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1. Abstract & Introduction (related works)

1. Incremental Quicksort (IQS)：incrementally gives the next smallest element 
of the set.

2. Quickheap (QH)：(Based on IQS) QH is a simple and efficient priority queue for 
main and secondary memory.

3. Use IQS to implement Kruskal’s MST.

4. Use QHs to implement Prim’s MST.

• Problem: Need to obtain the smallest elements form a fixed set.

(1) Kruskal’s MST.

(2) Ranking by Web search engines. (which display a very small sorted 
subset results, if user wants more, then display the next group of result.)

(1/4 pages)
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1. Abstract & Introduction (related works)

• Incremental Sorting problem：

1. Given a set A of m numbers, output the elements of A from smallest to largest. 

2. Process can be stopped after k elements have been output.

• Solved by:  [ complexity:  O(m+ k*logk) ]

1. Finding the k-th smallest element of A using O(m) time (QuickSelect 
algorithm).

2. Then collecting and sorting the elements smaller than the k-th element 
(QuickSort algorithm).

• Selection and sorting steps can be interleaved, which improves the 
constant terms.

(2/4 pages)
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1. Abstract & Introduction (related works)

• Priority Queues：

‣ insert, findMin( findMax ), extractMin( extractMax )

‣ increaseKey, decreaseKey

‣ delete...

➡ Well-known priority queues are sequence heaps , binomial queues, Fibonacci heaps , 
pairing heaps, skew heaps, and van Emde Boas queues...

• External Memory Priority Queues：

‣ Only offer basic operations :  insert, findMin , extractMin.

➡ Some external memory PQs are buffer trees ,M/B-ary heaps, Array heaps ,R heaps...

(3/4 pages)
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1. Abstract & Introduction (related works)

• IQS is 4 times faster than the classic alternative to solve the online 
problem.

• QHs is up to 4 times faster than binary heaps. (fastest priority queue 
implementations in practice)

• QHs performs up to 3 times fewer I/O accesses than R-Heaps.

• QHs performs up to 5 times fewer I/O accesses than Array-Heaps.

• External-memory Sequence Heaps are faster than QHs, but much more 
sophisticated and not cache-oblivious.

(4/4 pages)
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2. Incremental Quick Sorting (1/4 pages)

QuickSelect}
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2. Incremental Quick Sorting (2/4 pages)
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2. Incremental Quick Sorting (3/4 pages)
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2. Incremental Quick Sorting

Lemma 2.1：(After i minima have been obtained in A[0, i−1])
(1) The pivot indices in S are decreasing bottom to top.

(2) Each pivot position p != m in S, A[p] is not smaller than any element 
in A[i, p − 1] and not larger than any element in A[p + 1, m − 1].

(4/4 pages)

pf： Assume this is valid before pushing p, when p′ was the top of the stack.
(1) Since the pivot was chosen from A[i, p′ − 1] and left at some position i ≤ p ≤ p′ − 1 after 
partitioning, property (1) is guaranteed.

(2) With respect to p, the partitioning ensures that elements smaller than p are left at A[i, p − 1], 
while larger elements are left at A[p + 1, p′ − 1].
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IQS
Incremental Quick Sort
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Given a set A of m numbers IQS finds the k smallest elements, 
for any unknown value k ≤ m, in O(m + k log k) expected time.
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In IQS, the final pivot position p after the partitioning of A[0, m − 1] 
distributes uniformly in [0, m − 1].

Let T (m, k) be the expected number of key comparisons needed to 
obtain the k smallest elements of A[0, m − 1]. After the m − 1 
comparisons used in the partitioning, there are three cases depending on 
p.
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k ≤ p

k = p + 1

k > p + 1

T(p,k)

T(p,p)

T(p,p)+T(m-1-p,k-p-1)

O(m + k log k)
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Quickheaps
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Heap structure in the 
sense that objects in the 
array are semi-ordered.

18



Data Structure for Quickheaps

(Circular)Array A- to store the elements.

Stack S- to store the position of pivots.

Integer idx- to indicate the first cell of the quickheap.

Integer capacity- to indicate the size of heap.

Assume we know 
beforehand the value of 
capacity
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Creation of Quickheaps

With no elements

S = {0}, idx = 0

From an array B

copy B to A

S = {|A|}, idx = 0
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Finding the Minimum

return A[idx]

IQS(A,idx,S)
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Extracting the Minimum

return A[idx-1]

idx++; S.pop()
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Inserting Elements
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Deleting Arbitrary Elements

Non-pivot

Find S[pidx] ≥ pos

swap(A[S[pidx]-1],A[pos])

swap(A[S[pidx]-1],A[S[pidx]])

Until reach the fictitious pivot.

