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1 Further improvement

Let S be a minimal δ-separator of T̂ . The strategy of algorithms shown in our previous note on
3/2-approximation is to “guess” the structure of S and to construct a general star with the guessed
structure as the core. If T ∈star(S), by the lemmas in the previous note,

C(T ) ≤ 2n
∑

v∈V (G)

dG(v, S) + (n2/2)w(S),

and
C(T̂ ) ≥ 2(1− δ)n

∑
v∈V

d
T̂
(v, S) + 2δ(1− δ)n2w(S).

The approximation ratio, by comparing the two inequalities, is

max{ 1

1− δ
,

1

4δ(1− δ)
}.

The ratio achieves its minimum when the two terms coincide, i.e., δ = 1/4, and the minimum ratio
is 4/3. In fact, by using a general star and a (1/4)-separator, it is possible to approximate an
MRCT with ratio (4/3) + ε for any constant ε > 0 in polynomial time. The additional error ε is
due to the difference between the guessed and the true separators.

By this strategy, the approximation ratio is limited even if S was known exactly. The limit of
the approximation ratio may be mostly due to that we consider only general stars. In a general star,
the vertices are always connected to their closest vertices of the core. In extreme cases, roughly
half of the vertices connected are to both sides of a costly edge. This results in the cost (n2/2)w(S)
in the upper bound of a general star. To make a breakthrough, the restriction that each vertex is
connected to the closest vertex of the core needs to be relaxed.

A metric graph is a complete graph with triangle inequality, i.e., each edge is a shortest path
of its two endpoints. If the input graph is a metric graph, the core will be a two-edge path, and
each vertex is adjacent to one of the “critical vertices”— a centroid and the two endpoints of a
path separator. Define k-stars to be the trees with at most k internal vertices. The constructed
approximation solution is a 3-star. More importantly, k-stars have no such restriction like general
stars and can be used to approximate an MRCT more precisely. Later in this chapter we shall see
how it works.

However, k-stars work only for metric graphs. The class of metric graphs is an important
subclass of graphs. Solving the MRCT problem on metric graphs is itself meaningful. Before
considering the approximation problem on metric graphs, two questions come to our minds:

∗An excerpt from the book “Spanning Trees and Optimization Problems,” by Bang Ye Wu and Kun-Mao Chao
(2004), Chapman & Hall/CRC Press, USA.
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• What is the computational complexity of the MRCT problem on metric graphs, NP-hard or
polynomial-time solvable?

• If it is NP-hard, does its approximability differ from that of the general problem?

We shall answer the questions in the next section.

2 A Reduction to the Metric Case

In this section, we shall show that the MRCT problem on general inputs can be reduced to the
same problem with metric inputs. The reduction is done by a transformation algorithm.

Definition 1: The metric closure of a graph G = (V,E,w) is the complete graph Ḡ = (V, V ×V, w̄)
in which w̄(u, v) = dG(u, v) for all u, v ∈ V .

Let G = (V,E,w) and Ḡ = (V, V × V, w̄) be its metric closure. Any edge (a, b) in Ḡ is called
a bad edge if (a, b) /∈ E or w(a, b) > w̄(a, b). For any bad edge e = (a, b), there must exist a path
P = SPG(a, b) ̸= e such that w(P ) = w̄(a, b). Given any spanning tree T of Ḡ, the algorithm can
construct another spanning tree Y without any bad edge such that C(Y ) ≤ C(T ). Since Y has no
bad edge, w̄(e) = w(e) for all e ∈ E(Y ), and Y can be thought of as a spanning tree of G with the
same routing cost. The algorithm is listed in the following.

Algorithm: Remove bad
Input: A spanning tree T of Ḡ.
Output: A spanning tree Y of G such that C(Y ) ≤ C(T ).

Compute all-pairs shortest paths of G.
(I) while there exists a bad edge in T

Pick a bad edge (a, b). Root T at a.
/* assume SPG(a, b) = (a, x, ..., b) and y is the parent of x */
if b is not an ancestor of x then

Y ∗ ← T ∪ (x, b)− (a, b);Y ∗∗ ← Y ∗ ∪ {(a, x)} − {(x, y)};
else

Y ∗ ← T ∪ (a, x)− (a, b);Y ∗∗ ← Y ∗ ∪ {(b, x)} − {(x, y)};
if C(Y ∗) < C(Y ∗∗) then Y ← Y ∗ else Y ← Y ∗∗

(II) T ← Y

The algorithm computes Y by iteratively replacing the bad edges until there is no bad edge. It
will be shown that the cost is never increased at each iteration and it takes no more than O(n2)
iterations. We assume that the shortest paths obtained in the first step have the following property:
If SPG(a, b) = (a, x, . . . , b), then SPG(a, b) = (a, x)∪SPG(x, b). This assumption is not strong since
almost all popular algorithms for all-pairs shortest paths output such a solution.

Proposition 1: The while loop in Algorithm Remove bad is executed at most O(n2) times.

Proof: For each bad edge e = (a, b), let h(e) be the number of edges in SPG(a, b) and f(T ) =∑
bad e h(e). Since h(e) ≤ n − 1, f(T ) < n2 initially. Since (a, x) is not a bad edge, it is easy to

check that f(T ) decreases by at least 1 at each iteration.
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Figure 1: Remove bad edge (a, b). Case 1 (left) and Case 2 (right).

Proposition 2: Before instruction (II) is executed, C(Y ) ≤ C(T ).

Proof: For any node v, let Sv = V (Tv). As shown in Figure 1, there are two cases. Case 2 is
identical to Case 1 if the tree is re-rooted at b and the roles of a and b are exchanged. Therefore,
only the inequality for Case 1 needs to be proved, i.e., x ∈ Sa − Sb.

If C(Y ∗) ≤ C(T ), the result follows. Otherwise, let U1 = Sa− Sb and U2 = Sa− Sb− Sx. Since
the distance does not change for any two vertices both in U1 (or both in Sb), we have

C(T ) < C(Y ∗)

⇒
∑
u∈U1

∑
v∈Sb

dT (u, v) <
∑
u∈U1

∑
v∈Sb

dY ∗(u, v).

Since for all u ∈ U1 and v ∈ Sb, dT (u, v) = dT (u, a) + w̄(a, b) + dT (b, v) and dY ∗(u, v) =
dT (u, x) + w̄(x, b) + dT (b, v),

∑
u∈U1

∑
v∈Sb

(dT (u, a) + w̄(a, b) + dT (b, v))

<
∑
u∈U1

∑
v∈Sb

(dT (u, x) + w̄(x, b) + dT (b, v))

⇒ |Sb|
∑
u∈U1

dT (u, a) + |U1||Sb|w̄(a, b)

< |Sb|
∑
u∈U1

dT (u, x) + |U1||Sb|w̄(x, b)

⇒
∑
u∈U1

dT (u, a) + |U1|w̄(a, b) <
∑
u∈U1

dT (u, x) + |U1|w̄(x, b).

