
On Sorting, Heaps,
! ! ! ! ! ! and Minimum Spanning Trees

Gonzalo Navarro, Rodrigo Paredes

R99922089 林霓苗

1

Outline

1. Abstract & Introduction (related works)

2. Incremental Quick Sorting algorithm

3. Quickheaps

4. Boosting the MST Construction

5. Experimental result

6. Conclusion & Future work

2

1. Abstract & Introduction (related works)

1. Incremental Quicksort (IQS)：incrementally gives the next smallest element
of the set.

2. Quickheap (QH)：(Based on IQS) QH is a simple and efficient priority queue for
main and secondary memory.

3. Use IQS to implement Kruskal’s MST.

4. Use QHs to implement Prim’s MST.

• Problem: Need to obtain the smallest elements form a fixed set.

(1) Kruskal’s MST.

(2) Ranking by Web search engines. (which display a very small sorted
subset results, if user wants more, then display the next group of result.)

(1/4 pages)

3

1. Abstract & Introduction (related works)

• Incremental Sorting problem：

1. Given a set A of m numbers, output the elements of A from smallest to largest.

2. Process can be stopped after k elements have been output.

• Solved by: [complexity: O(m+ k*logk)]

1. Finding the k-th smallest element of A using O(m) time (QuickSelect
algorithm).

2. Then collecting and sorting the elements smaller than the k-th element
(QuickSort algorithm).

• Selection and sorting steps can be interleaved, which improves the
constant terms.

(2/4 pages)

4

1. Abstract & Introduction (related works)

• Priority Queues：

‣ insert, findMin(findMax), extractMin(extractMax)

‣ increaseKey, decreaseKey

‣ delete...

➡ Well-known priority queues are sequence heaps , binomial queues, Fibonacci heaps ,
pairing heaps, skew heaps, and van Emde Boas queues...

• External Memory Priority Queues：

‣ Only offer basic operations : insert, findMin , extractMin.

➡ Some external memory PQs are buffer trees ,M/B-ary heaps, Array heaps ,R heaps...

(3/4 pages)

5

1. Abstract & Introduction (related works)

• IQS is 4 times faster than the classic alternative to solve the online
problem.

• QHs is up to 4 times faster than binary heaps. (fastest priority queue
implementations in practice)

• QHs performs up to 3 times fewer I/O accesses than R-Heaps.

• QHs performs up to 5 times fewer I/O accesses than Array-Heaps.

• External-memory Sequence Heaps are faster than QHs, but much more
sophisticated and not cache-oblivious.

(4/4 pages)

6

2. Incremental Quick Sorting (1/4 pages)

QuickSelect}

7

2. Incremental Quick Sorting (2/4 pages)

8

2. Incremental Quick Sorting (3/4 pages)

9

2. Incremental Quick Sorting

Lemma 2.1：(After i minima have been obtained in A[0, i−1])
(1) The pivot indices in S are decreasing bottom to top.

(2) Each pivot position p != m in S, A[p] is not smaller than any element
in A[i, p − 1] and not larger than any element in A[p + 1, m − 1].

(4/4 pages)

pf： Assume this is valid before pushing p, when p′ was the top of the stack.
(1) Since the pivot was chosen from A[i, p′ − 1] and left at some position i ≤ p ≤ p′ − 1 after
partitioning, property (1) is guaranteed.

(2) With respect to p, the partitioning ensures that elements smaller than p are left at A[i, p − 1],
while larger elements are left at A[p + 1, p′ − 1].

10

IQS
Incremental Quick Sort

11

12

13

Given a set A of m numbers IQS finds the k smallest elements,
for any unknown value k ≤ m, in O(m + k log k) expected time.

14

In IQS, the final pivot position p after the partitioning of A[0, m − 1]
distributes uniformly in [0, m − 1].

Let T (m, k) be the expected number of key comparisons needed to
obtain the k smallest elements of A[0, m − 1]. After the m − 1
comparisons used in the partitioning, there are three cases depending on
p.

15

k ≤ p

k = p + 1

k > p + 1

T(p,k)

T(p,p)

T(p,p)+T(m-1-p,k-p-1)

O(m + k log k)

16

Quickheaps

17

Heap structure in the
sense that objects in the
array are semi-ordered.

18

Data Structure for Quickheaps

(Circular)Array A- to store the elements.

Stack S- to store the position of pivots.

Integer idx- to indicate the first cell of the quickheap.

Integer capacity- to indicate the size of heap.

Assume we know
beforehand the value of
capacity

19

Creation of Quickheaps

With no elements

S = {0}, idx = 0

From an array B

copy B to A

S = {|A|}, idx = 0

20

Finding the Minimum

return A[idx]

IQS(A,idx,S)

21

Extracting the Minimum

return A[idx-1]

idx++; S.pop()

22

Inserting Elements

23

Deleting Arbitrary Elements

Non-pivot

Find S[pidx] ≥ pos

swap(A[S[pidx]-1],A[pos])

swap(A[S[pidx]-1],A[S[pidx]])

Until reach the fictitious pivot.

