |V(T)| ≤ 2k.
The following lemma was proved in class

Lemma 9
For a tree T of n edges, there exists a vertex v ∈ V(T) such that T can be
decomposed into two subtrees T1 = T[v] and T2 = T \ T[v] and

n
3
≤ E(Ti) ≤

2n
3

holds for i ∈ {1, 2}.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 23 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DST to Decomposition Tree
τ can be constructed by recursively decomposing T into balanced subtrees.
In particular, by setting τ ← Decompose(T, r)

procedure Decompose(T, r)
α← a new vertex with µα = r
if T = {(r, v)} then

eα = v
return the decomposition tree with a single vertex α

end if
Let v be the vertex with |T|

3 ≤ |T[v]| ≤
2|T|
3 by Lemma 9

τ1 ← Decompose(T \ T[v], r)
τ2 ← Decompose(T[v], v)
Set root(τ1) and root(τ2) to be children of α
return the decomposition tree rooted at α

end procedure

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 24 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DST to Decomposition Tree

Figure: The steiner tree T∗ and the decomposition tree τ∗ that it maps to. Each
time a balanced subtree is peeled of and the two parts are recursively divided.

3
3GLL18.
Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 25 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

DST to Decomposition Tree

Let’s verify the outcome indeed has the desired property:
The cost of τ is trivially the same as the cost of T because each
decomposition is disjoint.
Since |V(T)| ≤ 2k and the size of the edge set reduces by a constant
factor at each recursion, the height of τ is O(log k).
Every internal vertex of τ has exactly two children, hence τ is a fully
binary tree.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 26 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree to DST

Let τ be a decomposition tree in G that involves all terminals with
µroot(τ) = r. We’d like to show

Lemma 10
Let α ∈ V(τ) and Gα be the subgraph induced by edges at the leaves in
τ [α]. Then, there exists a directed path from µα to every vertex in G that
is involved in τ [α].

Let E′ be the edges at the leaves of τ and G′ be the subgraph induced by
E′. By Lemma 10, all terminals are reachable from µroot(τ) = r in G′.
Thus, by removing redundant edges in G′ a directed steiner tree with cost
not exceeding cost(τ) is constructed.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 27 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree to DST

Let’s prove the Lemma by induction on the height of α:
α is a leaf: Only head(eα) and tail(eα) are involved in τ [α] and they
are both reachable from µα = head(eα) using eα.
α is an internal vertex: Let v be a vertex that is involved in τ [α].
There are two possibilities:

v = µα: Then it is trivially reachable from itself.
v = tail(eβ) for β ∈ τ [α]: Let α2 be the child of α such that β ∈ τ [α2]
and hence β is involved in τ [α2] as well. If µα2

= µα, by inductive
hypothesis, β is reachable from µα.

Otherwise, µα2
is involved in τ [α1] for some child α1 with µα1

= µα.
By inductive hypothesis, there exists a path P from µα1

to µα2
and a

path Q from µα2 to β. Concatenating P and Q raises the desired path.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 28 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 29 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Label-Consistent Subtree

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 30 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Label-Consistent Subtree

Definition 11
Let T0 be a rooted tree with cost cv on vertex v. Let L be the set of
labels. Each vertex v ∈ V(T0) is associated with two sets, the service
ser(v) ⊆ L and the demand dem(v) ⊆ L. A subtree T of T0 with
root(T) = root(T0) is label-consistent if

For all vertices v ∈ V(T) and l ∈ dem(v), there exists a descendant u
of v in T such that l ∈ ser(u). That is, each demand of v is supplied
by some descendant of v.

