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1 Introduction

Suppose you have a business with several branch offices and you want to lease phone lines to connect
them with each other. Your goal is to connect all your offices with the minimum total cost. The
resulting connection should be a spanning tree since if it is not a tree, you can always remove some
edges without losing the connectivity to save money.

A minimum spanning tree (MST) of a weighted graph G is a spanning tree of G whose edges
sum to minimum weight. In other words, a minimum spanning tree is a tree formed from a subset
of the edges in a given undirected graph, with two properties: (1) it spans the graph, i.e., it includes
every vertex in the graph, and (2) it is a minimum, i.e., the total weight of all the edges is as low
as possible.

The minimum spanning tree problem is always included in algorithm textbooks since (1) it
arises in many applications, (2) it is an important example where greedy algorithms always deliver
an optimal solution, and (3) clever data structures are necessary to make it work efficiently.

What is a minimum spanning tree for the weighted graph in Figure 1? Notice that a minimum
spanning tree is not necessarily unique. 4 3 4115 2 1 12a b cde fg h2

Figure 1: A weighted graph.

Figure 2 gives four minimum spanning trees, where each of them is of total weight 14. These
trees can be derived by growing the spanning tree in a greedy way.

Before exploring the MST algorithms, we state some important facts about spanning trees. Let
G + e denote the graph obtained by inserting edge e into G.

Lemma 1: Any two vertices in a tree are connected by a unique path.
∗An excerpt from the book “Spanning Trees and Optimization Problems,” by Bang Ye Wu and Kun-Mao Chao

(2004), Chapman & Hall/CRC Press, USA.
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Figure 2: Some minimum spanning trees.

Proof: Since a tree is connected, any two vertices in a tree are connected by at least one simple
path. Let T be a tree, and assume that there are two distinct paths P1 and P2 from vertex u to
vertex v. There exists an edge e = (x, y) of P1 that is not an edge of P2. It can be seen that
(P1 ∪ P2)− e is connected, and it contains a path Pxy from vertex x to vertex y. But then Pxy + e
is a cycle. This is a contradiction. Thus, there can be at most one path between two vertices in a
tree.

Lemma 2: Let T be a spanning tree of a graph G, and let e be an edge of G not in T . Then
T + e contains a unique cycle.

Proof: Let e = (u, v). Since T is acyclic, each cycle of T + e contains e. Moreover, X is a cycle
of T + e if and only if X − e is a path from u to v in T . By Lemma 1, such a path is unique in T .
Thus T + e contains a unique cycle.

In this chapter, we shall examine three well-known algorithms for solving the minimum spanning
tree problem: Bor̊uvka’s algorithm, Prim’s algorithm, and Kruskal’s algorithm. They all exploit
the following fact in one way or another.

Theorem 3: Let F1, F2, . . . , Fk be a spanning forest of G, and let (u, v) be the smallest of all
edges with only one endpoint u ∈ V (F1). Then there is an optimal one containing (u, v) among all
spanning trees containing all edges in ∪k

i=1E(Fi).

Proof: By contradiction. Suppose that there is a spanning tree T of G with ∪k
i=1E(Fi) ⊆ E(T ),

and (u, v) /∈ E(T ), which is smaller than all spanning trees containing ∪k
i=1E(Fi) ∪ {(u, v)}. By

Lemma 2, T + (u, v) contains a unique cycle. Since v /∈ V (F1), this cycle contains some vertices
outside F1. Thus there exists an edge (u′, v′), different from (u, v), on this cycle such that u′ ∈ V (F1)
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and v′ /∈ V (F1). Since this edge is no smaller than (u, v), and does not belong to ∪k
i=1E(Fi),

T +(u, v)−(u′, v′) is a new spanning tree with total weight no more than T . This is a contradiction.
It follows that there is an optimal one containing (u, v) among all spanning trees containing all
edges in ∪k

i=1E(Fi).

2 Bor̊uvka’s Algorithm

The earliest known algorithm for finding a minimum spanning tree was given by Otakar Bor̊uvka
back in 1926. In a Bor̊uvka step, every supervertex selects its smallest adjacent edge. These edges
are added to the MST, avoiding cycles. Then the new supervertices, i.e., the connected components,
are calculated by contracting the graph on the edges just added to the MST. This process is repeated
until only one supervertex is left. In other words, there are n − 1 edges contracted. The union of
these edges gives rise to a minimum spanning tree.

