Tree Eccentricities, diameters, and radii Kumllallan C2019

$$
G=(V, E, \omega)
$$

ω : positive edge weights

$$
\begin{aligned}
& U \subseteq V \\
& D_{G}(v, u)=\max _{u \in U}\left\{d_{G}(v, u)\right\}
\end{aligned}
$$

The eccentricity of u is the maximum of the distance to any venter in the graph, ie. $\max _{u \in V}\left\{d_{G}(v, u)\right\}$ or $D_{G}(v, v)$.
Diameter: $\max _{\hat{v} \in\left\{\max _{u \in V}\left\{d_{G}(v, u)\right\}\right\}=\max _{u, u} d_{G}(u v), ~(v)}$ also referred to as a path
Radius: $\min _{\nexists v \in V}\left\{\max _{u \in V}\left\{d_{G}(v, u)\right\}\right\}$ ${ }^{(1)}$ Center: the vertex with the minimum eccentricity

centers
radius $=9$
diameter $=16$

radius $=2$
diameter $=4$

radius $=2 \quad$ radius $=1$ diameter =3 diameter $=2$

For an unweighted tree T,

$$
2 \times \text { radius }-1 \leq \text { diameter } \leq 2 \times \text { radius. }
$$

At least
onebranch
\geqslant radius -1
(otherwise, we have
a smaller radius by
selectry y ar the center.)

$$
\begin{aligned}
\Rightarrow \text { diameter } & \geqslant \text { radius + radius }-1 \\
& =2 \times \text { radius }-1
\end{aligned}
$$

Kun-MaoClo2019
For positive weighted tree T,

$$
\begin{aligned}
& 2 \times \text { radius }-\max _{e \in E}\{\omega(e)\} \leq \frac{\text { diameter }}{} \leq 2 \times \text { radius } \\
& \uparrow \\
& \text { center } x d_{T}(u, u) \leq d_{T}(u, x)+d_{T}(x, u) \\
& \leq 2 \times \text { radius }
\end{aligned}
$$

At least one branch $\geqslant \operatorname{radius}-\max _{e \in E}\{\omega(\mathrm{fe})\}$
(Otherwise, we have a sinaller radius by selecting y as the center.)

$$
\begin{aligned}
\Rightarrow \text { diameter } & \geqslant \text { radius +radius }-\max _{e \in E}\{w(e)\} \\
& =2 \times \text { radius }-\max _{e \in E}\{\omega(e)\}
\end{aligned}
$$

Km-Hew Chow @2o19
Tr: a subtree rooted at r

$$
\begin{aligned}
& D_{T_{r}}\left(r, V\left(T_{r}\right)\right)= \\
& \quad \max _{s \in c h i d d}\left\{D_{T_{r}}\left(s, V\left(T_{s}\right)\right)+w(r, s)\right\}
\end{aligned}
$$

We can root the tree at any given vertex v and compute v 's eccentricity in linear time by the above recurrence relation. (Postorder traversal or recursive algorithm)

Kun-Mar Chw@2019

$$
C(x, y, z)=S P_{T}(x, y) \cap S P_{T}(x, z) \cap S P_{T}(y, z)
$$

$$
\begin{aligned}
& d_{T}(x, c(x, y, z)) \\
& =\frac{1}{2}\left(d_{T}(x, y)+d_{T}(x, z)-d_{T}(y, z)\right) \\
& =\frac{1}{2}\left(d_{T}(x, y)+d_{T}(x, z)+d_{T}(y, z)\right)-d_{T}(y, z)
\end{aligned}
$$

$S P_{T}\left(v, v_{2}\right)=$ diameter
$r=$ a vertex on $S P_{T}\left(v_{1}, v_{2}\right)$
diameter

For any vertex $x, d_{T}(x, r) \leq \max \left\{d_{T}(r, v)\right.$, $\left.d_{T}\left(r_{1}, \nu_{2}\right)\right)^{2}$.
pf. If $d_{T}(x, r)>\max \left\{d_{T}(r, v), d_{T}\left(r, v_{2}\right)\right\}$, then $S P_{T}\left(x, v_{1}\right)$ or $S P_{T}\left(x, v_{2}\right)$ is a path
$\left.S P_{1}(x, v)>v_{2}\right)$ longer then the diameter. $x \rightarrow S_{T} P_{T}(x, y, N)>$ $s_{T}\left(v_{1}, v_{2}\right) v_{i}$

$$
S P_{T}\left(v_{1}, v_{2}\right)=\text { diameter }
$$

r : a vertex not on the diameter

$W \log$, let $d_{T}\left(u, \nu_{r}\right) \geqslant d_{T}\left(u, v_{2}\right)$.