Note that Sb ̸= ∅ since the inequality holds. By the definition of the metric closure, w̄(a, b) =
w̄(a, x) + w̄(x, b), and then∑

u∈U1

(dT (u, a)− dT (u, x)) < −|U1|w̄(a, x). (1)

Now consider the cost of Y ∗∗.

(C(Y ∗∗)− C(T )) /2 =
∑
u∈U2

∑
v∈Sx

(dY ∗∗(u, v)− dT (u, v))
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+
∑
u∈U1

∑
v∈Sb

(dY ∗∗(u, v)− dT (u, v)) .

Since dY ∗∗(u, v) ≤ dT (u, v) for u ∈ U1 and v ∈ Sb, the second term is not positive. By observing
that dT (u, v) = dT (u, x) + dT (x, v) and dY ∗∗(u, v) = dT (u, a) + w̄(a, x) + dT (x, v) for any u ∈ U2

and v ∈ Sx, we obtain

(C(Y ∗∗)− C(T )) /2

≤
∑
u∈U2

∑
v∈Sx

(dT (u, a) + w̄(a, x)− dT (u, x))

= |Sx|
∑
u∈U2

(dT (u, a) + w̄(a, x)− dT (u, x))

= |Sx|
∑
u∈U2

(dT (u, a)− dT (u, x)) + |U2||Sx|w̄(a, x)

≤ |Sx|
∑
u∈U1

(dT (u, a)− dT (u, x)) + |U2||Sx|w̄(a, x) (2)

< −|U1||Sx|w̄(a, x) + |U2||Sx|w̄(a, x) (3)

≤ 0.

(2) is obtained by observing that U1 − U2 = Sx and dT (u, a) > dT (u, x) for any u ∈ Sx. (3) is
derived by applying (1). Therefore, C(Y ∗∗) < C(T ) and the result follows.

The next lemma follows Propositions 1 and 2, and that each iteration can be done in O(n) time.

Lemma 1: For any spanning tree T̄ of Ḡ, it can be transformed into a spanning tree T of G in
O(n3) time and C(T ) ≤ C(T̄ ).

The above lemma implies that C(mrct(G))≤ C(mrct(Ḡ)). It is easy to see that C(mrct(G))≥
C(mrct(Ḡ)). Therefore, we have the following corollary.

Corollary 2: C(mrct(G))=C(mrct(Ḡ)).

Let ∆MRCT denote the MRCT problem with metric inputs. We have the next theorem.

Theorem 3: If there is a (1 + ε)-approximation algorithm for ∆MRCT with time complexity
O(f(n)), then there is a (1+ε)-approximation algorithm for MRCT with time complexity O(f(n)+
n3).

Proof: Let G be the input graph for the MRCT problem. The metric closure Ḡ can be
constructed in time O(n2 log n + mn). If there is a (1 + ε)-approximation algorithm for the
∆MRCT problem, a spanning tree T of Ḡ can be computed in time O(f(n)) such that C(T ) ≤
(1 + ε)C(mrct(Ḡ)). Using Algorithm Remove bad, a spanning tree Y of G can be constructed
such that C(Y ) ≤ C(T ) ≤ (1 + ε)C(mrct(Ḡ))= (1 + ε)C(mrct(G)). The overall time complexity is
then O(f(n) + n3).

Corollary 4: The ∆MRCT problem is NP-hard.
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3 A Polynomial Time Approximation Scheme

3.1 Overview

We sketch a Polynomial Time Approximation Scheme (PTAS) for the MRCT problem in this
section.

As described previously, the fact that the costs w may not obey the triangle inequality is
irrelevant, since we can simply replace these costs by their metric closure. Therefore, in this section
we may assume that G = (V,E,w) is a metric graph.

We use k-stars, i.e., trees with no more than k internal nodes, as a basis of our approximation
scheme. In Section 3.5 we show that for any constant k, a minimum routing cost k-star can be
determined in polynomial time. In order to show that a k-star achieves a (1 + ε) approximation,
we show that, for any tree T and constant δ ≤ 1/2:

1. It is possible to determine a δ-separator, and the separator can be cut into several δ-paths
such that the total number of cut nodes and leaves of the separator is at most ⌈2δ ⌉ − 3.
(Lemma 5)

2. Using the separator, T can be converted into a (⌈2δ ⌉ − 3)-star X, whose internal nodes are

just those cut nodes and leaves. The routing cost of X satisfies C(X) ≤ (1 + δ
1−δ )C(T ).

(Lemma 7)

By using T = T̂ =mrct(G), δ = ε
1+ε and finding the best (⌈2δ ⌉−3)-star K, we obtain the desired

approximation

C(K) ≤ (1 +
δ

1− δ
)C(T̂ ) = (1 + ε)C(T̂ ).

Before going into the details of the general case, take a look at how to find a 3/2-approximation
of an MRCT and its performance analysis.

Recall that a centroid of a tree is the vertex whose removal cuts the tree into components of
no more than n/2 vertices. Let T̂ be an MRCT of a metric graph G. Root T̂ at its centroid
r. For an edge (u, v) with parent v, the routing load of the edge is 2x(n − x), in which x is the
number of descendants of u. (For convenience, we assume that a vertex is also a descendant of
itself.) For a desired positive δ ≤ 1/2, removing all vertices with number of descendants no more
than δn, we may obtain a connected subgraph S of T . The subgraph S is a minimal δ-separator.
In the case that δ = 0.5, S contains only the centroid. If the δ-separator S of the MRCT is given
and, for each vertex not in S, its lowest ancestor in S is also known, we may easily construct a
1/(1− δ)-approximation Y of the MRCT as follows:

• S ⊂ Y .

• For each vertex u not in S, connect it to its lowest ancestor v in S by adding edge (u, v).

The approximation ratio of Y can be shown by the following two observations.

• For each edge in S, the routing load in Y is the same as that in T̂ .

• For each edge (u, v) not in S, the routing load in Y is 2(n−1). However, there is a path from
u to v in T̂ of which each edge has routing load no less than 2(1− δ)n, and the length of the
path is at least the same as the edge (u, v).
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Figure 2: An MRCT and the four 3-stars.

For example, consider the simplest case that δ = 1/2. A 1/2-separator contains only one
vertex. Assume that r be such a vertex on an MRCT T̂ . For every other vertex, the ancestor in
the separator is r. Connecting all other nodes to r, we obtain a star Y . The routing cost of Y
is the sum of all edges (v, r) multiplied by its routing load 2(n − 1). For each vertex v, there is
a path from v to r in T̂ . Since r is a 1/2-separator of T̂ , the routing load of the path is at least
n and the path is no shorter than the edge (v, r) by the triangle inequality. Consequently Y is a
2-approximation of the MRCT T̂ . Since the separator contains only one vertex, we may try all
possible vertices and it leads to an O(n2) time 2-approximation of the MRCT problem on metric
graphs.

