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A 2-approximation algorithm for the SROCT problem

Bang Ye Wu Kun-Mao Chao

PROBLEM: Optimal Sum-Requirement Communication Spanning Trees (SROCT)
INSTANCE: A G = (V, E,w) with vertex weight r : V — Z.
GoAL: Find a spanning tree T of minimum s.r.c. cost.

Recall that the s.r.c. routing cost of a tree T' is defined by Cs(T) = >, (r(u) + r(v))dr(u,v).
Similar to the PROCT problem, the SROCT problem includes the MRCT problem as a special
case and is therefore NP-hard. The s.r.c. cost of a tree can also be computed by summing the
routing costs of edges. The only difference is the definition of routing load.

Definition 1: Let T be any spanning tree of a graph G, and r a vertex weight function. For
any edge e = (u,v) € E(T), we define the s.r.c. routing load on the edge e to be I4(T,r,e) =
2(r(Ty)|Ty| + r(Ty)|Ty|), where T, and T, are the two subgraphs obtained by removing e from 7.
The s.r.c. routing cost on the edge e is defined to be I5(7T, 7, e)w(e).

Lemma 1: Let T be any spanning tree of a graph G = (V, E,w) and r be a vertex weight function.
Cs(T) = ZeeE(T) Is(T, 7 e)w(e).

In this section, we focus on the approximation algorithm for an SROCT. For the PROCT
problem, it has been shown that an optimal solution for a graph has the same value as the one
for its metric closure. In other words, using bad edges cannot lead to a better solution. However,
the SROCT problem has no such a property. For example, consider the graph G in Figure 1. The
edge (a,b) is not in E(G), and T is a spanning tree of the metric closure of G. All three possible
spanning trees of G are Y7, Y5 and Y3. It will be shown that the s.r.c cost of T is less than that of
Y; fori=1,2,3.

To compare the s.r.c costs, we can only focus on the coefficient of k in the cost. Note that
only vertices a and = have nonzero weights. By Lemma 1, the s.r.c. cost of T' can be computed as
follows:

Cs(T)
= (T, r (a,b)w(a,b) + Is(T,r, (a,y))w(a,y) + s(T,r, (y, z))w(x,y)
= 2(k(4+1) +0(4k))2 +2(k x 1+ 4 x 4k)(1) + 2(5k x 1 +4 x 1)(1)
64k + . ..

Similarly we have Cy(Y7) = 66k, Cs(Y2) = 66k, and Cs(Y3) = 90k. The example illustrates that it
is impossible to transform any spanning tree of G to a spanning tree of G without increasing the
s.r.c cost for some graph G, where G is the metric closure of G. But it should be noted that the
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Figure 1: A tree with bad edges may have less s.r.c. cost. The triangles represent nodes of zero
weight and connected by zero-length edges.

example does not disprove the possibility of reducing the SROCT problem on general graphs to its
metric version.

We shall present a 2-approximation algorithm for the SROCT problem on general graphs. For
each vertex v of the input graph, the algorithm finds the shortest-paths tree rooted at v. Then it
outputs the shortest-paths tree with minimum s.r.c. cost. We shall show that there always exists a
vertex x such that any shortest-paths tree rooted at x is a 2-approximation solution.

In the following, graph G = (V, E,w) and vertex weight 7 is the input of the SROCT problem.
We assume that |V|=n, |E| =m and r(V) = R.

Lemma 2: Let T be a spanning tree of G. For any vertex x € V,

<22 nr(v) + R) dr(v, ).

veV

Proof:
Cs(T) = Y (r(w) + 7)) dr(u,v)

u, eV

< > (r(w) + 7)) (dr(u,x) + dp(z,0))
u,veV

- 9 Z v)) dr(u, x)
u,veV

< 22 (nr(v) + R)dr(v,z).
veV



U

In the following, we use T" to denote an optimal spanning tree of the SROCT problem, and use
x1 and x2 to denote a centroid and an r-centroid of T respectively. Let P = SPp(x1,z2) be the
path between the two vertices on the tree. If x1 and x9 are the same vertex, P contains only one
vertex.