$$
\begin{aligned}
d_{T}(x, r) & \leq d_{T}(x, u)+d_{T}(u, r) \\
& \leq d_{T}\left(v_{1}, u\right)+d_{T}(u, r) \\
& =d_{T}(v, r)
\end{aligned}
$$

For any vertex, either on the diameter or not, one of the endpoints of a diameter
(8) must be the farthest vertex.
$S P_{T}\left(v_{1}, v_{2}\right)$: diameter
$r=$ any vertex -) V_{3} must be an
v_{3} : the vertex farthest to r endpoint of a diameter.

$$
d_{T}\left(v_{1}, v_{3}\right)
$$

$$
=d_{T}\left(v_{1}, u_{2}\right)+d_{T}\left(u_{2}, v_{3}\right)
$$

whig, let $d_{T}\left(u_{1}, u_{1}\right) \geqslant d_{T}\left(u, u_{2}\right)$
$=2 d_{T}\left(v_{1}, u_{2}\right)$

$$
>2 d_{T}\left(v_{1}, u_{1}\right)
$$

$$
\geqslant d_{T}\left(v_{1}, v_{2}\right)
$$

A contradiction.

$$
\begin{aligned}
& \text { contradiction. } \\
& \Rightarrow u_{2} \text { is on } S P_{T}\left(v_{1}, u_{1}\right)_{0} v_{3}
\end{aligned}
$$

If $c\left(r, v_{3}, v_{2}\right) \neq u_{1}$, then $S P_{T}\left(v_{i}, v_{3}\right)$ is a diane te.
(9) Otherwise, $S P_{T}\left(V_{3}, V_{2}\right)$ is a diameter.
Klm-1MavChn@2019

Algorithm: $\operatorname{Eccent}\left(T_{r}\right)$
Input: A tree $T_{r}=(V, E, w)$ rooted at r.
Output: The eccentricity of r in T_{r}.
1: if r is a leaf then return 0;
2: for each child s of r do
 compute $\operatorname{Eccent}\left(T_{s}\right)$ recursively;
3: return $\max _{s \in \text { child }(r)}\{\operatorname{ECcent}(s)+w(r, s)\}$.
Algorithm: Tree Diameter
Input: A tree $T=(V, E, w)$.
Output: The diameter of T.
an endpoint of a
Root T at an arbitrary vertex r. \downarrow diameter
Use Accent to find the farthest vertex v to r.
Root T at v.
Use Accent to find the eccentricity of v.
Output the eccentricity of v as the diameter of T.

$$
P=S P_{T}\left(v_{1}, v_{2}\right)=\text { diameter }
$$

The eccentricity of u_{1} id $d_{T}\left(u_{1}, u_{2}\right)$.
The eccentricity of u_{2} is $d_{T}\left(u_{2}, v_{1}\right)$.

Kun-Mar Chas@2019
$p:$

For any vertex connected to P at a vertex in $P_{1}, d_{T}\left(x, v_{2}\right)>\frac{d_{T}\left(u_{1}, v_{2}\right)}{\tau_{u} \text { is eccentricity }}$
For any vertex connected to P at a vertex in $P_{2}, d_{T}\left(x, u_{1}\right)>\frac{d_{T}\left(u_{2}, v_{1}\right)}{} u_{2}^{\prime}$ seccentrity $\Rightarrow \min \left\{d_{T}\left(\underline{u_{1}}, v_{2}\right), d_{T}\left(\underline{u_{2}}, u_{1}\right)\right\}$ is the radius. One of them must be a center.

We lave proved the following theorem.
Kun-H40OChao @2019
\& Thu. The diameter, radius, and center of a tree e can be computed in linear time.

Two diameters of a tree cannot be disjoint.

$$
\begin{aligned}
& d_{T}\left(v_{1}, v_{4}\right)+d_{T}\left(v_{2}, v_{3}\right) \\
& =d_{T}\left(v_{1}, v_{2}\right)+d_{T}\left(v_{3}, v_{4}\right)+2 d_{T}\left(u_{1}, u_{2}\right) \\
& >2 d_{T}\left(v_{1}, v_{2}\right) \\
& \Rightarrow \frac{d_{T}\left(v_{1}, v_{4}\right)}{\sim}>d_{T}\left(v_{1}, v_{2}\right) \text { or } \frac{d_{T}\left(v_{2}, v_{3}\right)}{s}>d_{1}\left(v_{1}, v_{2}\right)
\end{aligned}
$$

Kun- Ha_{1} COn O2019
All diameters of a tree share at least one common vertex.