But when δ < 1/2, the separator may contain as many as Ω(n) vertices, and it is too costly
to enumerate all possible separators. However, instead of the entire separator, we may achieve the
same ratio by knowing only some critical vertices of the separator. In the following, we shall take
δ = 1/3 as an example to show that we only need to know three critical vertices of the separator
to construct a 3/2-approximation.

Root the MRCT T̂ at its centroid r. There are at most two subtrees which contain more than
n/3 nodes. Let a and b be the lowest vertices with at least n/3 descendants. We ignore the cases
where r = a or r = b. For such cases, the ratio can be shown similarly. Let P be the path from a
to b. Obviously the path contains r and is a minimal 1/3-separator. We shall transform T̂ into a
3-star with internal nodes a, b, and r such that its routing cost is no more than 3/2 of that of T̂ .
As shown in Figure 2, let us partition all the vertices into Va, Vb, Vr, Var, and Vbr. The sets Va,
Vb, and Vr contain the vertices whose lowest ancestor on P is a, b, and r, respectively. The set Var

(and Vbr) consists of the vertices whose lowest ancestor on P is between a and r (and between b
and r, respectively).

First replace P with edges (a, r) and (b, r). For each vertex v in Va (or Vb, Vr), edge (v, a) (or
(v, b), (v, r) respectively) is added. For the vertices in Var, we consider two cases. Either all of them
are connected to a or all of them are connected to r. The vertices in Vbr are connected similarly.
The four possible 3-stars are illustrated in Figure 2.

Now consider the routing cost of T̂ . For each vertex v, the routing load of the path from v to
P is no less than 4n/3 since P is a 1/3-separator. For each edge e of P , since there are at least
n/3 nodes on either side of it, the routing load is no less than 2(n/3)(2n/3) = 4n2/9. Therefore we
have the following lower bound of the routing cost of the MRCT:

C(T̂ ) ≥ (4n/3)
∑
v

d
T̂
(v, P ) + (4/9)n2w(P ).

In either of the 3-stars constructed above, for each vertex v in Va ∪ Vr ∪ Vb, the routing load of
the edge incident to v is 2(n − 1), and the edge length is at most the same as the path from v to
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P on T̂ . For each node v in Var, by the triangle inequality, we have

(w(v, a) + w(v, r))/2 ≤ d
T̂
(v, P ) + d

T̂
(a, r)/2.

Note that there are no more than n/6 nodes in Var. For edge (a, r), the routing load is no more than
2(n/2)(n/2) = n2/2. (Note: For this simple case that δ = 1/3, this bound is enough. However, a
more precise analysis of the incremental routing load is required for smaller δ.)

For the nodes in Vbr, we may obtain a similar result. In summary, the minimum routing cost
of the constructed 3-stars is no more than

2(n− 1)
∑
v

d
T̂
(v, P ) + (n2/6)(d

T̂
(a, r) + d

T̂
(b, r)) + (1/2)n2w(P )

≤ 2n
∑
v

d
T̂
(v, P ) + (2/3)n2w(P ).

The approximation ratio, by comparing with the lower bound of the optimal, is 3/2.
The method can be extended to any δ ≤ 0.5. Let S be a δ-separator of T . The critical vertex

set, defined as the cut and leaf set in the next section, to construct a 1/(1−δ)-approximation k-star
consists of the following vertices.

• The leaves of S as a and b in the above example.

• The vertices with more than two neighbors on S.

• Some additional vertices such that all the critical vertices cut the separator into edge-disjoint
paths and the number of vertices whose lowest ancestors on S belong to the same path is no
more than δn/2. Such a path is defined as a δ-path in the next section. In the above example,
r is such a vertex. The vertices a, b and r cut the separator into two paths, and the number
of vertices in either Var or Vbr is no more than n/6.

We shall show that the number of the necessary critical vertices is at most 2/δ − 3 for any
δ ≤ 0.5. Consequently there exists a (2/δ − 3)-star which is an approximation of an MRCT with
ratio 1/(1− δ). The PTAS is to construct the (2/δ − 3)-star of minimum routing cost.

The core of a tree is the subgraph obtained by removing all its leaves. The core of a k-star
contains no more than k vertices and therefore the number of all possible cores is polynomial to k.
For each possible core, the algorithm finds the best way to connect the leaves to one of the vertices
of the core. A k-component integer vector (n1, n2, . . . , nk) is used to indicate how many leaves will
be connected to each of the k vertices of the core, in which

∑
i ni = n− k. There are O(nk−1) such

vectors. For each core and each vector, the routing load on each core edge is fixed since the number
of vertices on both sides of the edge are specified by the core and the vector. Therefore the best
leaf connection is determined by the leaf edges subject to the numbers of leaves to be connected to
the vertices of the core. Such a problem can be solved by solving an assignment problem in O(n3)
time. Consequently the minimum routing cost k-star can be constructed in time polynomial to k
and n.

Consider an example for k = 3. For a 3-star, the core is a 3-vertex path. There are O(n3)
possible cores. For each possible core (a, b, c), use a three-component integer vector (x, y, z) to
indicate how many leaves will be connected to a, b, and c, in which x+ y+ z = n−3 and x, y, z are
nonnegative integers. There are O(n2) such vectors. For a specified core and a specified vector, the
routing load on each core edge is also fixed. That is, the routing load on (a, b) is 2(x+1)(n−x−1)
and on (b, c) is 2(z + 1)(n − z − 1). Therefore the best leaf connection is determined by the leaf
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Figure 3: B1, . . . , B7 are branches of P . V B(T, P, i) = {i} ∪ V (B1) ∪ V (B2) ∪ V (B3). P c is the
number of vertices in {r1, r2, r3} ∪ V (B4) ∪ V (B5) ∪ V (B6).

edges subject to the numbers of leaves to be connected to a, b, c. Such a problem can be solved
by solving an assignment problem in O(n3) time. The total time complexity is O(n2k+2), which is
polynomial for constant k. In fact we need not solve the individual assignment problem for the best
leaf connection of each vector. The best leaf connection of one vector can be found from that of
another vector by solving a shortest path problem if the two vectors are adjacent. Two vectors are
adjacent if one can be obtained from the other by increasing a component by one and decreasing a
component by one, e.g., (5, 4, 2) and (5, 3, 3). With this result, the time complexity is reduced to
O(n2k).

3.2 The δ-spine of a tree

Let P = SPT (i, j) in which |V B(T, P, i)| ≥ |V B(T, P, j)|. We shall use the following notations to
simplify the expressions.

• P a = |V B(T, P, i)|.

• P b = |V B(T, P, j)|.

• P c = n− |V B(T, P, i)| − |V B(T, P, j)|.

• Q(P ) =
∑

1≤x≤h

|V B(T, P, rx)| × dT (rx, i), where P = (i, r1, r2, . . . , rh, j).