Lemma 3: For any edge e € E(P), the s.r.c load I5(T,r,e) > nR.

Proof: Let T} and T5 be the two subtrees resulting by deleting e from 7T'. Assume that z; € V(1)
and xo2 € V(T2). By the definitions of centroid and r-centroid, |V (T1)| > n/2 and r(12) > R/2.
Then,

s(T,re)/2 = [V(T1)|r(T2) + [V (T3)|r(T1)
[V(T)|r(T2) + (n = [V(T1)]) (R — r(T2))
= 2(|V(TY)| — n/2) (r(Ts) — R/2) + nR/2 > nR/2.

U

The next lemma establishes a lower bound of the minimum s.r.c. cost. Remember that dr(v, P)
denotes the shortest path length from vertex v to path P.

Lemma 4: Cy(T) >3 oy (nr(v) + R) dr(v, P) + nRw(P).

Proof:  For any vertex u, we define SB(u) to be the set of vertices in the same branch of w.
Note that [SB(u)| < n/2 and r(SB(u)) < R/2 for any vertex u by the definitions of centroid and
r-centroid.

Co(T) = Y (r(w)+r)dr(u,v)

u,veV

:22 w)drp(u,v)

u,veV
23" Y r(w) (dr(u, P) + dr(v, P))

ueV v¢ SB(u)

+2 > r(ww(SPr(u,v) N P). (1)
u,veV

Y

For the first term in (1),

2> > r(u) (dr(u, P) + dr(v, P))

ueV v¢SB(u)
= 2> > rdr(w,P)+2) Y r(u)dr(v, P)
u€V v¢SB(u) u€V v¢SB(u)
> Z nr(u)dr(u, P) —}-QZ Z P)
ueV veV ug SB(v)
> > nr(u)dr(u, P)+ > Rdp(v, P)
ueVv veV
= Y (nr(v) + R)dr(v, P). (2)
veV



For the second term in (1),

2 Z w(SPr(u,v) N P)
u,veV
= 2 Z r(u) Z w(e)
u,veV e€SPr(u,v)NP
= Z (2 Zr ({ule € E(SPr(u, U))})) w(e)
e€E(P) v
= Z Is(T,r, e)w(e)
e€E(P)
> nRw(P). (by Lemma 3) (3)
The result follows (1), (2), and (3). UJ

The main result of this section is stated in the next theorem.

Theorem 5: There exists a 2-approximation algorithm with time complexity O(n?logn + mn)
for the SROCT problem.

Proof: Let Y* and Y™ be the shortest-path trees rooted at x1 and x5 respectively. Also, for
any v € V., let hy(v) = w(SPp(v,z1) N P) and he(v) = w(SPr(v,z2) N P). By Lemma 2,

Cs(Y*)/2 < ) (nr(v) + R)dy«(v, 1)

veV

< > (nr(v) + R) (dr(v, P) + ha(v)). (4)

veV
Similarly
(Y™ /2 < 2 nr( R) (dp(v, P) + ha(v)). (5)
veV

Since hi(v) + ha(v) = w(P) for any vertex v, by (4) and (5), we have
min{Cs(Y™), Cs(Y™)}

< (Cs(YF) + Cs(Y™)) /2

< > (nr(v) + R) (2dr(v, P) + ha(v) + ha(v))
= EZV (nr(v) + R) (2dr (v, P) + w(P))

= ;i (nr(v) + R) dp (v, P) + 2nRw(P)

< Q(UJ?(/T). (by Lemma 4)

We have proved that there exists a vertex x such that any shortest-paths tree rooted at x is a 2-
approximation solution. Since it takes O(nlogn+m) time to construct a shortest-paths tree rooted
at a given vertex and the s.r.c cost of a tree can be computed in O(n) time, a 2-approximation
solution of the SROCT problem can be found in O(n?logn +mn) time by constructing a shortest-
paths tree rooted at each vertex and choosing the one with minimum s.r.c cost. Ll