Algorithm: Bor̊uvka
Input: A weighted, undirected graph G = (V,E, w).
Output: A minimum spanning tree T

T ← ∅
while |T | < n− 1 do

F ← a forest consisting of the smallest edge incident to
each vertex in G

G ← G\F
T ← T ∪ F

Figure 3 illustrates the execution of the Bor̊uvka algorithm on the graph from Figure 1. In
Figure 3(a), each vertex chooses the smallest incident edge without causing cycles. In Figure 3(b),
vertices a, b, c, d, e, and f are contracted into one supervertex, and vertices g and h are contracted
into the other supervertex. In Figure 3(d), these two supervertices are contracted into one super-
vertex. All the contracted edges constitute a minimum spanning tree as shown in Figure 3(e).

Notice that each Bor̊uvka step reduces the number of vertices by a factor of at least two.
Therefore the while loop will be executed at most O(log n) times. In each iteration, all the
contraction can be done in O(m) time. In total, the Bor̊uvka algorithm has a running time of
O(m log n).

3 Prim’s Algorithm

Prim’s algorithm was conceived by computer scientist Robert Prim in 1957. It starts from an
arbitrary vertex, and builds upon a single partial minimum spanning tree, at each step adding an
edge connecting the vertex nearest to but not already in the current partial minimum spanning
tree. It grows until the tree spans all the vertices in the input graph. This strategy is greedy in the
sense that at each step the partial spanning tree is augmented with an edge that is the smallest
among all possible neighboring edges.

Algorithm: Prim
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4 3 4115 2 1 12a b cde fg h2(a) (b)(a, b, c, d, e, f)(g, h)2
(c)(a, b, c, d, e, f)(g, h)2 (a, b, c, d, e, f, g, h)(d) 4 3 4115 2 1 12a b cde fg h2(e)

Figure 3: The execution of the Bor̊uvka algorithm on the graph from Figure 1.

Input: A weighted, undirected graph G = (V,E, w).
Output: A minimum spanning tree T .

T ← ∅
Let r be an arbitrarily chosen vertex from V .
U ← {r}
while |U | < n do

Find u ∈ U and v ∈ V − U such that the edge (u, v) is a smallest
edge between U and V − U .

T ← T ∪ {(u, v)}
U ← U ∪ {v}

Figure 4 illustrates the execution of the Prim algorithm on the graph from Figure 1. It starts
at vertex a. Since (a, b) is the smallest edge incident to a, it is included in the spanning tree under
construction (see Figure 4(a)). In Figure 4(b), (b, d) is added because it is the smallest edge between
{a, b} and V − {a, b}. When there is a tie, as in the situation in Figure 4(c), any smallest edge
would work well. Proceed this way until all vertices are spanned. The final minimum spanning tree
is shown in Figure 4(h).

Prim’s algorithm appears to spend most of its time finding the smallest edge to grow. A
straightforward method finds the smallest edge by searching the adjacency lists of the vertices
in V ; then each iteration costs O(m) time, yielding a total running time of O(mn). By using
binary heaps, this can be improved to O(m log n). By using Fibonacci heaps, Prim’s algorithm
runs in O(m + n log n) time. Interested readers should refer to the end of this chapter for further
improvements.

4 Kruskal’s Algorithm

Kruskal’s algorithm was given by Joseph Kruskal in 1956. It creates a forest where each vertex in
the graph is initially a separate tree. It then sorts all the edges in the graph. For each edge (u, v)
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4 3 4115 2 1 12a b cde fg h2(a) (a, b) is added. 4 3 4115 2 1 12a b cde fg h2(b) (b, d) is added.4 3 4115 2 1 12a b cde fg h2(c) (d, e) is added. 4 3 4115 2 1 12a b cde fg h2(d) (d, f) is added.4 3 4115 2 1 12a b cde fg h2(e) (f, h) is added. 4 3 4115 2 1 12a b cde fg h2(f) (g, h) is added.4 3 4115 2 1 12a b cde fg h2(g) (b, c) is added. 4 311 12a b cde fg h2(h) A minimum spanning tree.
Figure 4: The execution of the Prim algorithm on the graph from Figure 1.
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in sorted order, we do the following. If vertices u and v belong to two different trees, then add
(u, v) to the forest, combining two trees into a single tree. It proceeds until all the edges have been
processed.

Algorithm: Kruskal
Input: A weighted, undirected graph G = (V,E, w).
Output: A minimum spanning tree T .

Sort the edges in E in nondecreasing order by weight.
T ← ∅
Create one set for each vertex.
for each edge (u, v) in sorted order do

x ← Find(u)
y ← Find(v)
if x 6= y then

T ← T ∪ {(u, v)}
Union(x, y)

Figure 5 illustrates the execution of the Kruskal algorithm on the graph from Figure 1.
Initially, every vertex is a tree in the forest. Let the sorted order of the edges be 〈(d, e), (g, h),
(e, f), (d, f), (b, d), (e, g), (f, h), (b, c), (a, b), (c, h), (a, g)〉. Since (d, e) joins two distinct trees
in the forest, it is added to the forest, thereby merging the two trees (see Figure 5(a)). Next we
consider (g, h). Vertex g and vertex h belong to two different trees, thus (g, h) is added to the
forest as shown in Figure 5(b). In Figure 5(d), when (d, f) is processed, both d and f belong to
the same tree, therefore we do nothing for this edge. The final minimum spanning tree is shown in
Figure 5(h).