P a and P b are the numbers of vertices that are hanging at the two end points of the path. Note
that we always assume P a ≥ P b. In the case that P contains only one edge, P c = 0. The notations
are illustrated in Figure 3.

Definition 2: Let 1 ≤ k ≤ n. A k-star is a spanning tree of G which has no more than k internal
nodes. An optimal k-star is the k-star with the minimum routing cost.

We now turn to the notions of δ-paths and δ-spines. Informally, a δ-path is a path such that not
too many nodes (at most δn/2) are hanging at its internal nodes. A δ-spine is a set of edge-disjoint
δ-paths, whose union is a minimal δ-separator. That is, a δ-spine is obtained by cutting a minimal
δ-separator into δ-paths. In the case that the minimal δ-separator contains just one node, the only
δ-spine is the empty set.

Definition 3: Given a spanning tree T of G, and 0 < δ ≤ 0.5, a δ-path of T is a path P such
that P c ≤ δn/2.
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Figure 4: Separator, spine and CAL. Each triangle represents a subtree with no more than n/4
vertices.

Definition 4: Let 0 < δ ≤ 0.5. A δ-spine Y = {P1, P2, ..., Ph} of T is a set of pairwise edge-
disjoint δ-paths in T such that S =

∪
1≤i≤h Pi is a minimal δ-separator of T . Furthermore, for any

pair of distinct paths Pi and Pj in the spine, we require that either they do not intersect or, if they
do, the intersection point is an endpoint of both paths.

Definition 5: Let Y be a δ-spine of a tree T . CAL(Y ) (which stands for the cut and leaf set of Y )
is the set of the endpoints of the paths in Y . In the case that Y is empty, the cut and leaf set contains
only one node which is a δ-separator of T . Formally CAL(Y ) = {u, v|∃P = SPT (u, v) ∈ Y } if Y is
not empty, and otherwise CAL(Y ) = {u|u is a minimal δ-separator }.

Example 1: In Figure 4(a), S (bold lines) is a minimal 1/4 separator of the tree. Vertex v1 is a
centroid, and vertices v2, v3, and v4 are leaves in S. In (b), the separator is cut into a 1/4-spine of
the tree. The CAL of the spine is {v1, v2, v3, v4, v5}. The path between v1 and v4 is cut at vertex
v5 to ensure that the number of vertices hung at each path is no more than n/8.

Lemma 5: For any constant 0 < δ ≤ 0.5, and a spanning tree T of G, there exists a δ-spine Y of
T such that |CAL(Y )| ≤ ⌈2/δ⌉ − 3.

Proof: Let S be a minimal δ-separator of T . S is a tree. Let U1 be the set of leaves in S, U2

be the set of vertices which have more than two neighbors in S, and U = U1 ∪ U2. Let h = |U1|.
Clearly, |U | ≤ 2h − 2. Let Y1 be the set of paths obtained by cutting S at all the vertices in U2.
For example, for the tree on the right side of Figure 4, U1 = {v2, v3, v4}; U2 = {v1}; Y1 contains
SPT (v1, v2), SPT (v1, v3) and SPT (v1, v4). For any P ∈ Y1, if P

c > δn/2 then P is called a heavy
path. It is easy to check that Y1 satisfies the requirements of a δ-spine except that there may exist
some heavy paths. Suppose P is not a δ-path. We can break it up into δ-paths by the following
process. First find the longest prefix of P starting at one of its endpoints and ending at some
internal vertex, say i, in the path, that determines a δ-path. Now we break P at vertex i. Then we
repeat the breaking process on the remaining suffix of P starting at i, stripping off the next δ-path
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and so on. In this way P can be cut into δ-paths by breaking it up at no more than ⌈2P c/ (δn)⌉−1
vertices. Since there are at least δn nodes hung at each leaf,∑

P∈Y1

P c < n− hδn.

Let U3 be the minimal vertex set for cutting the heavy paths to result in a δ-spine Y of T . We have

|U3| ≤ ⌈2 (n− hδn) / (δn)⌉ − 1 = ⌈2/δ⌉ − 2h− 1.

So, |CAL(Y )| = |U |+ |U3| ≤ ⌈2/δ⌉ − 3.

Example 2: For any tree, there always exist a (1/3)-spine and a (1/4)-spine whose cut and leaf
set contains no more than 3 and 5 vertices, respectively, as illustrated in Figure 4. Taking δ = 1/5,
it follows that there exists a (1/5)-spine whose cut and leaf set has no more than 7 vertices.

3.3 Lower bound

We are going to establish a more precise lower bound than Lemma ?? (Section ??). While proving
Lemma ??, we substituted l(T, e) by 2δ(1− δ)n2 in (??),

C(T ) ≥ 2(1− δ)n
∑
v∈V

dT (v, S) +
∑

e∈E(S)

l(T, e)w(e).

Now we give a more careful analysis of the last term. Let Y be a δ-spine of a spanning tree T of
G and S =

∪
P∈Y P be a minimal δ-separator of T . Rewriting in terms of δ-spine and recalling

l(T, e) = 2eaeb, we have ∑
e∈E(S)

l(T, e)w(e) = 2
∑
P∈Y

∑
e∈P

eaebw(e).

Assume P = (r0, r1, r2, . . . , rh) in which |V B(T, P, r0)| ≥ |V B(T, P, rh)|. Let |V B(T, P, ri)| = ni

for 1 ≤ i ≤ h− 1 and ei = (ri−1, ri) for 1 ≤ i ≤ h.∑
e∈P

eaebw(e)

=
h∑

i=1

P a + P c −
h−1∑
j=i

nj

P b +
h−1∑
j=i

nj

w(ei)

≥
h∑

i=1

P b (P a + P c)w(ei) + (P a − P b)

h∑
i=1

h−1∑
j=i

njw(ei)

+

h∑
i=1

h−1∑
j=i

nj

P c −
h−1∑
j=i

nj

w(ei)

≥ P b(P a + P c)w(P ) + (P a − P b)

h−1∑
j=1

nj

(
j∑

i=1

w(ei)

)
= P b (P a + P c)w(P ) + (P a − P b)Q(P ).

Note that Q(P ) is defined at the first paragraph of Section 3.2. From this and (??), we obtain the
next lemma.
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Figure 5: Constructing the k-star from an optimal tree.

Lemma 6: Let Y be a δ-spine of a spanning tree T of G and S =
∪

P∈Y P be a minimal
δ-separator of T . Then

C(T ) ≥ 2(1− δ)n
∑
v∈V

dT (v, S) + 2
∑
P∈Y

(
P b(P a + P c)w(P ) + (P a − P b)Q(P )

)
.

3.4 From trees to stars

Let δ ≤ 1/2 and k = ⌈2/δ⌉ − 3. We now decompose an optimal solution T̂ and construct a k-star
whose routing cost is upper bounded by k+3

k+1C(T̂ ).