Pivot

drop the pivot

Join two chunks

delete as non-pivot

24

Decreasing a Key
Given a position pos of some element in the quickheap and a value δ ≥ 0,
we change the priority of the element A[pos] to heap[pos] − δ.

newValue = A[pos] − δ
Find S[pidx] ≥ pos
if |S| == pidx +1 then A[pos] = newValue
else if newValue ≥ A[S[pidx+1]] then A[pos] = newValue
else swap(A[S[pidx+1]+1], A[pos]) and do as insertion.

25

Increasing a Key
Given a position pos of some element in the quickheap, and a value δ ≥ 0,
this operation changes the value of the element A[pos] to A[pos] + δ.

26

Prensent by R99922121 Li-de Yang

4 Analysis of Quickheaps
5 Quickheaps in External Memory

27

• 4 Analysis of Quickheaps

• Prove that quickheap operations cost
O(log m) expected amortized time, where
m is the maximum size of the quickheap.

28

• 4.1 The Quickheap’s Exponential-Decrease
Property

• array segments:
heap[idx, S[pidx] − 1], thus segments
overlap.

• array chunks:
heap[S[pidx]+1, S[pidx−1]−1] or
heap[idx,S.top()−1].

29

• pivot of a segment:
Rightmost pivot within such segment.
Thus, the pivot of the last segment is S[1],
whereas the first segment is the only one not
having a pivot.

• median of a n-element set:
 , n is odd
 , n is even

30

• Definition 4.1
Quickheap’s exponential-decrease property:
for all the segments P(pivot is large) ≤ 0.5

• Pi,j,n, 1 ≤ i ≤ n, j ≥ 0, n > 0
the probability that the i-th element of the
segment, of size n, is the pivot of the segment
after the j-th operation

• Prove that Pi,j,n ≤ Pi−1,j,n, for all j, n and 2 ≤ i ≤ n

31

• Lemma 4.1
For each segment, the property Pi,j,n ≤ Pi−1,j,n
for i ≥ 2 is preserved after inserting a new
element x at a position uniformly chosen in
[1, n].

32

• Lemma 4.2
For each segment, the property Pi,j,n ≤ Pi−1,j,n
for i ≥ 2 is preserved after deleting an
element at a position chosen uniformly
from [1, n + 1].

33

• pivoting:
partition the first segment with a pivot and
pushes it into stack S.

• takeMin:
increment idx, pops stack S and returns
element heap[idx − 1].

34

• extractMin:

• execute pivoting as many times as we
need to push idx in stack S

• takeMin

• findMin:

• execute pivoting as many times as we
need to push idx in stack S

• return element heap[idx]

35

• Lemma 4.3
For each segment, the property Pi,j,n ≤ Pi−1,j,n
for i ≥ 2 is preserved after taking the
minimum element of the quickheap.

36

• Theorem 4.1
Quickheap’s exponential-decrease property:
Given a segment heap[idx, S[pidx]−1], the
probability that its pivot is large is smaller
than or equal to 0.5 , that is, P(pivot is
large) ≤ 0.5 .

37

• Lemma 4.4
The expected value of the height H of stack S is
O(log m).

• Lemma 4.5
The expected value of the sum of the sizes of array
segments is Θ(m).

38

• 4.2 The Potential Debt Method

• The potential function represents a total
cost that has not yet been paid.

• ci: actual cost of the i-th operation

• Di: data structure that results from
applying the i-th operation to Di−1

• Φ: potential debt function maps each data
structure Di to a real number Φ(Di),
which is the potential debt associated
with data structure Di up to then

39

40

• 4.3 Expected-case Amortized Analysis of Quickheaps

41

• Expected (individual) cost

• Operation insert
= 1 + (1 − P1)(1 + (1 − P2)(1 + (1 − P3)(1 + . . .)))
= O(1)

• Operation delete
= 1+(1−P1)(1+(1−P2)(1+(1−P3)(1+...)))
= O(1)

• Creation of a quickheap = Θ(m)

42

• Expected (individual) cost

• Operation extractMin
= 2H + 2
= O(log m)

• Operation findMin = O(1)

• Operation increaseKey
= H + 2H + 2
= O(log m)

• Operation decreaseKey:
In practice, this operation performs
reasonably well.

43

• Theorem 4.2
Quickheap’s complexity:
The expected amortized cost of any
sequence of m operations insert, delete,
findMin, extractMin and increaseKey over
an initially empty quickheap is O(log m)
per operation.

44

• 5 Quickheaps in External Memory

• 5.1 Adapting Quickheap Operations to External
Memory

• Quickheaps exhibit high locality of reference:

• Stack S is small and accessed sequentially.

• Each pivot in S points to a position in the
array heap.
Array heap is only modified at those
positions, and the positions themselves
increase at most by one at each insertion.

