On Sorting, Heaps, and Minimum Spanning Trees

Gonzalo Navarro, Rodrigo Paredes

R99922089 林霓苗

Outline

- I. Abstract & Introduction (related works)
- 2. Incremental Quick Sorting algorithm
- 3. Quickheaps
- 4. Boosting the MST Construction
- 5. Experimental result
- 6. Conclusion & Future work

I. Abstract & Introduction (related works) (1/4 pages)

- I. Incremental Quicksort (IQS) : incrementally gives the next smallest element of the set.
- 2. Quickheap (QH) : (Based on IQS) QH is a simple and efficient priority queue for main and secondary memory.
- 3. Use IQS to implement Kruskal's MST.
- 4. Use QHs to implement **Prim's MST**.

- Problem: *Need to obtain the smallest elements form a fixed set.*
 - (I) Kruskal's MST.
 - (2) Ranking by Web search engines. (which display a very small sorted subset results, if user wants more, then display the next group of result.)

I. Abstract & Introduction (related works) (2/4 pages)

• Incremental Sorting problem :

- I. Given a set A of m numbers, output the elements of A from smallest to largest.
- 2. Process can be stopped after k elements have been output.
- Solved by: [complexity: **O(m+ k*logk)**]
 - I. Finding the k-th smallest element of A using O(m) time (QuickSelect algorithm).
 - 2. Then collecting and sorting the elements smaller than the k-th element (QuickSort algorithm).
- <u>Selection and sorting steps can be interleaved</u>, which improves the constant terms.

I. Abstract & Introduction (related works) (3/4 pages)

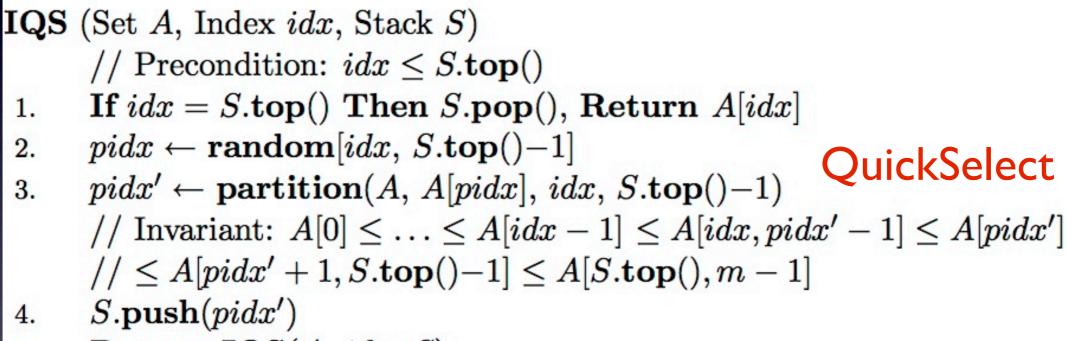
- Priority Queues :
 - insert, findMin(findMax), extractMin(extractMax)
 - increaseKey, decreaseKey
 - delete...
 - Well-known priority queues are <u>sequence heaps</u>, <u>binomial queues</u>, <u>Fibonacci heaps</u>, <u>pairing heaps</u>, <u>skew heaps</u>, and <u>van Emde Boas queues</u>...
- External Memory Priority Queues :
 - Only offer basic operations : insert, findMin , extractMin.
 - Some external memory PQs are **buffer trees**, M/B-ary heaps, Array heaps, R heaps...

I. Abstract & Introduction (related works) (4/4 pages)

- IQS is <u>4 times</u> faster than the classic alternative to solve the online problem.
- QHs is up to <u>4 times</u> faster than binary heaps. (fastest priority queue implementations in practice)
- QHs performs up to <u>3 times</u> fewer I/O accesses than R-Heaps.
- QHs performs up to <u>5 times</u> fewer I/O accesses than Array-Heaps.

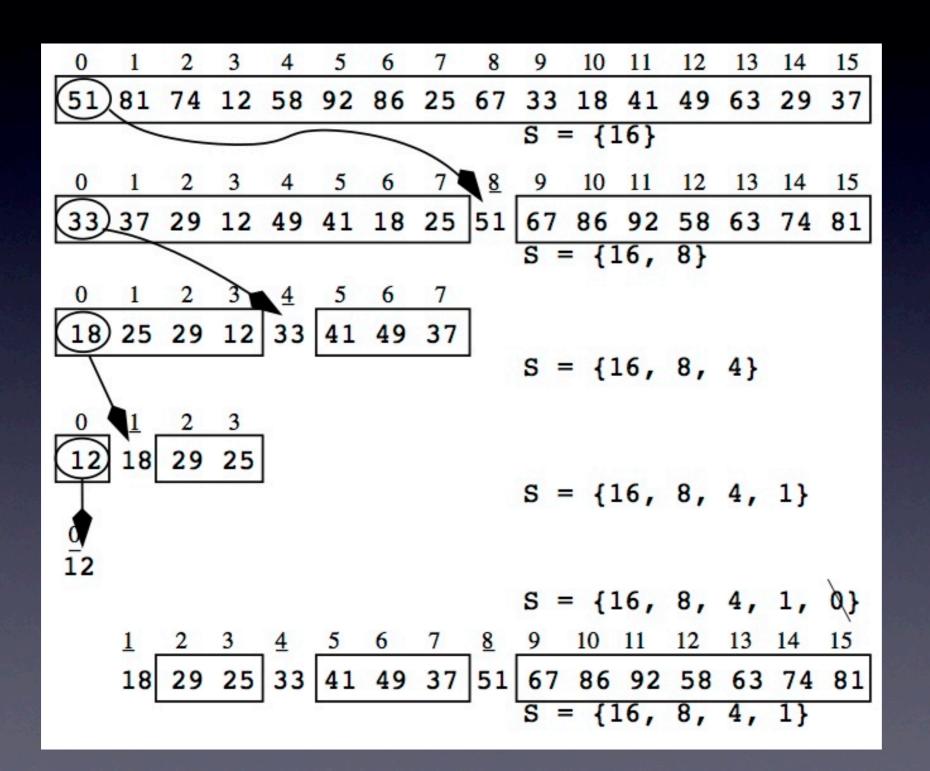
• <u>External-memory Sequence Heaps</u> are faster than QHs, but much more sophisticated and not cache-oblivious.

2. Incremental Quick Sorting (1/4 pages)



Return IQS(A, idx, S)5.

2. Incremental Quick Sorting (2/4 pages)



2. Incremental Quick Sorting (3/4 pages)

2	3	4		6		8	9		11	12	13		15
29	25	33	41	49	37	51	67	86	92	58	63	74	81
2	3	-					S	= {	16,	8,	4}		
25	29						S	= {	16,	8,	4,	3}	
2 25							S	= {	16,	8,	4,	3,	2}
	3	4	5	6	7	8	9		11	12			15
	29	33	41	49	37	51	67	86	92	58	63	74	81
							S	= {	16,	8,	4,	3}	

2. Incremental Quick Sorting

(4/4 pages)

Lemma 2.1 : (After i minima have been obtained in A[0, i-1])

(1) The pivot indices in S are decreasing bottom to top.