Pivot

drop the pivot

Join two chunks

delete as non-pivot
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Decreasing a Key
Given a position pos of some element in the quickheap and a value δ ≥ 0, 
we change the priority of the element A[pos] to heap[pos] − δ.

newValue = A[pos] − δ 
Find S[pidx] ≥ pos
if |S| == pidx +1 then A[pos] = newValue
else if newValue ≥ A[S[pidx+1]] then A[pos] = newValue
else swap(A[S[pidx+1]+1], A[pos]) and do as insertion.
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Increasing a Key
Given a position pos of some element in the quickheap, and a value δ ≥ 0, 
this operation changes the value of the element A[pos] to A[pos] + δ.
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Prensent by R99922121 Li-de Yang

4 Analysis of Quickheaps
5 Quickheaps in External Memory
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• 4 Analysis of Quickheaps

• Prove that quickheap operations cost 
O(log m) expected amortized time, where 
m is the maximum size of the quickheap.
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• 4.1 The Quickheap’s Exponential-Decrease 
Property

• array segments:
heap[idx, S[pidx] − 1], thus segments 
overlap.

• array chunks:
heap[S[pidx]+1, S[pidx−1]−1] or 
heap[idx,S.top()−1].
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• pivot of a segment:
Rightmost pivot within such segment.
Thus, the pivot of the last segment is S[1], 
whereas the first segment is the only one not 
having a pivot.

• median of a n-element set:
                             , n is odd
                                                             , n is even
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• Definition 4.1 
Quickheap’s exponential-decrease property:
for all the segments P(pivot is large) ≤ 0.5

• Pi,j,n, 1 ≤ i ≤ n, j ≥ 0, n > 0
the probability that the i-th element of the 
segment, of size n, is the pivot of the segment 
after the j-th operation

• Prove that Pi,j,n ≤ Pi−1,j,n, for all j, n and 2 ≤ i ≤ n
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• Lemma 4.1
For each segment, the property Pi,j,n ≤ Pi−1,j,n 
for i ≥ 2 is preserved after inserting a new 
element x at a position uniformly chosen in 
[1, n].
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• Lemma 4.2
For each segment, the property Pi,j,n ≤ Pi−1,j,n 
for i ≥ 2 is preserved after deleting an 
element at a position chosen uniformly 
from [1, n + 1].
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• pivoting:
partition the first segment with a pivot and 
pushes it into stack S.

• takeMin:
increment idx, pops stack S and returns 
element heap[idx − 1].
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• extractMin:

• execute pivoting as many times as we 
need to push idx in stack S

• takeMin

• findMin:

• execute pivoting as many times as we 
need to push idx in stack S

• return element heap[idx]
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• Lemma 4.3
For each segment, the property Pi,j,n ≤ Pi−1,j,n 
for i ≥ 2 is preserved after taking the 
minimum element of the quickheap.
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• Theorem 4.1 
Quickheap’s exponential-decrease property:
Given a segment heap[idx, S[pidx]−1], the 
probability that its pivot is large is smaller 
than or equal to 0.5 , that is, P(pivot is 
large) ≤ 0.5 .
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• Lemma 4.4
The expected value of the height H of stack S is 
O(log m).

• Lemma 4.5
The expected value of the sum of the sizes of array 
segments is Θ(m).
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• 4.2 The Potential Debt Method

• The potential function represents a total 
cost that has not yet been paid.

• ci: actual cost of the i-th operation

• Di: data structure that results from 
applying the i-th operation to Di−1

• Φ: potential debt function maps each data 
structure Di to a real number Φ(Di), 
which is the potential debt associated 
with data structure Di up to then
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• 4.3 Expected-case Amortized Analysis of Quickheaps
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• Expected (individual) cost

• Operation insert 
= 1 + (1 − P1)(1 + (1 − P2)(1 + (1 − P3)(1 + . . .)))
= O(1)

• Operation delete 
= 1+(1−P1)(1+(1−P2)(1+(1−P3)(1+...)))
= O(1)

• Creation of a quickheap = Θ(m)
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• Expected (individual) cost

• Operation extractMin
= 2H + 2
= O(log m)

• Operation findMin = O(1)

• Operation increaseKey
= H + 2H + 2
= O(log m)

• Operation decreaseKey: 
In practice, this operation performs 
reasonably well.
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• Theorem 4.2
Quickheap’s complexity:
The expected amortized cost of any 
sequence of m operations insert, delete, 
findMin, extractMin and increaseKey over 
an initially empty quickheap is O(log m) 
per operation.
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• 5 Quickheaps in External Memory

• 5.1 Adapting Quickheap Operations to External 
Memory

• Quickheaps exhibit high locality of reference:

• Stack S is small and accessed sequentially.

• Each pivot in S points to a position in the 
array heap. 
Array heap is only modified at those 
positions, and the positions themselves 
increase at most by one at each insertion.

• IQS sequentially accesses the elements of 
the first chunk.