• IQS sequentially accesses the elements of
the first chunk.

45

• 5.2 Analysis of External Memory Quickheaps

• Theorem 5.1
External quickheap’s complexity:
M = Ω(B log m).
The expected amortized I/O cost of any
sequence of m operations insert, findMin, and
extractMin over an initially empty quickheap
is O((1/B)log(m/M)) per operation.

46

6. Boosting the MST
Construction

On Sorting, Heaps, and Minimum Spanning Trees
Gonzalo Navarro, Rodrigo Paredes

Miao-En Chien | R00944028

47

IQS implements
Kruskal’s MST

algorithm

QH implements
Prim’s MST algorithm

48

Kruskal variant

on random graphs

m’ = 1/2 n lon n + O(n)
edges

O(m+n log^2 n)

49

Use QH to find the node u* with
minimum connecting cost to the

Update the value of each u*’s neighbor
in QH

Augment the QH structure with a
dictionary managing the position of

50

inser

extract

decrease

O(1)

O(log n)

?

O(n)

O(n log n)

?

x n

x m

51

inser

extract

decrease

O(1)

O(log n)

O(log n)

O(n)

O(n log n)
x n

x m O(m log n)

52

Assuming that each call to decreaseKey
has cost O(logn), this accounts for a total

O(n log n log m/n) expected time.

53

O(m + n log n log m/n)
Expected amortized time for their Prim variant on graphs

with random weights.

54

7. Experimental Results

On Sorting, Heaps, and Minimum Spanning Trees
Gonzalo Navarro, Rodrigo Paredes

Miao-En Chien | R00944028

55

Compare IQS with other alternatives

The empirical behavior of QHs

56

Compare IQS with other alternatives

The empirical behavior of QHs

57

1. Classical Quickselect + Quicksort solution: QSS
Use random permutations of non-repeated numbers uniformly distributed.

2. Partial Quicksort algorithm: PQS
Select the k first elements, and the selection is in one shot for PQS and QSS.

3. Incremental Quicksort: IQS
Verify that IQS is in practice a competitive algorithm for the Partial Sorting
problem of finding the smallest elements in ascending order.

4. Classical heaps: HEx
Implemented using the bottom-up deletion algorithm.

5. Sequence heaps: SH
Select the k first elements, and the selection is incremental for IQS, HEx,
and SH.

Evaluating

58

CPU time + Key
comparisons

59

PQ

HE

QS

SH
IQ

PQ

HE

QS
IQ

60

PQ

HE

QS
IQ

O(k + mlogm)

extractMin insert

61

It is preferable to pay a lower
insertion and a higher extraction

cost (just like IQS) than to
perform most of the work in the

62

Weighted least square fittings

2.9

1.3 4.2

63

1. Quickheaps: QHs
Compare the empirical performance of quickheaps.

2. Binary heaps: BH
The canonical implementation of PQs, efficient and easy to
program.
The most efficient PQ implementations in practice.

3. Paring heaps: PH
Implement efficiently key update operations, and also the
most efficient PQ implementations.
Includes operations insert, extractMin, and decreaseKey.

Evaluating

64

insert extractMinO(n) O(n log n)

QH

PH

BH

QH

PH

BH

65

decreaseKey
O(m log n)

increaseKey

QH

BH

PH

BH < QH < PH

66

Quickheaps perform well under arbitrarily long sequences of
insertions and minimum extractions

QH

PH

SH

BH

BH

cache-
friendly

QH

PH

SH

BH

67

Evaluating External Memory Quickheaps

• 驗證在external memory裡QH的效能

• 複製了Brengel的setup

• 和R-heaps Array-Heaps比較

68

Results

69

Evaluating the MST Construction

• 他們用MST Construction，去比較各個
方法的performance

• 目標不是去做出⼀一個新的MST
algorithms而是，他們對現有的
algorithms提出新的fundamental
contributions。

70

Evaluating the MST Construction

• Kruskal1 （basic Kruskal’s MST）

• Kruskal2 （with demand sorting）

• Kruskal3 （IQS-based）

• Prim1 （basic Prim’s MST algorithm）

• Prim2 （implemented with PH）

• Prim3 （implementation using QHs）

• iMax （iMax algorithm）

71

Results

72

Results

73

Results

74

Conclusions

• IQS和現有的solution有差不多的時間複
雜度，但是它實做起來相當快。

• Quickheaps執行許多動作都是高效率的

• Quickheap有高區段性參考（high locality
of reference），所以在secondary
memory執行起來是幾乎是最佳化。

75

Conclusions

• IQS跟quickheap改善了在許多scenarios下
現有的演算法的performance

• incremental sort去強化Kruskal’s MST
algorithm

• priority queue去強化Prim’s MST algorithm

• 最重要的future是去設計⼀一個更強大的
Quickheaps的變化（特別是他們能夠去證
明Quickheap-based Prim的upper bound）

76