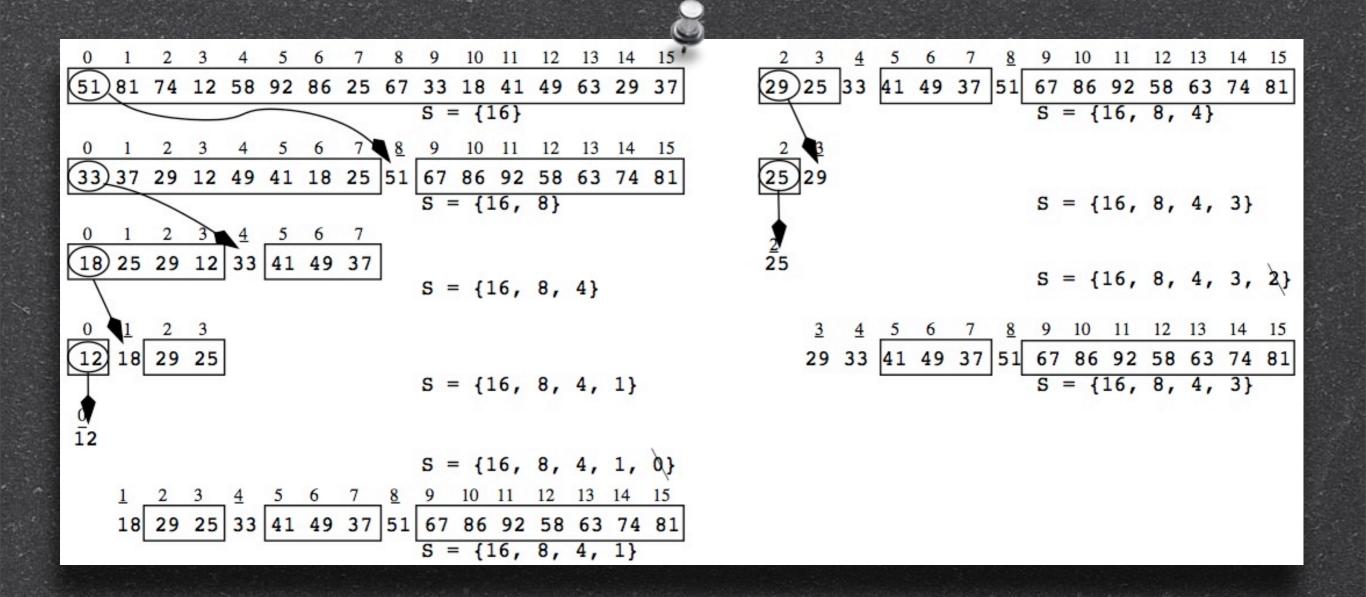
(2) Each pivot position p != m in S, A[p] is not smaller than any element in A[i, p - 1] and not larger than any element in A[p + 1, m - 1].

pf : Assume this is valid before pushing p, when p' was the top of the stack. (1) Since the pivot was chosen from A[i, p' – 1] and left at some position $i \le p \le p' - 1$ after partitioning, property (1) is guaranteed.

(2) With respect to p, the partitioning ensures that elements smaller than p are left at A[i, p - 1], while larger elements are left at A[p + 1, p' - 1].

Incremental Quick Sort

11



IQS (Set A, Index idx, Stack S)

- // Precondition: $idx \leq S.top()$
- 1. If idx = S.top() Then S.pop(), Return A[idx]
- 2. $pidx \leftarrow random[idx, S.top()-1]$
- 3. $pidx' \leftarrow partition(A, A[pidx], idx, S.top()-1)$ // Invariant: $A[0] \leq \ldots \leq A[idx-1] \leq A[idx, pidx'-1] \leq A[pidx']$ // $\leq A[pidx'+1, S.top()-1] \leq A[S.top(), m-1]$
- 4. $S.\mathbf{push}(pidx')$
- 5. Return IQS(A, idx, S)

Given a set A of m numbers IQS finds the k smallest elements, for any unknown value $k \le m$, in $O(m + k \log k)$ expected time.

In IQS, the final pivot position p after the partitioning of A[0, m - 1] distributes uniformly in [0, m - 1].

Let T(m, k) be the expected number of key comparisons needed to obtain the k smallest elements of A[0, m - 1]. After the m - 1 comparisons used in the partitioning, there are three cases depending on

p.

											9			4						
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16				
	18	29	25	33	41	49	37	51	67	86	92	58	63	74	81		$S = \{16,$	8,	4,	1}

 $k \leq p$

T(p,k)

k = p + 1

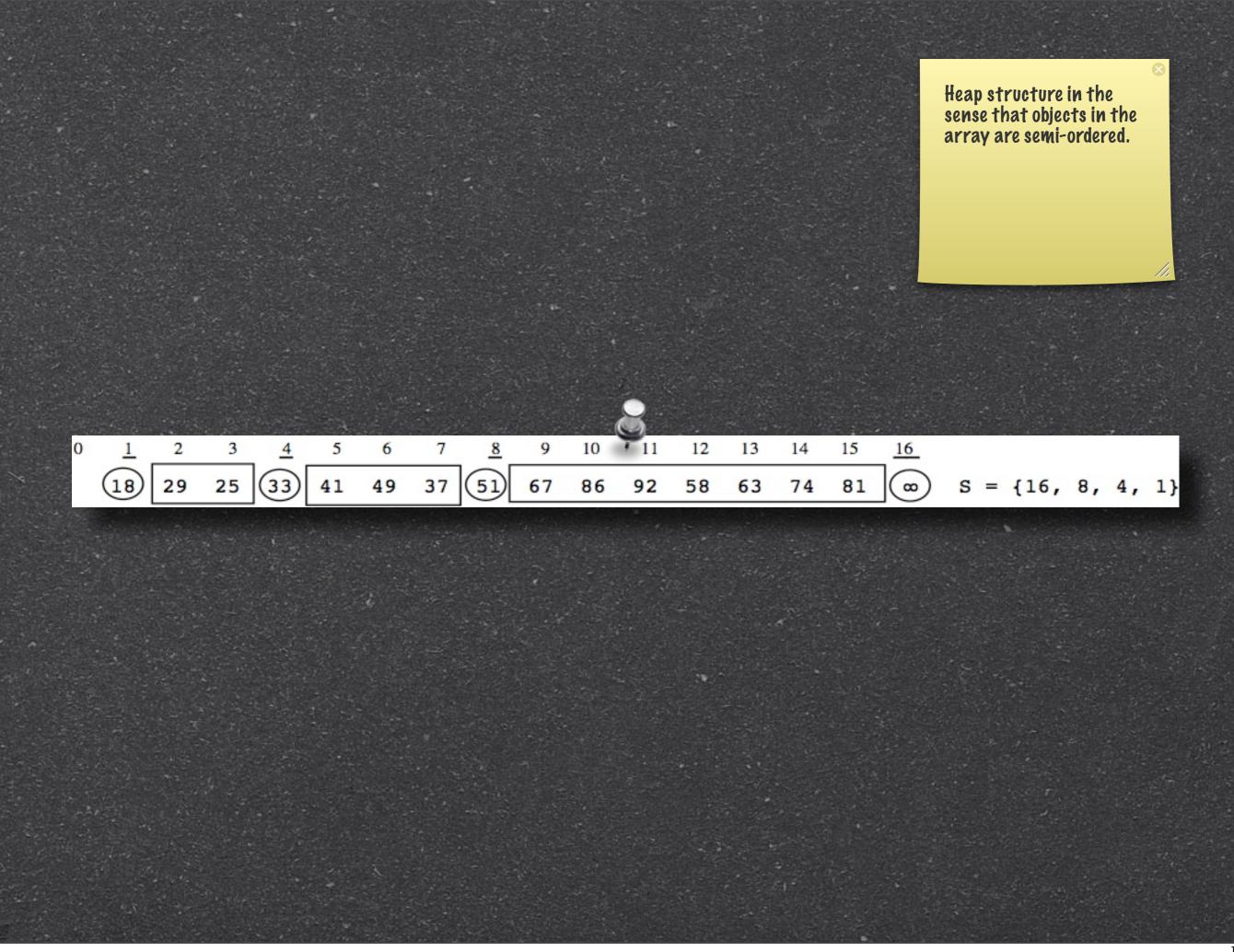
T(p,p)