Let Y = {Pi|1 ≤ i ≤ h} be a δ-spine of T̂ in which |CAL(Y )| ≤ ⌈2/δ⌉ − 3. Note that the
set of all the edges in Y forms a δ-separator S. Assume Pi = SP

T̂
(ui, vi) and |V B(T̂ , Pi, ui)| ≥

|V B(T̂ , Pi, vi)|. By the following steps, we construct a k-star whose internal nodes are exactly the
cut and leaf set of the δ-spine we just identified.

1. We connect these nodes by short-cutting edges along the spine to construct a tree spanning
these nodes with the same skeletal structure as the spine.

2. All vertices in subtrees hanging at the cut and leaf nodes of the spine are connected directly
to their closest node in the spine.

3. Along a δ-path in the spine, all the internal nodes and nodes in subtrees hanging at internal
nodes are connected to one of the two endpoints of this path (note that both are in the cut
and leaf set of the spine) in such a way as to minimize the resulting routing cost.

This is the k-star used to argue the upper bound on the routing cost.

Example 3 : In Figure 5, we illustrate how to construct the desired k-star from an optimal
tree. Frame (a) is an optimal tree in which the separator is shown and the cut and leaf set is
{A,B,C,D,E}. Frame (b) is the tree spanning the cut and leaf nodes, which has the same skeletal
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structure as the spine. Frames (c), (d) and (e) illustrate how to connect other nodes to the cut
and leaf nodes. Frame (c) exhibits the nodes hanging at a δ-path. These nodes will be connected
as in either Frame (d) or (e). The nodes hanging at the endpoints of the path will be connected to
the endpoints in either case. All the internal nodes of the path and nodes hanging at the internal
nodes will be connected to one of the two endpoints. Note that they are connected to the same
endpoint either as Frame (d) or Frame (e), but not connected to the two endpoints partially.

More formally, construct a subgraph R ⊂ G with vertex set CAL(Y ) and edge set Er =
{(ui, vi)|1 ≤ i ≤ h}. Trivially, R is a tree. Let f(i) be an indicator variable such that

f(i) =

{
1 if

(
P a
i − P b

i

)
P c
i w(Pi) ≥ n (2Q(Pi)− P c

i w(Pi))
0 otherwise

The indicator variable f(i) determines the endpoint of Pi to which all the internal nodes and
nodes hanging at such internal nodes will be directly connected. We construct a spanning tree X
of G where the edge set Ex is determined by the following rules:

1. R ⊂ X.

2. If q ∈ V B(T̂ , S, r) then (q, r) ∈ Ex, for any r ∈ {ui, vi|1 ≤ i ≤ h}.

3. For the vertex set Vi = V − V B(T̂ , Pi, ui)− V B(T̂ , Pi, vi), if f(i) = 1 then {(q, ui)|q ∈ Vi} ⊂
Ex, else {(q, vi)|q ∈ Vi} ⊂ Ex. That is, the vertices in Vi are either all connected to ui or all
connected to vi.

Proposition 3: X is a k-star.

The above proposition is trivial; consider the cost of X.

Proposition 4: C(X) ≤ 1
1−δC(T̂ ).

Proof: Since any edge in Ex −Er is incident with a leaf,

C(X)

2
=
∑
e∈Er

eaebw(e) + (n− 1)
∑

e∈Ex−Er

w(e).

First, for any e = (ui, vi) ∈ Er,

eaebw(e) ≤ (P a
i + f(i)P c

i )
(
P b
i + (1− f(i))P c

i

)
w(Pi)

= P a
i P

b
i w(Pi) +

(
f(i)P b

i + (1− f(i))P a
i

)
P c
i w(Pi).

Second, by the triangle inequality and recalling that for subgraph S ⊂ T̂ , dS
T̂
(i, j) stands for

w(SP
T̂
(i, j) ∩ S), we have

∑
e∈Ex−Er

w(e) ≤
∑
v∈V

d
T̂
(v, S) +

h∑
i=1

∑
v∈Vi

(
f(i)dS

T̂
(v, ui) + (1− f(i)) dS

T̂
(v, vi)

)

=
∑
v∈V

d
T̂
(v, S) +

h∑
i=1

(f(i)Q(Pi) + (1− f(i)) (P c
i w(Pi)−Q(Pi))) .

12



Thus,

C(X)

2
≤

h∑
i=1

P a
i P

b
i w(Pi) + n

∑
v∈V

d
T̂
(v, S)

+

h∑
i=1

min{P b
i P

c
i w(Pi) + nQ(Pi), P

a
i P

c
i w(Pi) + n(P c

i w(Pi)−Q(Pi))}.

Since the minimum of two numbers is not larger than their weighted mean, we have

min{P b
i P

c
i w(Pi) + nQ(Pi), P

a
i P

c
i w(Pi) + n (P c

i w(Pi)−Q(Pi))}

≤
(
P b
i P

c
i w(Pi) + nQ(Pi)

) P a
i

P a
i + P b

i

+(P a
i P

c
i w(Pi) + n (P c

i w(Pi)−Q(Pi)))
P b
i

P a
i + P b

i

.

Then,

C(X)

2
≤

h∑
i=1

P a
i P

b
i w(Pi) + n

∑
v∈V

d
T̂
(v, S) +

h∑
i=1

(
2P a

i P
b
i P

c
i + nP b

i P
c
i

)
w(Pi)

P a
i + P b

i

+

h∑
i=1

(P a
i − P b

i )nQ(Pi)

P a
i + P b

i

= n
∑
v∈V

d
T̂
(v, S) +

h∑
i=1

w(Pi)

P a
i + P b

i

((
P a
i P

b
i + P b

i P
c
i

)
n+ P a

i P
b
i P

c
i

)

+

h∑
i=1

(P a
i − P b

i )nQ(Pi)

P a
i + P b

i

.

The simplification in the last inequality uses the observation that for any i, we have P a
i +P b

i +P c
i = n.

By Lemma 6,

C(X) ≤ C(T̂ ) max
1≤i≤h

{
1

1− δ
,

n

P a
i + P b

i

+
P a
i P

c
i

(P a
i + P b

i )(P
a
i + P c

i )

}
.

Since P c
i ≤ δn/2,

n

P a
i + P b

i

+
P a
i P

c
i

(P a
i + P b

i )(P
a
i + P c

i )

≤ n

P a
i + P b

i

+
P c
i

P a
i + P b

i

=
n+ P c

i

n− P c
i

≤ 2 + δ

2− δ
≤ 1

1− δ
.

This completes the proof.

For any integer k ≥ 1, we take δ = 2
k+3 . By the above two propositions, we have the next

lemma.

Lemma 7: An optimal k-star of a metric graph is a (k+3)/(k+1) approximation of an MRCT.

13



Example 4: Taking δ = 1/3 in Lemma 7, it follows that there exists a 3-star which is a 1.5-
approximation of an MRCT, which coincides with the result stated in Section 1. Taking δ = 0.2,
it follows that there exists a 7-star which is a 1.25-approximation.