Definition 12
Let K ⊆ L be the set of global labels. Symmetrically, L \ K is the set of
local labels. The goal of Label-Consistent Subtree is to find a
label-consistent subtree T∗ with minimum cost such that all global labels
are supplied.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 31 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sketch of Reduction

For an instance of DST, we’d like to find a desired decomposition tree by
constructing an instance of LCST T0 such that

All possible full binary decomposition trees of height O(log k) are
embedded in T0.
To achieve better approximation ratio, each decomposition tree is
divided into twigs of heights O(log log k).
The structure and property of decomposition trees are guaranteed by
the label-consistencies of subtrees.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 32 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sketch of Reduction

In particular, T0 will have the following property
Height h = O(log k/ log log k)
s := maxv∈V(T0) |dem(v)| is O(log k)
The number of vertices N = nO(log2 k/ log log k)

The size of global labels |K| is the same as the number of terminals k.
A solution to LCST can be converted to a decomposition tree τ with
the same cost that involves all terminals, and vice versa.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 33 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sketch of Reduction

With
Theorem 13
There is an (shN)O(sh2)-time O(h log k)-approximation algorithm for the
Label-Consistent Subtree problem.

We get an O(h log k) = O(log2 k/ log log k)-approximation algorithm for
DST that runs in (shN)O(sh2) = nO(log5 k) = 2O(log6 n)-time.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 34 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Twigs

A decomposition tree is divided into twigs and embedded in the LCTS
instance. Specifically

Definition 14
Let g := ⌈log2 log2 k⌉. A twig η is a full binary tree of height at most g,
where

Each α ∈ V(η) is associated with µα ∈ V(G)
Each leaf β ∈ V(η) may or may not has an associative eβ ∈ E(G), and
if it does, µβ = head(eβ)

We can think of leaves β without eβ be internal vertices in the
decomposition tree τ to which η corresponds; while leaves with eβ map to
leaves in τ .

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 35 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Construction of T0

Let h̄ = O(log k) be the upper-bound of height(τ∗). The height of the
twig τ∗ maps to is then upper-bounded by ⌈h̄/g⌉.
T0 is constructed by calling ConstructLCST(r, 0). The set of global
labels is identical to the set of terminals.

1: procedure ConstructLCST(u, j)
2: Let p be a new node with cp = 0 and dem(p) = {ℓ}, where ℓ is a

new local label
3: if j < ⌈h̄/g⌉ then
4: for each possible non-singular twig η with µroot(η) = u do
5: AddChild(p, ℓ, η)
6: end for
7: end if
8: end procedure

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 36 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Construction of T0

1: procedure AddChild(p, ℓ, η)
2: Let q be a new child of p with cq =

∑
β∈η cβ, ser(q) = {ℓ},

dem(q) = ∅
3: for leaf β of η do
4: if eβ is defined then
5: if tail(eβ) ∈ K then Add global label tail(eβ) to ser(q)
6: end if
7: else
8: Tq

β ← ConstructLCST(µβ, j + 1)

9: Set root(Tq
β) to be q’s child

10: Create a new local label ℓ′ and add it to dem(q) and
ser(root(Tq

β))
11: end if
12: end for
13: EnsureStructure(p, η, q)
14: end procedure

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 37 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Construction of T0

1: procedure EnsureStructure(p, η, q)
2: for internal node α of η do
3: Let α1 be a child of α with µα1 = α2 and α2 be the other child
4: if µα2 ̸= µα and ̸ ∃ leaf β ∈ η[α1] with tail(eβ) = µα2 then
5: Create a new local label ℓ′ and add it to dem(q)
6: for leaf β of η[α1] with eβ undefined, q′ ∈ Tq

β do
7: if ηq′ has a leaf β′ with tail(eβ′) = µα2 then
8: Add ℓ′ to ser(q′)
9: end if

10: end for
11: end if
12: end for
13: end procedure

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 38 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Construction of T0 - Intuition

The height (considering the number of twigs) of T0 is bounded by the
j < ⌈h̄/g⌉ guard.
Each call to ConstructLCST is a two-level expansion:

The first level (L2 in ConstructLCST) corresponds a vertex
u ∈ V(G) (referred to as p-nodes)
The second level (L2 in AddChild) corresponds to a twig rooted at u
(referred to as q-nodes)
We must choose at least one such twig if u is chosen (enforced by the
local label ℓ)

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 39 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Construction of T0 - Intuition

Figure: Single step of recursion made in AddChild. Each q-node is associated
with a twig ηq where µroot(ηq) being the vertex up its parent p corredsponds to.