k > p + 1 T(p,p)+T(m-1-p,k-p-1)

$$m - 1 + \frac{1}{m} \left(\sum_{p=k}^{m-1} T(p,k) + T(k-1,k-1) + \sum_{p=0}^{k-2} \left(T(p,p) + T(m-1-p,k-p-1) \right) \right)$$

 $O(m + k \log k)$

Quickheaps



Data Structure for Quickheaps

Assume we know beforehand the value of capacity

- Circular)Array A- to store the elements.
- Stack S- to store the position of pivots.
- Integer idx- to indicate the first cell of the quickheap.
- Integer capacity- to indicate the size of heap.

Creation of Quickheaps

- With no elements
 - $S = \{0\}, idx = 0$

From an array *B*copy *B* to *A S* = {|*A*|}, *idx* = 0

Finding the Minimum

											Q.									÷.
0	1	2	3	4	5	6	7	8	9	10	7 11	12	13	14	15	16				
				. – .																
	(18)	29	25	(33)	41	49	37	(51)	67	86	92	58	63	74	81	(∞)	$S = \{16,$	8.	4.	1}
25	EL			I Col				S	• ·								- (/	-,	- /	-,

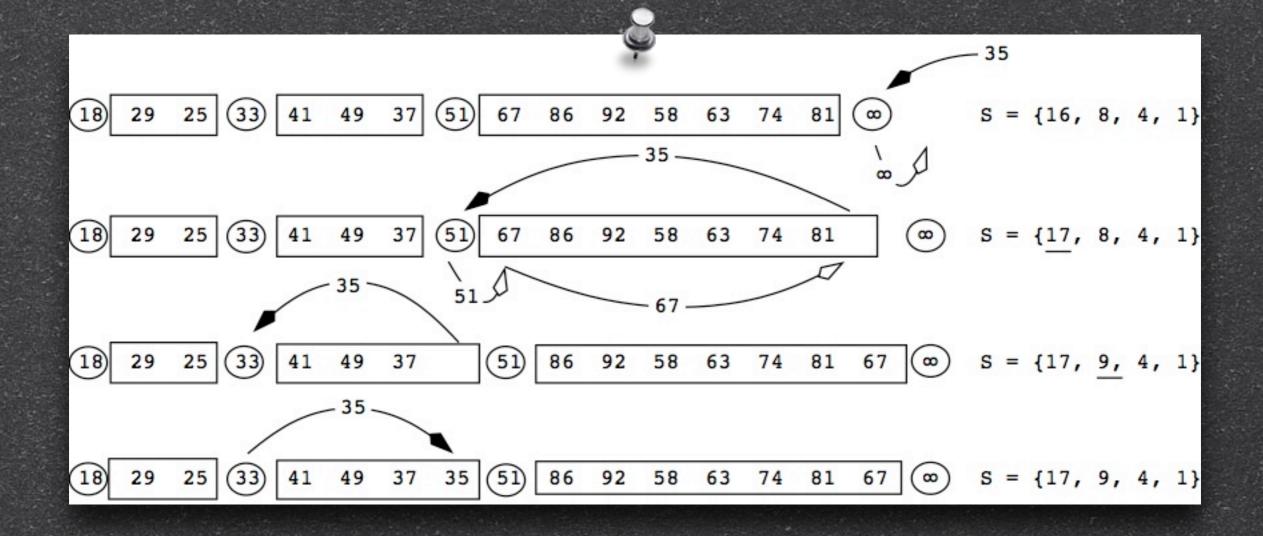
IQS(*A*,*idx*,*S*) return *A*[*idx*]

Extracting the Minimum

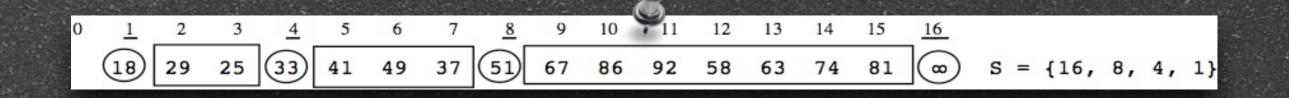
										0									
0 1	2	3	4	5	6	7	8	9	10	7 11	12	13	14	15	16				
-		-	· - ·												-				
															\square	$S = \{16,$	-		1
	1 29	25	(33)	41	49	37	(51)	67	86	92	58	63	74	81	(∞)	$S = \{16,$	8,	4,	1}

idx++; S.pop()
return A[idx-1]

Inserting Elements



Deleting Arbitrary Elements



Non-pivot

- Find $S[pidx] \ge pos$
- swap(A[S[pidx]-1],A[pos])
- swap(A[S[pidx]-1],A[S[pidx]])
- Until reach the fictitious pivot.

Pivot

- drop the pivot
- Join two chunks
- delete as non-pivot

Decreasing a Key

Given a position *pos* of some element in the quickheap and a value $\delta \ge 0$, we change the priority of the element A[pos] to $heap[pos] - \delta$.

1997	1																			
	18	29	25	33	41	49	37	51	67	86	92	58	63	74	81	\odot	$S = \{16,$	8,	4,	1}

 $\begin{array}{l} newValue = A[pos] - \delta \\ \mbox{Find } S[pidx] \geq pos \\ \mbox{if } |S| == pidx + 1 \mbox{ then } A[pos] = newValue \\ \mbox{else if } newValue \geq A[S[pidx+1]] \mbox{ then } A[pos] = newValue \\ \mbox{else swap}(A[S[pidx+1]+1], A[pos]) \mbox{ and do as insertion.} \end{array}$

Increasing a Key

Given a position *pos* of some element in the quickheap, and a value $\delta \ge 0$, this operation changes the value of the element A[pos] to $A[pos] + \delta$.