In the following section we will show that it is possible to determine an optimal k-star of a
graph in polynomial time. In fact, we have the following lemma.

Lemma 8: An optimal k-star of a graph G can be constructed in O(n2k) time.

The proof is delayed to the next section. The following theorem establishes the time-complexity
of our PTAS.

Theorem 9: There exists a PTAS for the ∆MRCT problem, which can find a (1+ε)-approximation
solution in O(nρ) time complexity where ρ = 2 ⌈2/ε⌉ − 2.

Proof: By Lemma 7, there exists a k-star which is a (k+3)/(k+1) approximation of an MRCT.
For finding a (1+ε)-approximation solution, we take k = ⌈2/ε⌉− 1 and find an optimal k-star. The
time complexity is O(nρ) where ρ = 2 ⌈2/ε⌉ − 2 from Lemma 8.

The result in Theorem ?? is immediately derived from Theorems 9 and 3.

3.5 Finding an optimal k-star

In this section we describe an algorithm for finding an optimal k-star in G for a given value of k.
As mentioned before, given an accuracy parameter ε > 0, we apply this algorithm for k = ⌈2ε − 1⌉,
and return an optimal k-star as a (1 + ε)-approximate solution.

For a given k, to find an optimal k-star, we consider all possible subsets S of vertices of size k,
and for each such choice, find an optimal k-star where the remaining vertices have degree one.

3.5.1 A polynomial-time method

First, we verify that the overall complexity of this step is polynomially bounded for any fixed k.
Any k-star can be described by a triple (S, τ,L), where S = {v1, . . . , vk} ⊆ V is the set of k
distinguished vertices which may have degree more than one, τ is a spanning tree topology on S,
and L = (L1, . . . , Lk), where Li ⊆ V − S is the set of vertices connected to vertex vi ∈ S. For any
r ∈ Z+, an r-vector is an integer vector with r components. Let l = (l1, . . . , lk) be a nonnegative
k-vector such that

∑k
i=1 li = n− k. We say that a k-star (S, τ,L) has the configuration (S, τ, l) if

li = |Li| for all 1 ≤ i ≤ k.

Example 5: For the 3-star shown in Figure 6(a), S = {v1, v2, v3}, τ is shown in (b), L1 =
{u1, u2, u3}, L2 = {u4}, L3 = {u5}, and l = (3, 1, 1).

For a fixed k, the total number of configurations is O(n2k−1) since there are
(
n
k

)
choices for

S, kk−2 possible tree topologies on k vertices, and
(
n−1
k−1

)
possible such k-vectors. (To see this,

observe that every such vector can be put in correspondence with picking k − 1 among n − 1
linearly ordered elements, and using the cardinalities of the segments between consecutively picked
segments as the components of the vector.) Note that any two k-stars with the same configuration
have the same routing load on their corresponding edges. We define α(S, τ, l) to be an optimal
k-star with configuration (S, τ, l).

Note that any vertex v in V − S that is connected to a node s ∈ S contributes a term of
w(v, s) multiplied by its routing load of 2(n − 1). Since all these routing loads are the same, the
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Figure 6: The configuration of a 3-star.

best way of connecting the vertices in V − S to nodes in S is obtained by finding a minimum-cost
way of matching up the nodes of V − S to those in S which obeys the degree constraints on the
nodes of S imposed by the configuration, and the costs are the distances w. This problem can be
solved in polynomial time for a given configuration by a straightforward reduction to an instance of
minimum-cost perfect matching. The above minimum-cost perfect matching problem, also called
the assignment problem, has been well studied and can be solved in O(n3) time (cf. [1]). Therefore,
the overall complexity is O(n2k+2) for finding an optimal k-star.

3.5.2 A faster method

In the PTAS, we need to solve many matching problems, each for one configuration. It takes
polynomial time to solve these problems individually and this result is sufficient for showing the
existence of the PTAS. Although there is no obvious way to reduce the time complexity for one
matching problem, the total time complexity can be significantly reduced when considering all these
matching problems together. The key point is that two optimal k-stars of similar configurations
share a large common portion in their structures. By carefully ordering the matching problems
for the configurations and exploiting the common structure of two consecutive problems, we can
obtain an optimal solution of any configuration in this order by performing a single augmentation
on the optimal solution of the previous configuration. Thus, we show (Lemma 10) how to compute
α(S, τ, l) for a given configuration in O(nk) time.

Let Wab be the set of all nonnegative a-vectors whose entries add up to a constant b. In
Wab ×Wab, we introduce the relation ∼ as l ∼ l′ if there exist 1 ≤ s, t ≤ a such that

l′i =


li − 1 if i = s
li + 1 if i = t
li otherwise

For a pair l and l′ such as the above, we say that l′ is obtained from l by s and t.
Let r = |Wab| =

(
a+b−1
a−1

)
. The following proposition shows that the elements of Wab can be

linearly ordered as l1, . . . , lr so that li+1 ∼ li for all 1 ≤ i ≤ r − 1.

Proposition 5: For all positive integers a, b, there exists a permutation πa,b of Wab such that
πa,b
1 is the lexicographic minimum, πa,b

r is the lexicographic maximum, and πa,b
i+1 ∼ πa,b

i for all
i = 1, . . . , r − 1.

Proof: By induction. The claim is clearly true when a = 1 for any b. Assume the claim is true
for all b when a = m−1. For a = m construct the ordering as follows. First the elements for which
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l1 = 0 ordered applying πa−1,b to (l2, . . . , la). Then the elements for which l1 = 1, ordered according
to decreasing πa−1,b−1. In general each block for which l1 = h is ordered by applying πa−1,b−h to
(l2, . . . , la), forward or backwards according to the parity of h. Note that πa,b

i+1 ∼ πa,b
i within one

block. Furthermore, at block boundaries the part (l2, . . . , la) is either a lexicographic minimum or
maximum so that it is feasible to increase by one l1. Finally, it is obvious that the first and the
last of the constructed ordering are the lexicographic minimum and maximum respectively.

Example 6: The ordering of W3,4 is as follows:

(0, 0, 4) (0, 1, 3) (0, 2, 2) (0, 3, 1) (0, 4, 0)
(1, 3, 0) (1, 2, 1) (1, 1, 2) (1, 0, 3) (2, 0, 2)
(2, 1, 1) (2, 2, 0) (3, 1, 0) (3, 0, 1) (4, 0, 0)

According to Proposition 5 we can order the elements of Wk,(n−k) as l
1, . . . , lr, where r =

(
n−1
k−1

)
.

Note that l1 = (0, . . . , 0, n− k) and lr = (n− k, 0, . . . , 0). We shall show how to obtain α(S, τ, li+1)
from α(S, τ, li).

Lemma 10: α(S, τ, li+1) can be computed from α(S, τ, li) in O(nk) time.