4

4GLL18.
Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 40 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Construction of T0 - Intuition

A label-consistent subtree is a valid decomposition tree:
If the leaf node β of η does not have a well-defined eβ , we must further
expand it, as enforced by the local label ℓ′ at L10 in AddChild
α2 is involved in η[α1] because the local label ℓ′ at L5 in
EnsureStructure is eventually supplied by one of the descendants
that points to µα2

A label-consistent subtree that supplies all global labels map to a
decomposition tree in which all terminals are involved since there is a
one-to-one correspondence between the global labels and the
terminals.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 41 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Properties of T0

Obviously, the height is by construction O(h̄/g) = O(log k/ log log k)
For a node v in T0

If v is a q-node, then |dem(v)| is bounded by the number of vertices in
a twig, which is O(2log log k) = O(log k)
If v is a p-node, then |dem(v)| = 1

The size of T0 is dominated by the number of branches of p-nodes.
For u ∈ V(G), the number of twigs rooted at u is bounded by

(2g)2 = 22g: the number of shapes of twigs, times
(n2)2

g
= n2·2g : the number of ways to assign µ∗ and e∗ to vertices in a

twig
which is roughly log k× nlog k = nO(log k). Thus,

N ≤
(

nO(log k)
)log k/ log log k

= nO(log2 k/ log log k)

The set of global labels is the same as the set of terminals

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 42 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree to LCST

Given the optimal decomposition tree τ∗, we can locate its corresponding
T∗ in T0 as follows

Decompose τ into twigs at vertices of depths ig for some i. That is, if
vertex v is of depth ig, then the twig it corresponds to contains
descendants of v of depth ig, ig + 1, . . . , (i + 1)g
Locate T∗ recursively, starting from r. At vertex v of depth ig, add the
nodes p corresponding to v and q corresponding to twigs rooted at v
into T∗. For each descendant u of v at depth (i + 1)g, there will be a
child p′ of q associated to u and we keep the locating process on u.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 43 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Decomposition Tree to LCST

In particular, the following can be easily shown by comparing the required
property of decomposition tree and the construction of T0

Lemma 15
T∗ is a label-consistent subtree of T with cost(T∗) = cost(τ∗). Moreover,
all global labels are supplied by T∗.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 44 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LCST to Decomposition Tree

Conversely, we need to show the following

Lemma 16
Given any feasible solution T to the LCST instance T0, in time
poly(|V(T)|) we can construct a decomposition tree τ with
cost(τ) = cost(T). Moreover, if a global label v ∈ K is supplied by T, then
τ involves v.

Let C be the set of twigs contained in T. For a q-node q in T and the twig
ηq it corresponds to, consider its child p (a p-node) and p’s child q′.
µroot(ηq′)

will be µβ where β is the leaf in ηq related to p. τ is then
constructed by connecting ηq and ηq′ at µβ for all such q and q′.
The cost and the structure of τ can be easily argued by the way we
construct T0 and the placement of local labels.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 45 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 46 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Approximation Algorithm for Label-Consistent
Subtree

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 47 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Main Theorem

In the following few sections, we will derive the following theorem.

Theorem 17
There is an (shN)O(sh2)-time O(h log k)-approximation algorithm for the
Label-Consistent Subtree problem, where s := maxv∈V(T0) |dem(v)|.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 48 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Redefining

To make the statement clearer and easier, we will, without loss of
generality, transform the input LCTS instance to the one satisfying the
following properties:

dem(u) and dem(v) are disjoint for all u, v ∈ V(T0).
Make copies of duplicate labels.

Demand labels are only located at the internal nodes.
Demand labels at leaves are either irrelevant or never supplied

Service labels are only located at the leaves, and each leaf contains
exactly one service label.