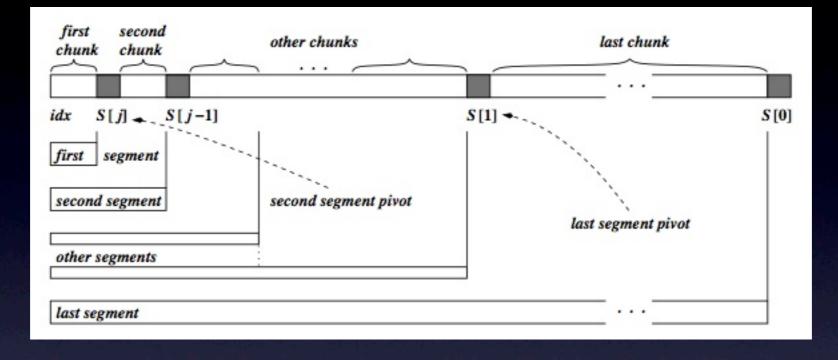
0	1	2	3	4	5	6	7	8	9	10	φ_{11}	12	13	14	15	16			
	18	29	25	33	41	49	37	51	67	86	92	58	63	74	81		$S = \{16,$	8, 4,	1}

4 Analysis of Quickheaps 5 Quickheaps in External Memory Prensent by R99922121 Li-de Yang

• 4 Analysis of Quickheaps

Prove that quickheap operations cost
 O(log m) expected amortized time, where m is the maximum size of the quickheap.

 4.1 The Quickheap's Exponential-Decrease Property



- array segments: heap[idx, S[pidx] – 1], thus segments overlap.
- array chunks: heap[S[pidx]+1, S[pidx-1]-1] or heap[idx,S.top()-1].

pivot of a segment: Rightmost pivot within such segment. Thus, the pivot of the last segment is S[1], whereas the first segment is the only one not having a pivot.

• median of a n-element set:

 $\frac{n+1}{2}$ -th largest element, n is odd

the average of the $\frac{n}{2}$ -th and $(\frac{n}{2}+1)$ -th largest ones, n is even

 Definition 4.1
 Quickheap's exponential-decrease property: for all the segments P(pivot is large) ≤ 0.5

- $P_{i,j,n}$, $1 \le i \le n, j \ge 0, n > 0$ the probability that the i-th element of the segment, of size n, is the pivot of the segment after the j-th operation
- Prove that $P_{i,j,n} \le P_{i-1,j,n}$, for all j, n and $2 \le i \le n$

• Lemma 4.1

For each segment, the property $P_{i,j,n} \leq P_{i-1,j,n}$ for $i \geq 2$ is preserved after inserting a new element x at a position uniformly chosen in [1, n].

$$\mathbb{P}_{i,j,n} = \mathbb{P}_{i-1,j-1,n-1} rac{i-1}{n} + \mathbb{P}_{i,j-1,n-1} rac{n-i}{n}$$

$$\mathbb{P}_{i-1,j-1,n-1}\frac{i-1}{n} + \mathbb{P}_{i,j-1,n-1}\frac{n-i}{n} \leq \mathbb{P}_{i-1,j-1,n-1}\frac{i-2}{n} + \mathbb{P}_{i-1,j-1,n-1}\frac{n+1-i}{n}$$

• Lemma 4.2

For each segment, the property $P_{i,j,n} \leq P_{i-1,j,n}$ for $i \geq 2$ is preserved after deleting an element at a position chosen uniformly from [1, n + 1].

$$\mathbb{P}_{i,j,n} = \mathbb{P}_{i+1,j-1,n+1} \frac{i}{n+1} + \mathbb{P}_{i,j-1,n+1} \frac{n+1-i}{n+1}$$

$$\mathbb{P}_{i,j-1,n+1}\frac{i}{n+1} + \mathbb{P}_{i,j-1,n+1}\frac{n+1-i}{n+1} \leq \mathbb{P}_{i,j-1,n+1}\frac{i-1}{n+1} + \mathbb{P}_{i-1,j-1,n+1}\frac{n+2-i}{n+1}$$

pivoting: partition the first segment with a pivot and pushes it into stack S. takeMin:

increment idx, pops stack S and returns element heap[idx - 1].

• extractMin:

- execute pivoting as many times as we need to push idx in stack S
- takeMin
- findMin:
 - execute pivoting as many times as we need to push idx in stack S
 - return element heap[idx]

• Lemma 4.3

For each segment, the property $P_{i,j,n} \leq P_{i-1,j,n}$ for $i \geq 2$ is preserved after taking the minimum element of the quickheap.

$$\mathbb{P}_{i,j,n} = \mathbb{P}_{i+1,j-1,n+1} \frac{n+1}{n}$$

Theorem 4.1 Quickheap's exponential-decrease property: Given a segment heap[idx, S[pidx]-1], the probability that its pivot is large is smaller than or equal to 0.5, that is, P(pivot is large) ≤ 0.5.

• Lemma 4.4

The expected value of the height H of stack S is O(log m).

$$\mathcal{H} = T(m) = 1 + \frac{1}{2}T(m-1) + \frac{1}{2}T\left(\left\lfloor \frac{m}{2} \right\rfloor\right), T(1) = 1$$

$$T(m) \le 2 + T\left(\frac{m}{2}\right) \le \ldots \le 2j + T\left(\frac{m}{2^j}\right)$$

• Lemma 4.5

The expected value of the sum of the sizes of array segments is $\Theta(m)$.

$$T(m) = m + \frac{1}{2}T(m-1) + \frac{1}{2}T\left(\left\lfloor \frac{m}{2} \right\rfloor\right), \ \overline{T(1)} = 0$$

 $T(m) \le 2m + T\left(\frac{m}{2}\right) \le \ldots \le 2m + m + \frac{m}{2} + \frac{m}{2^2} + \ldots + \frac{m}{2^{j-2}} + T\left(\frac{m}{2^j}\right)$

• 4.2 The Potential Debt Method

- The potential function represents a total cost that has not yet been paid.
- c_i: actual cost of the i-th operation
- D_i: data structure that results from applying the i-th operation to D_{i-1}
- Φ: potential debt function maps each data structure D_i to a real number Φ(D_i), which is the potential debt associated with data structure D_i up to then

$$\widetilde{c_i} = c_i - \Phi(D_i) + \Phi(D_{i-1})$$

$$\widehat{c_i} = \widetilde{c_i} + rac{\Phi(D_N) - \Phi(D_0)}{N}$$

• 4.3 Expected-case Amortized Analysis of Quickheaps

$$\Phi(qh) = 2 \cdot \sum_{i=0}^{\mathcal{H}} (S[i] - idx) = \Theta(m)$$
 expected, by Lemma 4.5

$$\frac{\Phi(qh_N) - \Phi(qh_0)}{N}$$
 is $O(1)$

$$\widehat{c}_i = c_i - \Phi(qh_i) + \Phi(qh_{i-1})$$

- Expected (individual) cost
 - Operation insert = $1 + (1 - P_1)(1 + (1 - P_2)(1 + (1 - P_3)(1 + ...)))$ = O(1)
 - Operation delete = $1+(1-P_1)(1+(1-P_2)(1+(1-P_3)(1+...)))$ = O(1)
 - Creation of a quickheap = $\Theta(m)$

- Expected (individual) cost
 - Operation extractMin
 = 2H + 2
 = O(log m)
 - Operation findMin = O(1)
 - Operation increaseKey
 = H + 2H + 2
 = O(log m)
 - Operation decreaseKey: In practice, this operation performs reasonably well.