45



• 5.2 Analysis of External Memory Quickheaps

• Theorem 5.1
External quickheap’s complexity:
M = Ω(B log m).
The expected amortized I/O cost of any 
sequence of m operations insert, findMin, and 
extractMin over an initially empty quickheap 
is O((1/B)log(m/M)) per operation.
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6. Boosting the MST 
Construction

On Sorting, Heaps, and Minimum Spanning Trees
Gonzalo Navarro, Rodrigo Paredes

Miao-En Chien | R00944028
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IQS implements 
Kruskal’s MST 

algorithm 

QH implements 
Prim’s MST algorithm
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Kruskal variant

on random graphs

m’ =  1/2 n lon n + O(n) 
edges

O(m+n log^2 n)
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Use QH to find the node u* with 
minimum connecting cost to the 

Update the value of each u*’s neighbor 
in QH 

Augment the QH structure with a 
dictionary managing the position of 
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inser

extract

decrease

O(1)

O(log n)

?

O(n)

O(n log n)

?

x n

x m
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inser

extract

decrease

O(1)

O(log n)

O(log n)

O(n)

O(n log n)
x n

x m O(m log n)
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Assuming that each call to decreaseKey 
has cost O(logn), this accounts for a total 

O(n log n log m/n) expected time.
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O(m + n log n log m/n)
Expected amortized time for their Prim variant on graphs 

with random weights.
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7. Experimental Results

On Sorting, Heaps, and Minimum Spanning Trees
Gonzalo Navarro, Rodrigo Paredes

Miao-En Chien | R00944028
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Compare IQS with other alternatives

The empirical behavior of QHs

56



Compare IQS with other alternatives

The empirical behavior of QHs
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1. Classical Quickselect + Quicksort solution: QSS
Use random permutations of non-repeated numbers uniformly distributed.

2. Partial Quicksort algorithm: PQS
Select the k first elements, and the selection is in one shot for PQS and QSS.

3. Incremental Quicksort: IQS
Verify that IQS is in practice a competitive algorithm for the Partial Sorting 
problem of finding the smallest elements in ascending order.

4. Classical heaps: HEx
Implemented using the bottom-up deletion algorithm.

5. Sequence heaps: SH
Select the k first elements, and the selection is incremental for IQS, HEx, 
and SH.

Evaluating 
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CPU time + Key 
comparisons
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PQ

HE

QS

SH
IQ

PQ

HE

QS
IQ
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PQ

HE

QS
IQ

O( k + mlogm )

extractMin insert

61



It is preferable to pay a lower 
insertion and a higher extraction 

cost ( just like IQS) than to 
perform most of the work in the 
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Weighted least square fittings

2.9

1.3 4.2
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1. Quickheaps: QHs
Compare the empirical performance of quickheaps.

2. Binary heaps: BH
The canonical implementation of PQs, efficient and easy to 
program.
The most efficient PQ implementations in practice.

3. Paring heaps: PH
Implement efficiently key update operations, and also the 
most efficient PQ implementations.
Includes operations insert, extractMin, and decreaseKey. 

Evaluating 
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insert extractMinO(n) O(n log n)

QH

PH

BH

QH

PH

BH
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decreaseKey
O(m log n)

increaseKey

QH

BH

PH

BH < QH < PH
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Quickheaps perform well under arbitrarily long sequences of 
insertions and minimum extractions

QH

PH

SH

BH

BH

cache-
friendly

QH

PH

SH

BH
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Evaluating External Memory Quickheaps

• 驗證在external memory裡QH的效能

• 複製了Brengel的setup

• 和R-heaps Array-Heaps比較
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Results
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Evaluating the MST Construction

• 他們用MST Construction，去比較各個
方法的performance

• 目標不是去做出⼀一個新的MST 
algorithms而是，他們對現有的
algorithms提出新的fundamental 
contributions。
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Evaluating the MST Construction

• Kruskal1 （basic Kruskal’s MST）

• Kruskal2 （with demand sorting）

• Kruskal3 （IQS-based）

• Prim1 （basic Prim’s MST algorithm）

• Prim2 （implemented with PH）

• Prim3 （implementation using QHs）

• iMax （iMax algorithm）
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Results
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Results

73



Results
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Conclusions

• IQS和現有的solution有差不多的時間複
雜度，但是它實做起來相當快。

• Quickheaps執行許多動作都是高效率的

• Quickheap有高區段性參考（high locality 
of reference），所以在secondary 
memory執行起來是幾乎是最佳化。
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Conclusions

• IQS跟quickheap改善了在許多scenarios下
現有的演算法的performance

• incremental sort去強化Kruskal’s MST 
algorithm

• priority queue去強化Prim’s MST algorithm

• 最重要的future是去設計⼀一個更強大的
Quickheaps的變化（特別是他們能夠去證
明Quickheap-based Prim的upper bound）
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