Sorting the edges in nondecreasing order takes O(m log m) time. The total running time of
determining if the edge joins two distinct trees in the forest is O(mα(m,n)) time, where α is the
functional inverse of Ackermann’s function defined in [17]. Therefore the asymptotic running time
of Kruskal’s algorithm is O(m log m), which is the same as O(m log n) since log m = Θ(log n) by
observing that m = O(n2) and m = Ω(n).

5 Applications

Minimum spanning trees are useful in constructing networks, by describing the way to connect a
set of sites using the smallest total amount of wire. Much of the work on minimum spanning trees
has been conducted by the communications company.

5.1 Cable TV

One example is a cable TV company laying cable to a new neighborhood. If it is constrained to
bury the cable only along certain paths, then there would be a graph representing which points are
connected by those paths. Some of those paths might be more expensive, because they are longer,
or require the cable to be buried deeper. A spanning tree for that graph would be a subset of those
paths that has no cycles but still connects to every house. There might be several spanning trees
possible. A minimum spanning tree would be one with the lowest total cost.
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4 3 4115 2 1 12a b cde fg h2(a) (d, e) is added. 4 3 4115 2 1 12a b cde fg h2(b) (g, h) is added.4 3 4115 2 1 12a b cde fg h2(c) (e, f) is added. 4 3 4115 2 1 12a b cde fg h2(d) (b, d) is added.4 3 4115 2 1 12a b cde fg h2(e) (e, g) is added. 4 3 4115 2 1 12a b cde fg h2(f) (b, c) is added.4 3 4115 2 1 12a b cde fg h2(g) (a, b) is added. 4 3112 1 2a b cde fg h(h) A minimum spanning tree.
Figure 5: The execution of the Kruskal algorithm on the graph from Figure 1.

7



5.2 Circuit design

In the design of electronic circuitry, it is often necessary to wire some pins together in order to
make them electrically equivalent. A minimum spanning tree needs the least amount of wire to
interconnect a set of points.

5.3 Islands connection

Suppose we have a group of islands that we wish to link with bridges so that it is possible to travel
from one island to any other in the group. Further suppose that the government wishes to spend
the minimum amount on this project. The engineers are able to calculate a cost for a bridge linking
each possible pair of islands. The set of bridges that will enable one to travel from any island to
any other at the minimum cost to the government is the minimum spanning tree.

5.4 Clustering gene expression data

Minimum spanning trees also provide a reasonable way for clustering points in space into natural
groups. For example, Ying Xu and his coworkers [19] describe a new framework for representing
a set of multi-dimensional gene expression data as a minimum spanning tree. A key property of
this representation is that each cluster of the gene expression data corresponds to one subtree of
the MST, which rigorously converts a multi-dimensional clustering problem to a tree partitioning
problem. They have demonstrated that, although the inter-data relationship is greatly simplified
in the MST representation, no essential information is lost for the purpose of clustering. They
observe that there are two key advantages in representing a set of multi-dimensional data as an
MST. One is that the simple structure of a tree facilitates efficient implementations of rigorous
clustering algorithms, which otherwise are highly computationally challenging. The other is that
it can overcome many of the problems faced by classical clustering algorithms since an MST-
based clustering does not depend on detailed geometric shape of a cluster. A new software tool
called EXCAVATOR, which stands for “EXpression data Clustering Analysis and VisualizATiOn
Resource,” has been developed based on this new framework. The clustering results on the gene
expression data (1) from yeast Saccharomyces cerevisiae, (2) in response of human fibroblasts to
serum, and (3) of Arabidopsis in response to chitin elicitation are very promising.

5.5 MST-based approximations

In the traveling salesperson problem (TSP), we are given a complete undirected graph G that
has weight function w associated with each edge, and we wish to find a tour of G with minimum
weight. This problem has been shown to be NP-hard even when the weight function satisfies the
triangle inequality, i.e., for all three vertices x, y, z ∈ V , w(x, z) ≤ w(x, y) + w(y, z). The triangle
inequality arises in many practical situations. It can be shown that the following strategy delivers
an approximation algorithm with a ratio bound of 2 for the traveling salesperson problem with
triangle inequality. First, find a minimum spanning tree T for the given graph. Then double the
MST and construct a tour T ′. Finally, add shortcuts so that no vertex is visited more than once,
which is done by a preorder tree walk. The resulting tour is of length no more than twice of the
optimal. It can also be shown that an MST-based approach also provides a good approximation
for the Steiner tree problems.
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6 Summary

We have briefly discussed three well-known algorithms for solving the minimum spanning tree
problem: Bor̊uvka’s algorithm, Prim’s algorithm, and Kruskal’s algorithm. All of them work in a
“greedy” fashion.