Attach | ser(v)| leaves with cost 0 to v and distribute the service labels
to them.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 49 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Redefining

With above simplifications, we could redefine the LCST problem. Let
Vleaf and Vint be the sets of leaves and internal nodes. Let Λv be the
set of children of v. Let Λleaf

v = V(T0[v]) ∩ Vleaf.
We need to find a minimum cost subtree T of T0 such that
root(T) = root(T0) and for all ℓ ∈ K there exists v ∈ V(T) ∩ Vleaf

with av = ℓ, where av is the unique label in ser(v).

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 50 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Redifining

Consider the change in the size and height of T0 after the transformation.
Let h′ and N′ be that of the old T0.

h ≤ h′ + 1.
The number of leaves in the new T0 is at most s(h′ + 1)N′, so
N = O(sh′N′).

For an optimum tree T∗ with cost opt, we can assume that
For every ℓ ∈ K, there exists exactly one node v ∈ V(T∗) ∩ Vleaf with
av = ℓ.
For every ℓ ∈ L \ K, there is at most one node v ∈ V(T∗) ∩ Vleaf with
av = ℓ.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 51 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Randomized Algorithm

The algorithm is based on the following theorem

Theorem 18
There is an (sN)O(sh2)-time algorithm that outputs a random
label-consistent tree T̃ such that E(c(T̃)) ≤ opt, and for every ℓ ∈ K, we
have P

[
∃v ∈ Vleaf ∩ V(T̃) | av = ℓ

]
≥ 1

h+1 .

We run O(h log k) times the algorithm above and let T′ be the union of all
T̃. The expected cost of T′ is at most O(h log k) opt, and by the union
bound, we have

P
[
∀l ∈ K, ∃v ∈ Vleaf ∩ V(T′) | av = ℓ

]
≥ 1

2

In expectation, we just need to run the procedure twice.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 52 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 53 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

LP Relaxation

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 54 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear Programming

To construct the algorithm, we first transform the problem into Linear
Programming Problem. We formulate an LP relaxation to find T∗.

D := V(T0) ∪ (V(T0)× L) is the set of variables. xe ∈ {0, 1} for all
e ∈ D.

u ∈ V(T0) iff u ∈ V(T∗).
(u, ℓ) ∈ V(T0)× L iff u ∈ V(T∗) and Λleaf

u ∩ V(T∗) has a node with
label ℓ.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 55 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear Programming

The following constraints must hold.
1 xv ≤ xu, ∀u ∈ Vint, v ∈ Λu.

The children can not be chosen if the parent is not
2 x(u,ℓ) ≤ xu, ∀u ∈ V(T0), ℓ ∈ L.
3 x(u,ℓ) = xu, u ∈ Vint, ℓ ∈ dem(u).

If u is present, labels it demands must be present as well
4 x(v,av) = xv, ∀v ∈ Vleaf.
5 x(u,ℓ) =

∑
v∈Λu x(v,ℓ), ∀u ∈ Vint, v ∈ L.

6 x(v,ℓ) = 0, ∀v ∈ Vleaf, ℓ ̸= av.
7 x(root(T0),ℓ) = 1, ∀ℓ ∈ K.

Global labels must be supplied

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 56 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear Programming

Let P be the polytope containing all vectors x ∈ [0, 1]D satisfying
constraints above.

With Sherali-Adams hierarchy, we can find a solution x∗ ∈ SA(P,O(sh2))
satisfying the lifted constraints with

∑
v∈V(T0) cvx∗v ≤ opt in time

|D|O(sh2) = (sN)O(sh2), using any polynomial-time linear programming
algorithm.5

5The state-of-the-art algorithm due to [Jia+20] runs in O∗(n2.055) time.
Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 57 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Sketch of Randomized Algorithm

In the next slide, we will present the pseudo code of the randomized
algorithm. Here we give some intuition of such algorithm.

The solution x∗ of linear programming problem can be regarded as the
probability that each events will happen. Therefore, the algorithm tries to
randomly choose the nodes recursively based on the solution x∗ from linear
programming.