Proof: We shall show that α(S, τ, li+1) can be found from α(S, τ, li) by means of a shortest
path computation. A similar argument is used for solving a minimum cost flow problem given the
solution of another minimum cost flow problem which differs by only one unit capacity arc (see
Exercise 10.20 in [1]).

For convenience, let us rename the vertices so that S = {1, . . . , k}. Let li = (|L1|, . . . , |Lk|) and
(S, τ,L) = α(S, τ, li). Let us define an auxiliary weighted digraph D(L) = (V,A, δ) in which the
arc set is

A = {(u, v)|u ∈ V − S, v ∈ S} ∪ {(u, v)|u ∈ S, v ∈ Lu},

and δ(u, v) = w(u, v) if u /∈ S, and δ(u, v) = −w(u, v) if u ∈ S. For a node in S, the weight on an
outgoing arc reflects the cost reduction for removing a leaf from its neighbors, and the weight on
an incoming arc reflects the increase in cost for connecting a leaf to the node.

Any cycle (not necessarily simple) in the graph describes a way of changing (S, τ,L) into another
k-star with the same configuration, and the difference in cost between the new and the old k-stars
is given by 2(n− 1) times the length of the cycle. Since (S, τ,L) is optimal for its configuration, we
conclude that there is no negative length cycle in D(L). Consequently any shortest path between
two vertices must be a simple path.

Similarly, if li+1 is obtained from li by s and t, then any path from s to t in the auxiliary
graph changes (S, τ,L) into a k-star with configuration (S, τ, li+1). Conversely, any k-star with
configuration (S, τ, li+1) can be obtained by a path (not necessarily simple) from s to t. Since the
contributed cost of a path is proportional to its length, it is clear that there is a shortest path
from s to t, changing α(S, τ, li) into α(S, τ, li+1). We now show how such a shortest path can be
computed in O(kn) time.

Consider any shortest path (u1, v1, u2, . . . , vh−1, uh) between two nodes ui ∈ S and vi ∈ V −
S in D(L). Take two consecutive edges (ui, vi) and (vi, ui+1) in the path. Since the path is
shortest, vi must be such as to minimize the sum of the two edge lengths. Recall that δ(ui, vi) =
−w(ui, vi) and δ(vi, ui+1) = w(vi, ui+1). Then, we have that the sum of the two edge lengths is
minvi∈Li{w(vi, ui+1) − w(ui, vi)}. To find the shortest path from s to t on D(L), we construct a
complete digraph D′(L) with vertex set S and lengths δ′, in which

δ′(i, j) = min
v∈Li

{w(v, j)− w(i, v)}.
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Figure 7: The auxiliary graphs for the faster method.

It is easy to see that the length of the shortest path from s to t on D′(L) is the same as the one on
D(L).

Given the graph D′(L), a shortest s-t path (and also the corresponding path on D(L)) can be
found in O(k2) time. Finally, to construct D′(L), for each vertex i ∈ S, we have to find k−1 minima
(one for each other j ∈ S), each over a set of li elements. Adding up, the total time complexity is

(k − 1)
k∑

i=1

li = (k − 1)(n− k) = O(nk).

Example 7: Suppose that the edge lengths w(vi, uj) in Figure 6 are given in the following matrix.

u1 u2 u3 u4 u5
v1
v2
v3

 10 10 30 50 50
50 60 40 20 60
80 70 80 30 30


The 3-star in Figure 6(a) is optimal for l = (3, 1, 1) and we want to compute an optimal for vector
(2, 1, 2) which is obtained from l by v1 and v3. The auxiliary digraph D(L) is shown in Figure 7(a)
and D′(L) is shown in (b). Since L1 = {u1, u2, u3}, the length δ′(v1, v2) is obtained by

min


w(v2, u1)− w(v1, u1)
w(v2, u2)− w(v1, u2)
w(v2, u3)− w(v1, u3)

 = w(v2, u3)− w(v1, u3) = 10,

which corresponds to the cost of moving u3 from L1 to L2. The shortest path from v1 to v3 in
D′(L) is (v1, v2, v3) and has length 20. Thus the best leaf connection of configuration (S, τ, (2, 1, 2))
is L1 = {u1, u2}, L2 = {u3} and L3 = {u4, u5}.

We are now able to prove Lemma 8 which states that an optimal k-star can be found in O(n2k)
time.
Proof: When S and τ are fixed, to find an optimal k-star we begin by α(S, τ, l1), which is
readily obtained by setting Lk = V − S. Then, using Lemma 10, we compute optimal k-stars for
configurations l2, . . . , lr, and report the best overall.

Since we have
(
n
k

)
choices for S, kk−2 possible tree topologies, and for each fixed S and τ , we

have
(
n−1
k−1

)
configurations, where an optimal for each configuration can be computed in O(nk) time,

therefore, in total we can find an optimal k-star in O(nk)×O(nk−1)×O(n) = O(n2k) time.
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4 Applications

4.1 Network design

An obvious application of an MRCT is in network design. The length of an edge reflects the cost
of routing along the edge. The input graph is the underlying graph in which the edges represent
all possible links between nodes. One may want to construct a fixed network such that message or
cargo may be transported on the network from sources to destinations.

Trees are an important network structure because of the following two features:

1. Trees are connected subgraphs with minimum number of edges.

2. The routing algorithm on a tree is very simple.

An MRCT is a spanning tree minimizing the total routing cost when the communication require-
ments for all pairs of vertices are equal. Or in the stochastic model, an MRCT is a spanning tree
having the minimum expected routing cost if the requirement between any pair of vertices has
equal probability.

4.2 Computational biology

Besides the obvious connection to network design, trees with small routing cost also find application
in the construction of good multiple sequence alignments in computational biology. To explicate
the application, we shall first briefly introduce the concept of multiple sequence alignments. More
details can be found in textbooks for computational biology such as [8].

4.2.1 Multiple sequence alignments

Multiple sequence alignments are important tools for finding patterns common to a set of genetic
sequences in computational biology. A multiple alignment of a set of n strings involves inserting
gaps (blanks) in the strings and arranging their characters into columns with n rows, one from each
string. The order of characters along a row corresponding to string si is the same as that in si,
with possibly some blanks inserted. The following is an example of an alignment of three strings
TCCGATG, CCGGACG and TCGACG.

T C C - G A T - G

- C C G G A - C G

T C - - G A - C G

The intent of identifying common patterns is represented by attempting as much as possible to
place the same character in every column.

The multiple sequence alignment problem has typically been formalized as an optimization prob-
lem in which some explicit objective function is minimized or maximized. One of the most popular
objective functions for multiple alignment generalizes ideas from alignment of two sequences. The
pairwise-alignment problem [13] can be phrased as that of finding a minimum mutation path be-
tween two sequences. Formally, given costs for inserting or deleting a character and for substituting
one character of the alphabet for another, the problem is to find a minimum-cost mutation path
from one sequence to the other. The cost of this path is known as the edit distance in computer
science. An optimal alignment of two sequences of length l can be computed effectively by dynamic
programming [13] in O(l2) time. The generalization to multiple sequences leads to the sum-of-pairs
objective.
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The sum-of-pairs or SP objective for multiple alignment is to minimize the sum, over all pairs
of sequences, of the pairwise distance between them in the alignment (where the distance of two
sequences in an alignment with l columns is obtained by adding up the costs of the pairs of characters
appearing at positions 1, . . . , l).