For years, many improvements have been made for this classical problem. We close this chapter
by sketching one possible extension to these three basic algorithms. First apply the contraction step
in Bor̊uvka’s algorithm for O(log log n) time. This takes O(m log log n) time since each Bor̊uvka’s
contraction step takes O(m) time. After these contraction steps, the number of the supervertices
of the contracted graph is at most O(n/2log log n) = O(n/ log n). Then apply Prim’s algorithm to
the contracted graph, which runs in time O(m + (n/ log n) log n) = O(m + n). In total, this hybrid
algorithm solves the minimum spanning tree problem in O(m log log n) time.

Bibliographic Notes and Further Reading

The history of the minimum spanning tree (MST) problem is long and rich. An excellent survey
paper by Ronald Graham and Pavol Hell [9] describes the history of the problem up to 1985. The
earliest known MST algorithm was proposed by Otakar Bor̊uvka [1], a great Czech mathematician,
in 1926. At that time, he was considering an efficient electrical coverage of Bohemia, which occupies
the western and middle thirds of today’s Czech Republic. In the mid-1950s when the computer
age just began, the MST problem was attacked again by several researchers. Among them, Joseph
Kruskal [14] and Robert Prim [16] gave two commonly used textbook algorithms. Both of them
mentioned Bor̊uvka’s paper. In fact, Prim’s algorithm was a rediscovery of the algorithm by the
prominent number theoretician Vojtěch Jarńık [10].

Textbook algorithms run in O(m log n) time. Andrew Chi-Chih Yao [20], and David Cheriton
and Robert Tarjan [4] independently made improvements to O(m log log n). By the invention of
Fibonacci heaps, Michael Fredman and Robert Tarjan [7] reduced the complexity to O(mβ(m,n)),
where β(m,n) = min{i| logi n ≤ m/n}. In the worst case, m = O(n) and the running time is
O(m log∗m). The complexity was further lowered to O(m log β(m,n)) by Harold N. Gabow, Zvi
Galil, Thomas H. Spencer, and Robert Tarjan [8].

On the other hand, David Karger, Philip Klein, and Robert Tarjan [11] gave a randomized
linear-time algorithm to find a minimum spanning tree in the restricted random-access model. If
the edge costs are integer and the models allow bucketing and bit manipulation, Michael Fredman
and Dan Willard [6] gave a deterministic linear-time algorithm.

Given a spanning tree, how fast can we verify that it is minimum? Robert Tarjan [18] gave an
almost linear-time algorithm by using path compression. János Komlós [13] showed that a minimum
spanning tree can be verified in linear number of comparisons, but with nonlinear overhead to decide
which comparisons to make. Brandon Dixon, Monika Rauch, and Robert Tarjan [5] gave the first
linear-time verification algorithm. Valerie King [12] proposed a simpler linear-time verification
algorithm. All these methods use the fact that a spanning tree is a minimum spanning tree if and
only if the weight of each nontree edge (u, v) is at least the weight of the heaviest edge in the path
in the tree between u and v.

It remains an open problem whether a linear-time algorithm exists for finding a minimum
spanning tree. Bernard Chazelle [2] took a significant step towards a solution and charted out a
new line of attack. His algorithm runs in O(mα(m,n)) time, where α is the functional inverse of
Ackermann’s function defined in [17]. The key idea is to compute suboptimal independent sets in a
nongreedy fashion, and then progressively improve upon them until an optimal solution is reached.
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An approximate priority queue, called a soft heap [3], is used to construct a suboptimal spanning
tree, whose quality is progressively refined until a minimum spanning tree is finally produced.

Seth Pettie and Vijaya Ramachandran [15] established that the algorithmic complexity of the
minimum spanning tree problem is equal to its decision-tree complexity. They gave a deterministic,
comparison-based MST algorithm that runs in O(T ∗(m, n)), where T ∗(m,n) is the number of edge-
weight comparisons needed to determine the MST. Because of the nature of their algorithm, its
exact running time is unknown. The source of their algorithm’s mysterious running time, and
its optimality, is the use of precomputed “MST decision trees” whose exact depth is unknown
but nonetheless provably optimal. A trivial lower bound is Ω(m); and the best upper bound is
O(mα(m,n)) [2].
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