The LP polytope is lifted to the O(sh2)-th level so as to repeatedly
condition6 on events throughout the algorithm.

6Recall Definition 4
Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 58 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rounding a Lifted Fractional Solution

1: procedure solve(u, L′, x)
2: Ṽ← Ṽ ∪ {u}.
3: if u ∈ Vleaf then return
4: end if
5: let Sv ← ∅ for every v ∈ Λu
6: for every ℓ ∈ L′ do
7: randomly choose a child v of u with probability x(v,ℓ)
8: Sv ← Sv ∪ {ℓ}
9: x← x conditioned on the event (v, ℓ)

10: end for
11: for every v ∈ Λu, with probability xv do
12: solve(v, Sv ∪ dem(v), x conditioned on event v)
13: end for
14: end procedure

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 59 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Rounding a Lifted Fractional Solution

T̃ can be induced by Ṽ through the following algorithm. Initially, Ṽ← ∅.
Then we call solve(root(T0),dem(root(T0)), x∗).

Note that although we had the constraint that x(root(T0),ℓ) = 1 for ℓ ∈ K,
the solution is fractional and thus there might not be a leaf that ”fully”
supply the label. Regardlessly, as claimed before, the probability that a
local label will be included by the conditioning procedure is high.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 60 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Algorithm

We shall show some properties first to make sure the algorithm is
well-defined.
Lemma 19
For every recursion of solve that the algorithm invokes,
(a). at the beginning of the recursion, we have xu = 1 and x(u,ℓ) = 1 for

all ℓ ∈ L′, and
(b). the random sampling process is well-defined, that is,

∑
v∈Λu x(v,ℓ) = 1

before each step.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 61 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Algorithm

We prove the lemma recursively.
u = root(T0) follows by the definition of x∗.
If (a). holds for some u /∈ Vleaf, then (b). also holds as
x(u,ℓ) =

∑
v∈Λu x(v,ℓ)

If (b). holds for some u /∈ Vleaf. After finishing Loop 6,
x(v,ℓ) = 1, ∀v ∈ Λu, ℓ ∈ Sv. Let x′ be the polytope passed in
sub-recursion at Line 12. We have x′v = x′(v,ℓ) = 1, ∀ℓ ∈ Sv. Also,
x′(v,ℓ) = x′v = 1, ∀ℓ ∈ dem(v) follows by definition. Therefore, (a).
holds for every child v ∈ Λu.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 62 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Analyzing the Algorithm

Next, we shall show that T̃ is indeed label-consistent.
dem(u) ⊆ L by Line 12 and the first call
solve(root(T0),dem(root(T0)), x∗).
By Loop 6, each label ℓ ∈ dem(u) will be passed down to some leaf
node v ∈ Λleaf

u . By 19 (a). we have x(v,ℓ) = 1 at the beginning of the
recursion. Hence ℓ = av.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 63 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Marginal Probabilities

We define some notations for the convenience of the following discussion.
Let x(u,i) be the value of x after the i-th iteration of Loop 6 in
solve(u, ·, ·), or the value at the end of loop if it terminates in less
than i iterations.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 64 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Marginal Probabilities
The following lemmas state that the marginal probabilities of events are
maintained in the random process.
Lemma 20
Let u ∈ V(T0), i ∈ [sh], xold = x(u,i−1), xnew = x(u,i). Let E be any event
determined by the random numbers generated before xold. Then, for every
e ∈ D, we have

E
[
xnew

e | xold
e , E

]
= xold

e .

Lemma 21
Let u ∈ Vint, v ∈ Λu, xold = x(u,sh), xnew = x(v,0). Let E be any event
determined by the random numbers generated before xold. Then, for every
e = v ∈ V(T0[u]) or e = (v, ℓ) for some v ∈ V(T0[u]), we have

E
[
xnew

e | xold
e , E

]
= xold

e .

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 65 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Marginal Probabilities

The aforementioned lemmas can be proved by the definition of expectation
and conditioning in the Sherali-Adams Hierarchy. With these lemmas, we
could derive the following corollaries.