• Theorem 4.2 Quickheap's complexity: The expected amortized cost of any sequence of m operations insert, delete, findMin, extractMin and increaseKey over an initially empty quickheap is O(log m) per operation.

- 5 Quickheaps in External Memory
 - 5.1 Adapting Quickheap Operations to External Memory
 - Quickheaps exhibit high locality of reference:
 - Stack S is small and accessed sequentially.
 - Each pivot in S points to a position in the array heap.

Array heap is only modified at those positions, and the positions themselves increase at most by one at each insertion.

• IQS sequentially accesses the elements of the first chunk.

- 5.2 Analysis of External Memory Quickheaps
 - Theorem 5.1 External quickheap's complexity: M = Ω(B log m). The expected amortized I/O cost of any sequence of m operations insert, findMin, and extractMin over an initially empty quickheap is O((1/B)log(m/M)) per operation.

6. Boosting the MST Construction

On Sorting, Heaps, and Minimum Spanning Trees

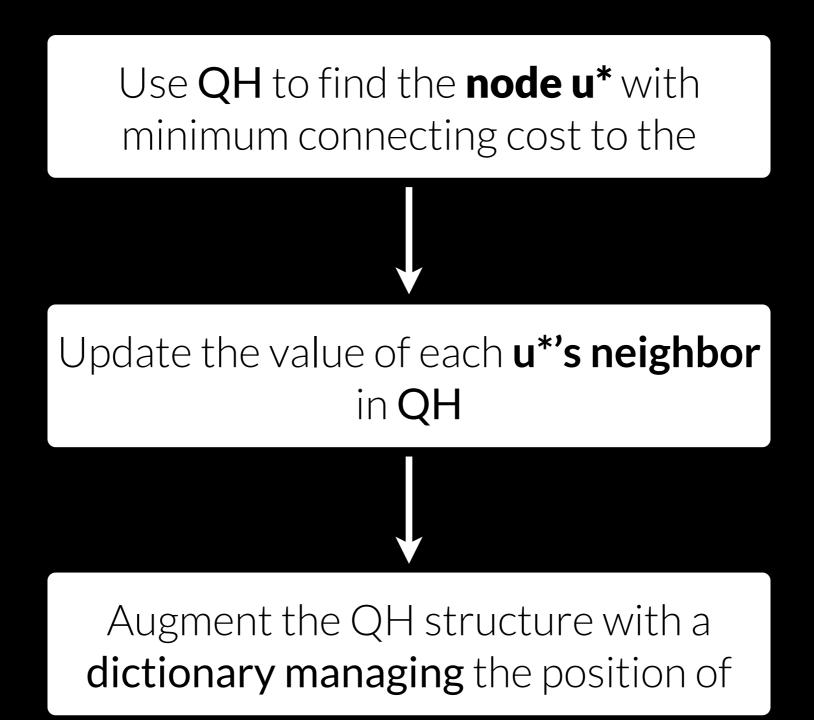
Gonzalo Navarro, Rodrigo Paredes Miao-En Chien | R00944028

IQS implements **Kruskal's** MST algorithm

QH implements Prim's MST algorithm

$\mathbf{m'} = 1/2 n \ln n + O(n) \longrightarrow_{Kruskal variant} O(m+n \log^2 n)$

on random graphs



inser $\rightarrow O(1)$ O(n) $\times n$ extract $\rightarrow O(\log n)$ $O(n \log n)$ decrease $\rightarrow ? \times m ?$

inser $\rightarrow O(1)$ O(n) $\times n$ extract $\rightarrow O(\log n)$ $O(n \log n)$

decrease $\rightarrow O(\log n) \times m \quad O(m \log n)$

Assuming that each call to decreaseKey has cost O(logn), this accounts for a total O(n log n log m/n) expected time.

O(m + n log n log m/n)

Expected amortized time for their **Prim variant** on graphs with **random weights**.

7. Experimental Results

On Sorting, Heaps, and Minimum Spanning Trees Gonzalo Navarro, Rodrigo Paredes Miao-En Chien | R00944028

Compare **IQS** with other alternatives

The empirical behavior of **QHs**

Compare **IQS** with other alternatives

The empirical behavior of **QHs**

Evaluating

1. Classical Quickselect + Quicksort solution: QSS

Use random permutations of non-repeated numbers uniformly distributed.

2. Partial Quicksort algorithm: PQS

Select the *k* first elements, and the selection is in **one shot** for PQS and QSS.

3. Incremental Quicksort: IQS

Verify that IQS is in practice a competitive algorithm for the **Partial Sorting** problem of finding the smallest elements in ascending order.

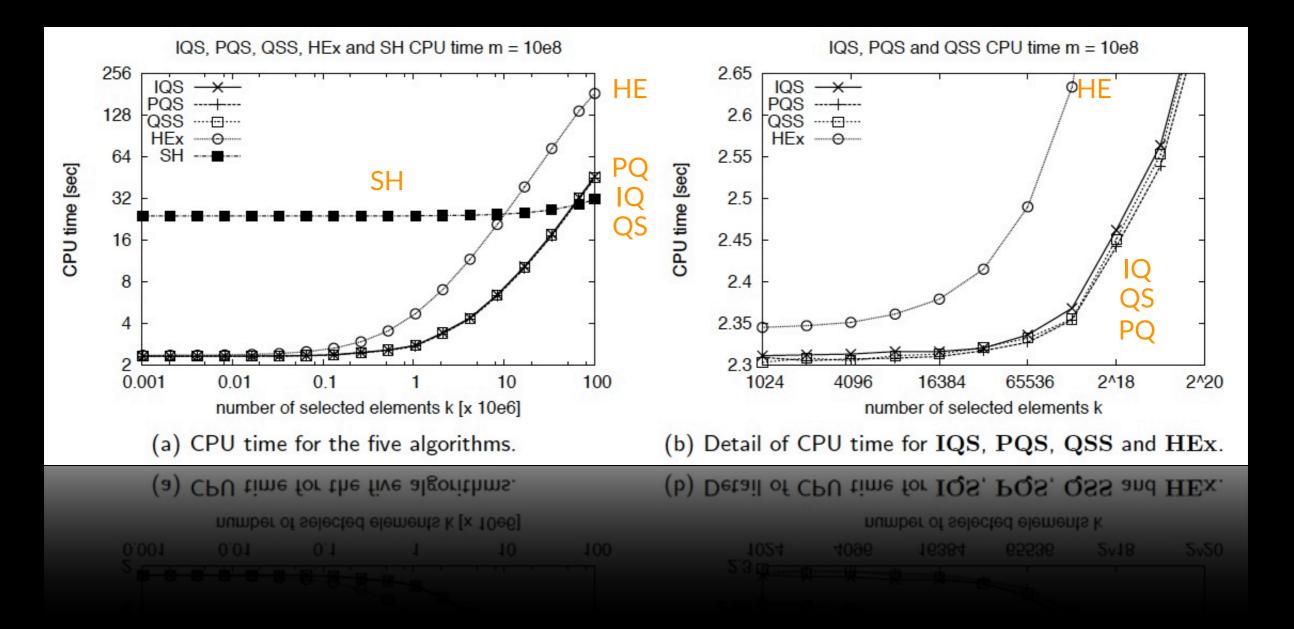
4. Classical heaps: HEX

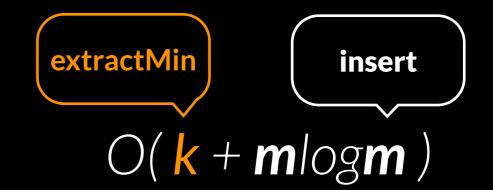
Implemented using the bottom-up deletion algorithm.