Pioneering work of Sankoff and co-authors [12] led to an exponential-time dynamic program-
ming solution to the SP-alignment problem. A straightforward implementation requires time pro-
portional to 2nln, for a problem with n sequences each of length at most l. Considering that in
typical real-life instances l can be a few hundred, the basic dynamic programming approach turns
out to be infeasible for all but very small problems.

4.2.2 Approximation algorithms via routing cost trees

The first approximation algorithm for the SP-alignment problem was due to Gusfield [7] with a
performance ratio of 2− 2

n where n is the number of sequences aligned. This was slightly improved
to 2 − 3

n by Pevzner [11]. The best known approximation algorithm for this problem is due to
Bafna, Lawler and Pevzner [2] which achieves a ratio of 2− r

n for any fixed value of r. The running
time is exponential in r. Notice that this is not a PTAS for the problem, and no polynomial time
approximation scheme is known yet for the SP-alignment problem.

Gusfield’s approximation algorithm for the SP-alignment problem is based on the 2-approximation
for minimum routing cost trees due to Wong [14]. The algorithm uses a folklore approach to mul-
tiple alignment guided by a tree, due to Feng and Doolittle [4]: Given a spanning tree on the
complete graph on the sequences to be aligned, the multiple alignment guided by the tree is built
recursively as follows. First, remove a leaf sequence l in the tree attached to sequence v by a tree
edge (l, v), and align the remaining sequences recursively. Then, insert back the leaf sequence in
the alignment guided by an optimal pairwise alignment between the pair l and v. If this optimal
pairwise alignment introduces a gap in v, insert the same gap in the recursively computed alignment
for the tree without the leaf. Since the cost of aligning a blank to a blank is assumed zero, the
resulting alignment has the property that for every pair related by a tree edge, the cost of the in-
duced pairwise alignment equals to their edit distance. By the triangle inequality on edit-distances,
the SP-cost of the alignment derived from this spanning tree is upper-bounded by the routing cost
of the tree.

Wong’s 2-approximation algorithm is the one introduced in Section ??. For graphs with metric
distances obeying the triangle inequality, every shortest-paths tree is isomorphic to a star. Fur-
thermore, in this case, Wong’s analysis shows that the best star has routing cost at most twice the
total cost of the graph itself. The cost of the graph in this case is the sum of pairwise edit distances
between sequences, which is a lower bound on the SP-cost. Thus, Gusfield observed that a multiple
alignment derived from the best center-star gives a 2-approximation for the SP-alignment problem.

4.2.3 Tree-driven SP-alignment

Despite the popularity of the SP-objective, most of the currently available methods for finding
alignments use a progressive approach of incrementally building the alignment adding sequences
one at a time with no performance guarantee on the SP-cost. The Feng-Doolittle procedure can be
viewed as one such procedure. The advantages of such approaches is their low running time, but
the shortcoming is that the order in which the sequences are merged into the alignment determines
its cost.

In trying to define a middle ground between the SP-objective and the more practical progressive
methods, the tree-driven SP-alignment method was proposed: apply the Feng-Doolittle procedure
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to the best possible spanning tree in the complete graph on the sequences. By the reasoning above,
the tree that gives the best upper bound on the SP-cost of the alignment is the one with the
minimum routing cost. Thus, the PTAS for routing cost trees may be useful in finding good trees
for applying any progressive alignment method such as the Feng-Doolittle procedure.

5 Summary

In this chapter, we investigate how to approximate a minimum routing cost spanning tree of a graph.
The first algorithm approximates an MRCT by constructing a shortest-paths tree rooted at some
vertex. By comparing with a trivial lower bound, the cost is shown within two times the optimal.
By the technique of solution decomposition, we can have another proof of the approximation ratio.
More importantly the technique can be extended to designing better approximation algorithms. It
is exhibited by approximation algorithms with ratio 15/8 and 3/2, which use general stars instead
of shortest-paths trees to approximate an MRCT.

However, a difficulty is encountered while attempting better approximation ratios for general
graphs. A transformation algorithm is introduced to resolve the difficulty. The algorithm Re-
move Bad can construct a spanning tree of a graph from a spanning tree of its metric closure
without increasing the routing cost. The transformation not only shows the NP-hardness of the
MRCT problem on metric graphs but also reduces the approximation problem on general graphs
to the metric case.

By decomposing an optimal solution, it is shown that there exists a k-star which is a good
approximation of an MRCT of a metric graph. The approximation ratio approaches to 1 as k is
increased. A PTAS is then presented by showing how to construct an optimal k-star in polynomial
time for fixed k.

Finally the applications of an MRCT in network design and in computational biology are
discussed.

Bibliographic Notes and Further Reading

Te Chiang Hu [9] formulated a general version of the routing cost spanning tree problem that
he called optimum communication spanning trees (OCT), cf. [ND7] in [6]. In this problem, in
addition to the costs on edges, a requirement value λij is specified for every pair of vertices i, j.
The communication cost between a pair in a spanning tree is the cost of the path between them
in the tree multiplied by their requirement λij . Thus the routing cost is a special case of the
communication cost when all the requirement values are one. He used the term “optimum distance
spanning trees” to denote trees with a minimum routing cost and derived a weak condition under
which the optimum routing cost tree is a star.

David S. Johnson et al. [10] showed that the MRCT problem on a general graph is NP-hard
in the strong sense. Robert Dionne et al. [3] studied the exact and the heuristic algorithms. The
MRCT problem is also known by the name shortest total path length spanning tree problem, cf. [ND3]
in [6]. R. Wong [14] showed that there exists a shortest-paths tree which is a 2-approximation of
an MRCT and gave a worst-case analysis of the approximation algorithm. Bang Ye Wu, Kun-Mao
Chao, and Chuan Yi Tang [15] made a breakthrough on the approximation ratio by using the
general stars and giving a lower bound with the solution decomposition technique. They showed
that it is possible to approximate an MRCT with ratio (4/3) + ε for any positive constant ε in
polynomial time. The idea was soon generalized to the PTAS by Bang Ye Wu et al. [16]. The term
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“MRCT” first appeared in the paper. Matteo Fischetti et al. [5] studied the techniques for finding
the exact solution while avoiding an exhaustive search.

Several extensions of the MRCT problem will be discussed in the next chapter, including the
OCT problem, the sum-requirement OCT problem and the product-requirement OCT problem.
Some variants where not all vertices are sources are also included.

More details of the multiple sequence alignment as well as other problems in computational
biology can be found in [8].
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