Corollary 1

For every v ∈ V(T0), we have P
[
v ∈ Ṽ

]
= x∗v.

Corollary 2
E
[
cost(T̃)

]
≤ opt.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 66 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bounding Probabilities

To finish the proof, it suffices to show that each label is provided by T̃
with high probability.
Let tℓ be the number of nodes v ∈ Ṽ ∩ Vleaf with av = ℓ, then

Lemma 22
E[tℓ] = 1.

It is easy to prove. By Corollary 1 we have

E[tℓ] =
∑

v∈Vleaf:av=ℓ

P[v ∈ Ṽ] =
∑

v∈Vleaf:av=ℓ

x∗v = x∗(root(T0),ℓ) = 1.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 67 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bounding Probabilities

Lemma 23
For every w ∈ Vleaf with aw = ℓ, we have E

[
tℓ | w ∈ Ṽ

]
≤ h + 1.

We give an approach to prove it. Let h′ be the depth of w in T0.
For i = 0, 1, . . . , h′ − 1, Define
Ui := {w′ ∈ Vleaf \ {w} | aw′ = ℓ, the depth of LCA of w, w’ is i}
If we could prove E

[
|Ui ∩ Ṽ| | w ∈ Ṽ

]
≤ 1, then the results follows by

summing up the inequality over all i = 0, 1, 2, . . . , h′ − 1.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 68 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bounding Probabilities

Now we shall prove E
[
|Ui ∩ Ṽ| | w ∈ Ṽ

]
≤ 1 for all 0 ≤ i < h′. Let ui be

the ancestor of w with depth i, and (Sv)v∈Λu be the vector before Loop 11
in solve(u, ·, ·). The following equation holds.

P
[
w′ ∈ Ṽ | (Sv)v∈Λu,x(u,sh),w∈Ṽ

]
= P

[
w′ ∈ Ṽ | (Sv)v∈Λu,x(u,sh)

]
= E

[
x(w

′,0)
w′ | (Sv)v∈Λu , x(u,sh)

]
= x(u,sh)w′

The last equality follows from Lemma 20 and Lemma 21.
Summing up all w′ ∈ Ui we have

E
[
|Ui ∩ Ṽ|

]
=
∑

w′∈Ui

x(u,sh)w′ =
∑

w′∈Ui

x(u,sh)(w′,ℓ) ≤ x(u,sh)(u,ℓ) ≤ 1.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 69 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bounding Probabilities

Lastly, we will state the following lemma.

Lemma 24
For every ℓ ∈ K, we have E [tℓ | tℓ ≥ 1] ≤ h + 1.

With the lemma above, we could simply derive that

1 = E[tℓ] = E [tℓ | tℓ ≥ 1] · P[tℓ ≥ 1]⇒ P[tℓ ≥ 1] ≥ 1

h + 1
.

This finishes the proof of Theorem 18.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 70 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Bounding Probabilities

Finally, we give a derivation of Lemma 24. In the following, w,w′ in
summations are over all nodes in Vleaf with label ℓ.

E [tℓ | tℓ ≥ 1]2 ≤ E
[
t2ℓ | tℓ ≥ 1

]
=
∑
w,w′

P
[
w,w′ ∈ Ṽ | tℓ ≥ 1

]

=
∑

w

(
P
[
w ∈ Ṽ | tℓ ≥ 1

]∑
w′

P
[
w′ ∈ Ṽ | w ∈ Ṽ, tℓ ≥ 1

])
=
∑

w
P
[
w ∈ Ṽ | tℓ ≥ 1

]
E[tℓ | w ∈ Ṽ]

≤ (h + 1)
∑

w
P
[
w ∈ Ṽ | tℓ ≥ 1

]
= (h + 1)E [tℓ | tℓ ≥ 1]⇒ E [tℓ | tℓ ≥ 1] ≤ h + 1.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 71 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

1 Introduction

2 Previous & Related Works

3 Decomposition Tree

4 Label-Consistent Subtree

5 Approximation Algorithm for Label-Consistent Subtree

6 LP Relaxation

7 Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 72 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hardness Results

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 73 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Overview

Definition 25
Quasi-polynomial-time algorithms run in O(2polylog(n)) time. More
precisely, QP =

∪
c∈N DTIME(2O(logc n)).