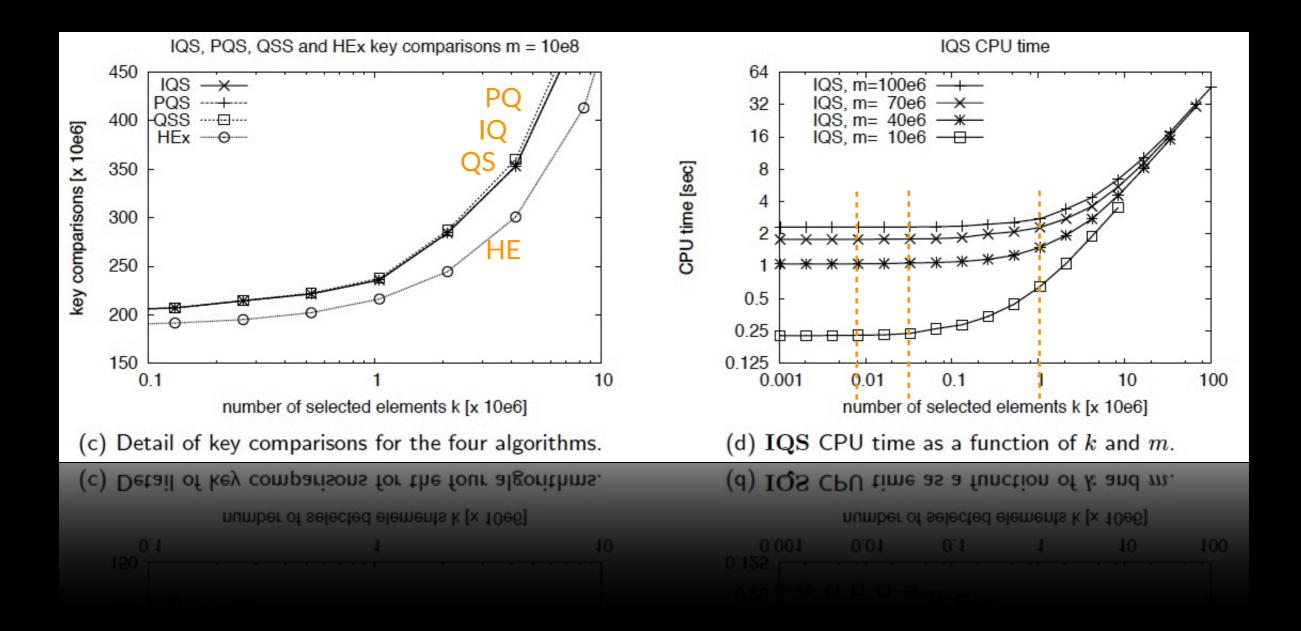
5. Sequence heaps: SH

Select the *k* first elements, and the selection is **incremental** for IQS, HEx, and SH.

CPU time + Key comparisons







It is preferable to pay a lower insertion and a higher extraction cost (just like IQS) than to perform most of the work in the