Definition 26
ZPTIME(f(n)) refers to randomized algorithms that always return the
correct answer and have randomized running times with expectation
O(f(n)).

Remark
It will be shown that, assuming the Projection Game Conjecture (which
will be stated later) and NP ̸⊆

∩
0<ϵ<1 ZPTIME(2nϵ

), the optimal
approximation ratio for quasi-polynomial time algorithms is
O(log2 k/ log log k).

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 74 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Prior Bounds

Remark
[HK03] shows that, by assuming NP ̸⊆ ZPTIME(npolylog(n)), an
approximation ratio O(log2−ϵ k) is infeasible for (quasi-)polynomial time
algoithms.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 75 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Projection Game

Definition 27
Projection Game Let G = (U,W;E) be a bipartite graph and Σ a set of
labels. We associate each edge (u,w) ∈ E with a projection πuw : Σ→ Σ.
We are to find an labeling f : (U ∪W)→ Σ that associates each vertex to
a label. A labeling f is said to cover an edge (u,w) if πuw(f(u)) = f(w).
Our goal is then to find a labeling that covers the most edges.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 76 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Group Steiner Tree

Definition 28
Group Steiner Tree (GST) Given a (weighted) undirected graph G with n
vertices, a root vertex r ∈ V(G), and some vertex subsets
S1, . . . , Sk ⊆ V(G) referred to as groups, the goal of GST is to find a
minimal cost subgraph that contains a path from the root to at least a
vertex in each group.

Remark
GST can be reduced to DST by first making the edges bi-directed, then
add, for each group Si, a terminal ti, together with zero-cost edges from
each vertex in Si to ti.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 77 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(Randomized) Exponential Time Hypothesis

Definition 29
(Randomized) Exponential Time Hypothesis There exists some δ > 0 such
that 3-SAT cannot be solved in (randomized) O(2δn).

Remark
The paper uses the slightly weaker formulation
NP ̸⊆

∩
0<ϵ<1 ZPTIME(2nϵ

), though we still assume ETH for simplicity.
(The general idea is the same.)

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 78 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Projection Game Conjecture

Definition 30
Projection Game Conjecture There exists a c > 0 such that, for every
0 < ϵ ≤ c, any SAT instance ϕ of size n can be efficiently reduced to a
Projection Game on a (npoly(ϵ)-regular bipartite) graph with n1+o(n)

vertices with |Σ| = O(npoly(ϵ)). Furthermore, the game satisfies the
following.

If ϕ is satisfiable, then there is a labeling covering every edge.
Otherwise, there exists no labeling covering more than a n−ϵ fraction
of the edges.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 79 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

ETH for Projection Games

By comparing the coefficients, we can derive

Corollary 31

Assuming the previous hypothesises, for any 0 ≤ ϵ < c, there is no
O(2nϵ

)-time algorithm that outputs an nϵ-approximation of the Projection
Game.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 80 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Polylogarithmic Inapproximability

Theorem 32
Consider an instance ψ of the Projection Game on a ∆-regular n-vertex
bipartite graph G with the label set Σ of size σ. For any parameter
1 ≤ h ≤ O(log2 n), there is a randomized reduction from ψ to a GST on a
tree T with k groups such that |V(T)| = (σn)h and k = ∆nh satisfying the
following with high probability.

If there is a labeling covering all edges of G, then there is a feasible
solution to the GST with cost h2.
If there is no labeling covering γ fraction of edges, there is no feasible
solution to the GST with cost < min(γ− 1

2 h,Ω(h log k)).

The proof can be found in [HK03].

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 81 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lower Bound

By choosing the parameters carefully, we obtain

Theorem 33
Assuming Corollary 31, there exists no quasi-polynomial time algorithm
that approximates GST (and therefore DST) to a ratio of
o(log2 k/ log log k) or o(log2 N/ log log N).