Weighted least square fittings

	CPU time	Error	Key comparisons	Error
PQS	$25.8m + 16.9k \log_2 k$	6.77%	$2.14m + 1.23k \log_2 k$	5.54%
IQS	$25.8m + 17.4k \log_2 k$	6.82%	$2.14m + 1.23k \log_2 k$	5.54%
QSS	$25.8m + 17.2k \log_2 k \frac{1}{1.2}$	$_{8}6.81\%$	$2.14m + 1.29k \log_2 k_{4.}$	2 5.53%
HEx	$23.9m + 67.9k \log_2 m$	6.11%	$1.90m + 0.97k \log_2 m$	1.20%
SH	$9.17m\log_2m+66.2k$	2.20%		· · · · ·
	~~~			
SH	$9.17m \log_2 m + 66.2k$	2.20%		

## 1. Quickheaps: QHs

Compare the empirical performance of quickheaps.

## 2. Binary heaps: BH

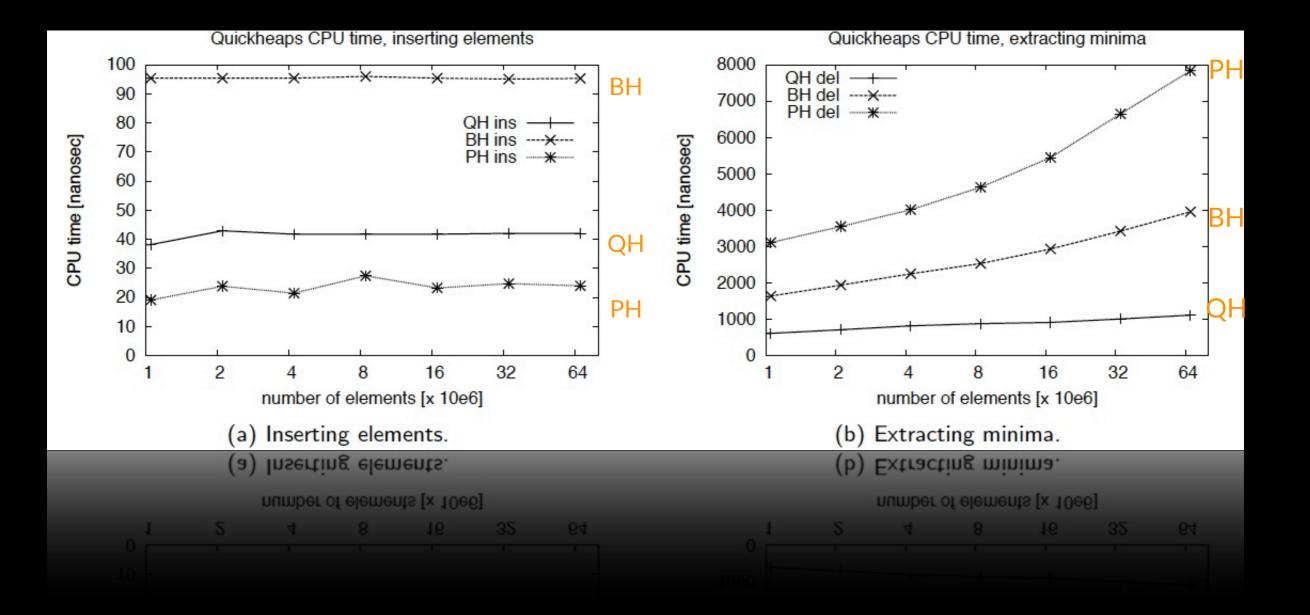
The canonical implementation of PQs, efficient and easy to program. The most efficient PQ implementations in practice.

## 3. Paring heaps: PH

Implement efficiently key update operations, and also the most efficient PQ implementations. Includes operations **insert**, **extractMin**, and **decreaseKey**.

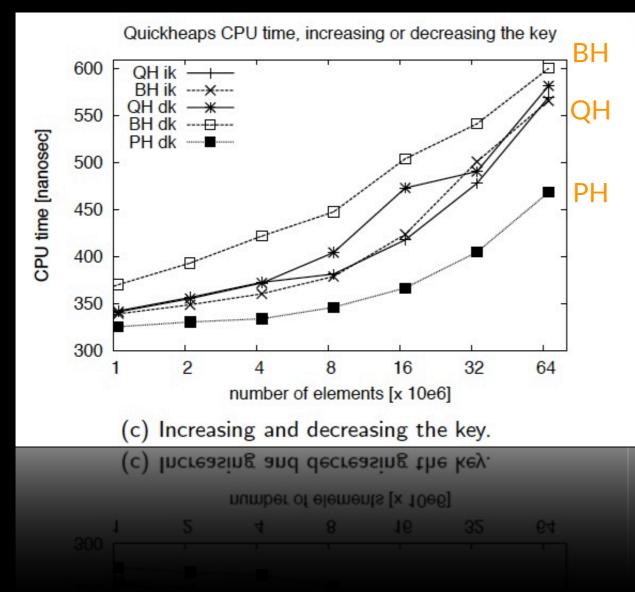
## insert→O(n)

## $extractMin \rightarrow O(n \log n)$



## increaseKey decreaseKey $\rightarrow O(m \log n)$

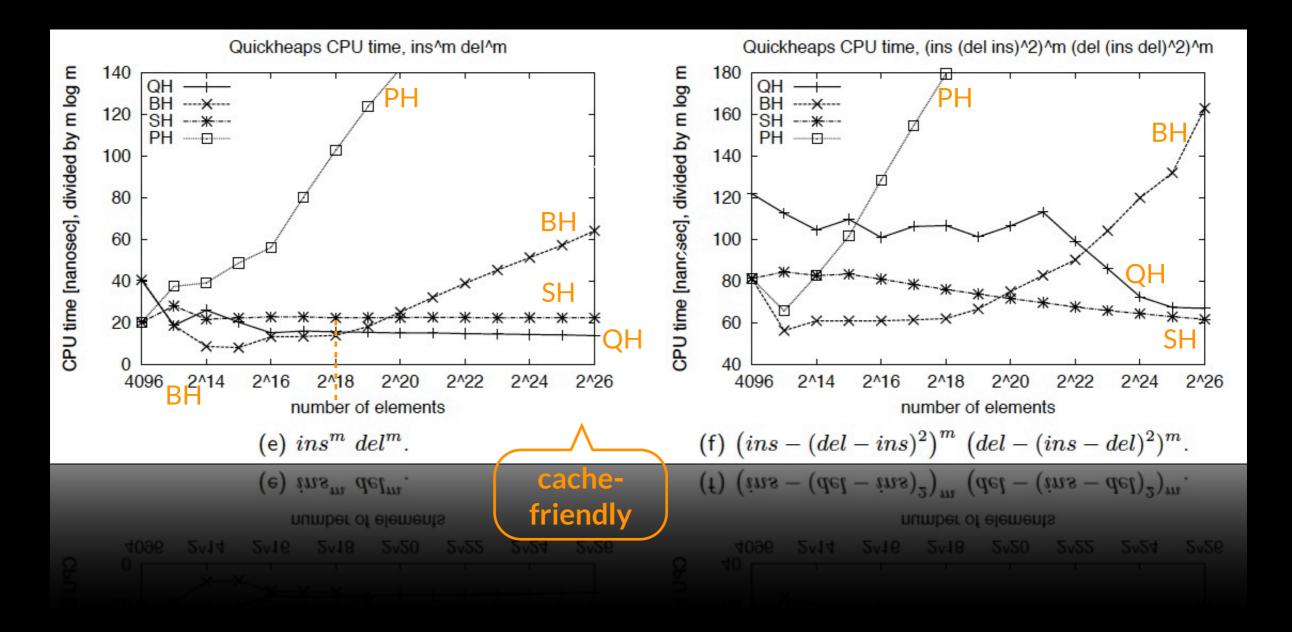
## BH < QH < PH



(d) Least square fittings for priority queue operations.

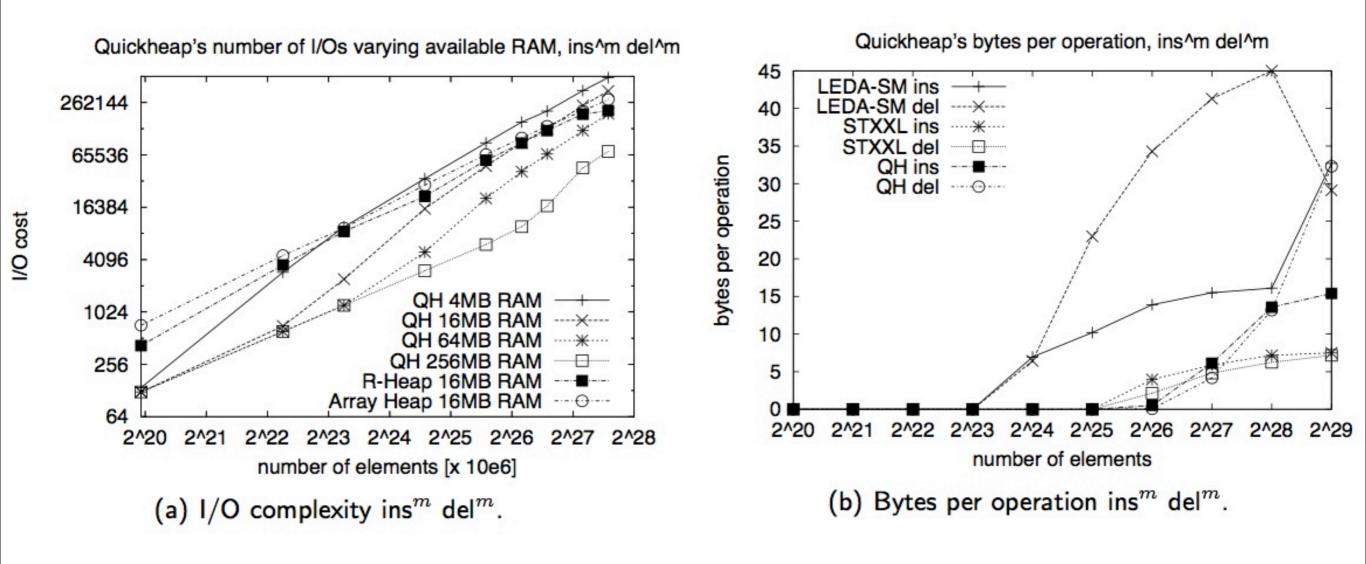
	Fitting	Error			
$\mathbf{QH}_{ins}$	42	1.28%			
$BH_{ins}$	99	3.97%			
$ ightarrow \mathrm{PH}_{ins}$	26	10.35%			
$\bigtriangleup \mathbf{QH}_{del}$	$35 \log_2 m$	9.86%			
$\mathrm{BH}_{del}$	$105 \log_2 m$	15.13%			
$\mathrm{PH}_{del}$	$201 \log_2 m$	15.99%			
$\mathbf{QH}_{ik}$	$18 \log_2 m$	8.06%			
$\mathrm{BH}_{ik}$	$18 \log_2 m$	9.45%			
$\mathbf{QH}_{dk}$	$18 \log_2 m$	8.88%			
$\mathbf{BH}_{dk}$	$20\log_2 m$	6.75%			
$\mathbf{PH}_{dk}$	$16 \log_2 m$	5.39%			
$\operatorname{PH}_{dk}$	$16 \log_2 m$	5.39%			
$\operatorname{BH}_{dk}$	$20 \log_2 m$	6.75%			
${\bf QH}_{dk}$	$18 \log_2 m$	8.88%			

# **Quickheaps** perform well under arbitrarily long sequences of insertions and minimum extractions



## **Evaluating External Memory Quickheaps**

- 驗證在external memory裡QH的效能
- 複製了Brengel的setup
- 和R-heaps Array-Heaps比較



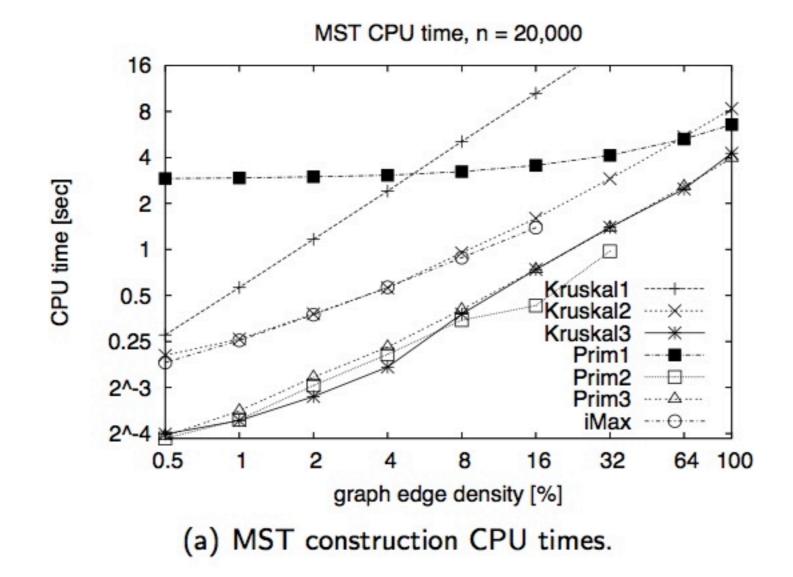
69

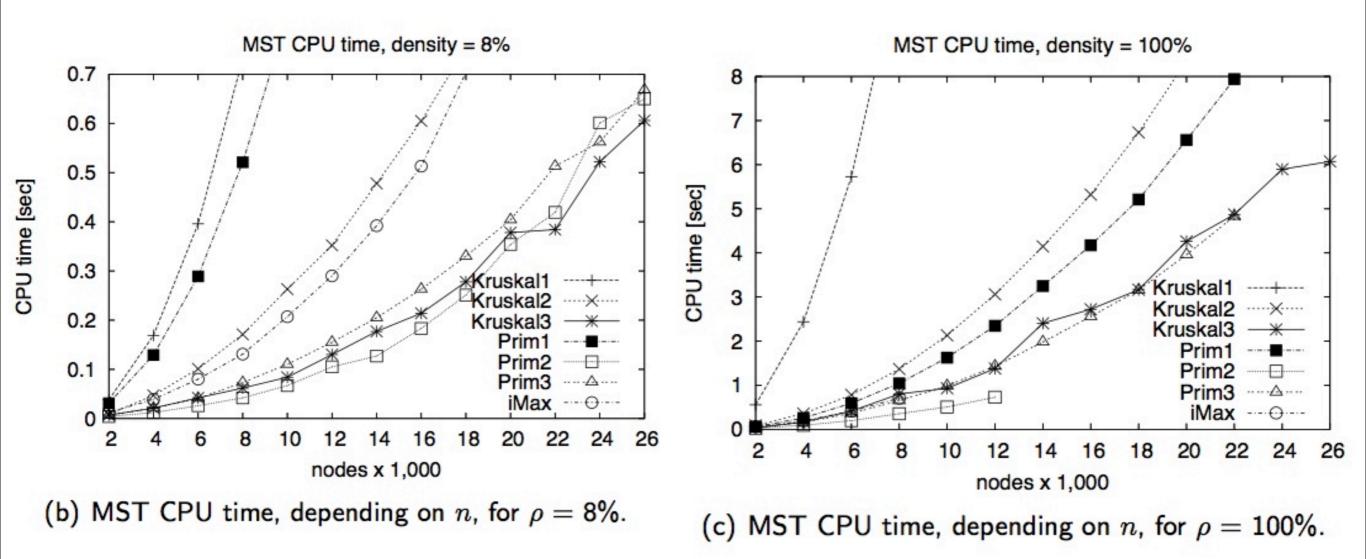
## Evaluating the MST Construction

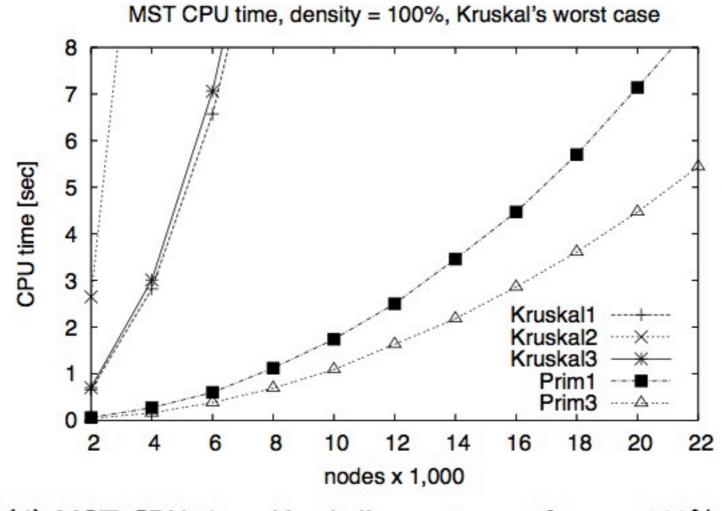
- 他們用MST Construction,去比較各個 方法的performance
- 目標不是去做出一個新的MST algorithms而是,他們對現有的 algorithms提出新的fundamental contributions。

## Evaluating the MST Construction

- Kruskall (basic Kruskal's MST)
- Kruskal2 (with demand sorting)
- Kruskal3 (IQS-based)
- PrimI (basic Prim's MST algorithm)
- Prim2 (implemented with PH)
- Prim3 (implementation using QHs)
- iMax (iMax algorithm)







(d) MST CPU time, Kruskal's worst case, for  $\rho = 100\%$ .

## Conclusions

- Quickheaps執行許多動作都是高效率的
- Quickheap有高區段性參考(high locality of reference),所以在secondary memory執行起來是幾乎是最佳化。

## Conclusions

- IQS跟quickheap改善了在許多scenarios下 現有的演算法的performance
- incremental sort去強化Kruskal's MST algorithm
- priority queue去強化Prim's MST algorithm
- 最重要的future是去設計一個更強大的 Quickheaps的變化(特別是他們能夠去證 明Quickheap-based Prim的upper bound)