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 82 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References I

Moses Charikar et al. “Approximation Algorithms for Directed
Steiner Problems”. In: Journal of Algorithms 33.1 (1999),
pp. 73–91. issn: 0196-6774. doi:
https://doi.org/10.1006/jagm.1999.1042. url:
https://www.sciencedirect.com/science/article/pii/
S0196677499910428.
Joseph Cheriyan et al. “Approximating Rooted Steiner
Networks”. In: ACM Trans. Algorithms 11.2 (Oct. 2014). issn:
1549-6325. doi: 10.1145/2650183. url:
https://doi.org/10.1145/2650183.
Chandra Chekuri and M. Pal. “A recursive greedy algorithm
for walks in directed graphs”. In: 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’05).
2005, pp. 245–253. doi: 10.1109/SFCS.2005.9.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 83 / 86

https://doi.org/https://doi.org/10.1006/jagm.1999.1042
https://www.sciencedirect.com/science/article/pii/S0196677499910428
https://www.sciencedirect.com/science/article/pii/S0196677499910428
https://doi.org/10.1145/2650183
https://doi.org/10.1145/2650183
https://doi.org/10.1109/SFCS.2005.9

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References II

Anupam Gupta, Ravishankar Krishnaswamy, and R. Ravi.
“Tree Embeddings for Two-Edge-Connected Network Design”.
In: Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’10. Austin, Texas:
Society for Industrial and Applied Mathematics, 2010,
pp. 1521–1538. isbn: 9780898716986.
Naveen Garg, Goran Konjevod, and R. Ravi. “A
Polylogarithmic Approximation Algorithm for the Group
Steiner Tree Problem”. In: Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms. SODA ’98.
San Francisco, California, USA: Society for Industrial and
Applied Mathematics, 1998, pp. 253–259. isbn: 0898714109.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 84 / 86

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References III

Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li.
O(log2 k/ log log k)-Approximation Algorithm for Directed
Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm.
2018. arXiv: 1811.03020 [cs.DS].
Eran Halperin and Robert Krauthgamer. “Polylogarithmic
Inapproximability”. In: Proceedings of the Thirty-Fifth Annual
ACM Symposium on Theory of Computing. STOC ’03. San
Diego, CA, USA: Association for Computing Machinery, 2003,
pp. 585–594. isbn: 1581136749. doi:
10.1145/780542.780628. url:
https://doi.org/10.1145/780542.780628.
Shunhua Jiang et al. Faster Dynamic Matrix Inverse for Faster
LPs. 2020. arXiv: 2004.07470 [cs.DS].

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 85 / 86

https://arxiv.org/abs/1811.03020
https://doi.org/10.1145/780542.780628
https://doi.org/10.1145/780542.780628
https://arxiv.org/abs/2004.07470

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

References IV

Bundit Laekhanukit. “Parameters of Two-Prover-One-Round
Game and the Hardness of Connectivity Problems”. In:
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’14. Portland,
Oregon: Society for Industrial and Applied Mathematics, 2014,
pp. 1626–1643. isbn: 9781611973389.
Thomas Rothvoß. Directed Steiner Tree and the Lasserre
Hierarchy. 2012. arXiv: 1111.5473 [cs.DS].
Hanif Sherali and Warren Adams. “A Hierarchy of Relaxations
Between the Continuous and Convex Hull Representations for
Zero-One Programming Problems”. In: SIAM J. Discrete
Math. 3 (May 1990), pp. 411–430. doi: 10.1137/0403036.

Grandoni, Laekhanukit, Li tree21spr June 1st, 2021 86 / 86

https://arxiv.org/abs/1111.5473
https://doi.org/10.1137/0403036

	Introduction
	Previous & Related Works
	Decomposition Tree
	Label-Consistent Subtree
	Approximation Algorithm for Label-Consistent Subtree
	LP Relaxation
	Hardness Results
	References

